llvm-project/llvm/lib/Target/SPIRV/SPIRVCallLowering.cpp

224 lines
8.9 KiB
C++

//===--- SPIRVCallLowering.cpp - Call lowering ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the lowering of LLVM calls to machine code calls for
// GlobalISel.
//
//===----------------------------------------------------------------------===//
#include "SPIRVCallLowering.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVISelLowering.h"
#include "SPIRVRegisterInfo.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
using namespace llvm;
SPIRVCallLowering::SPIRVCallLowering(const SPIRVTargetLowering &TLI,
const SPIRVSubtarget &ST,
SPIRVGlobalRegistry *GR)
: CallLowering(&TLI), ST(ST), GR(GR) {}
bool SPIRVCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
const Value *Val, ArrayRef<Register> VRegs,
FunctionLoweringInfo &FLI,
Register SwiftErrorVReg) const {
// Currently all return types should use a single register.
// TODO: handle the case of multiple registers.
if (VRegs.size() > 1)
return false;
if (Val)
return MIRBuilder.buildInstr(SPIRV::OpReturnValue)
.addUse(VRegs[0])
.constrainAllUses(MIRBuilder.getTII(), *ST.getRegisterInfo(),
*ST.getRegBankInfo());
MIRBuilder.buildInstr(SPIRV::OpReturn);
return true;
}
// Based on the LLVM function attributes, get a SPIR-V FunctionControl.
static uint32_t getFunctionControl(const Function &F) {
uint32_t FuncControl = static_cast<uint32_t>(SPIRV::FunctionControl::None);
if (F.hasFnAttribute(Attribute::AttrKind::AlwaysInline)) {
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Inline);
}
if (F.hasFnAttribute(Attribute::AttrKind::ReadNone)) {
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Pure);
}
if (F.hasFnAttribute(Attribute::AttrKind::ReadOnly)) {
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Const);
}
if (F.hasFnAttribute(Attribute::AttrKind::NoInline)) {
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::DontInline);
}
return FuncControl;
}
bool SPIRVCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
const Function &F,
ArrayRef<ArrayRef<Register>> VRegs,
FunctionLoweringInfo &FLI) const {
assert(GR && "Must initialize the SPIRV type registry before lowering args.");
// Assign types and names to all args, and store their types for later.
SmallVector<Register, 4> ArgTypeVRegs;
if (VRegs.size() > 0) {
unsigned i = 0;
for (const auto &Arg : F.args()) {
// Currently formal args should use single registers.
// TODO: handle the case of multiple registers.
if (VRegs[i].size() > 1)
return false;
auto *SpirvTy =
GR->assignTypeToVReg(Arg.getType(), VRegs[i][0], MIRBuilder);
ArgTypeVRegs.push_back(GR->getSPIRVTypeID(SpirvTy));
if (Arg.hasName())
buildOpName(VRegs[i][0], Arg.getName(), MIRBuilder);
if (Arg.getType()->isPointerTy()) {
auto DerefBytes = static_cast<unsigned>(Arg.getDereferenceableBytes());
if (DerefBytes != 0)
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::MaxByteOffset, {DerefBytes});
}
if (Arg.hasAttribute(Attribute::Alignment)) {
buildOpDecorate(VRegs[i][0], MIRBuilder, SPIRV::Decoration::Alignment,
{static_cast<unsigned>(Arg.getParamAlignment())});
}
if (Arg.hasAttribute(Attribute::ReadOnly)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoWrite);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (Arg.hasAttribute(Attribute::ZExt)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::Zext);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
++i;
}
}
// Generate a SPIR-V type for the function.
auto MRI = MIRBuilder.getMRI();
Register FuncVReg = MRI->createGenericVirtualRegister(LLT::scalar(32));
MRI->setRegClass(FuncVReg, &SPIRV::IDRegClass);
auto *FTy = F.getFunctionType();
auto FuncTy = GR->assignTypeToVReg(FTy, FuncVReg, MIRBuilder);
// Build the OpTypeFunction declaring it.
Register ReturnTypeID = FuncTy->getOperand(1).getReg();
uint32_t FuncControl = getFunctionControl(F);
MIRBuilder.buildInstr(SPIRV::OpFunction)
.addDef(FuncVReg)
.addUse(ReturnTypeID)
.addImm(FuncControl)
.addUse(GR->getSPIRVTypeID(FuncTy));
// Add OpFunctionParameters.
const unsigned NumArgs = ArgTypeVRegs.size();
for (unsigned i = 0; i < NumArgs; ++i) {
assert(VRegs[i].size() == 1 && "Formal arg has multiple vregs");
MRI->setRegClass(VRegs[i][0], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpFunctionParameter)
.addDef(VRegs[i][0])
.addUse(ArgTypeVRegs[i]);
}
// Name the function.
if (F.hasName())
buildOpName(FuncVReg, F.getName(), MIRBuilder);
// Handle entry points and function linkage.
if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpEntryPoint)
.addImm(static_cast<uint32_t>(SPIRV::ExecutionModel::Kernel))
.addUse(FuncVReg);
addStringImm(F.getName(), MIB);
} else if (F.getLinkage() == GlobalValue::LinkageTypes::ExternalLinkage ||
F.getLinkage() == GlobalValue::LinkOnceODRLinkage) {
auto LnkTy = F.isDeclaration() ? SPIRV::LinkageType::Import
: SPIRV::LinkageType::Export;
buildOpDecorate(FuncVReg, MIRBuilder, SPIRV::Decoration::LinkageAttributes,
{static_cast<uint32_t>(LnkTy)}, F.getGlobalIdentifier());
}
return true;
}
bool SPIRVCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
CallLoweringInfo &Info) const {
// Currently call returns should have single vregs.
// TODO: handle the case of multiple registers.
if (Info.OrigRet.Regs.size() > 1)
return false;
Register ResVReg =
Info.OrigRet.Regs.empty() ? Register(0) : Info.OrigRet.Regs[0];
// Emit a regular OpFunctionCall. If it's an externally declared function,
// be sure to emit its type and function declaration here. It will be
// hoisted globally later.
if (Info.Callee.isGlobal()) {
auto *CF = dyn_cast_or_null<const Function>(Info.Callee.getGlobal());
// TODO: support constexpr casts and indirect calls.
if (CF == nullptr)
return false;
if (CF->isDeclaration()) {
// Emit the type info and forward function declaration to the first MBB
// to ensure VReg definition dependencies are valid across all MBBs.
MachineBasicBlock::iterator OldII = MIRBuilder.getInsertPt();
MachineBasicBlock &OldBB = MIRBuilder.getMBB();
MachineBasicBlock &FirstBB = *MIRBuilder.getMF().getBlockNumbered(0);
MIRBuilder.setInsertPt(FirstBB, FirstBB.instr_end());
SmallVector<ArrayRef<Register>, 8> VRegArgs;
SmallVector<SmallVector<Register, 1>, 8> ToInsert;
for (const Argument &Arg : CF->args()) {
if (MIRBuilder.getDataLayout().getTypeStoreSize(Arg.getType()).isZero())
continue; // Don't handle zero sized types.
ToInsert.push_back({MIRBuilder.getMRI()->createGenericVirtualRegister(
LLT::scalar(32))});
VRegArgs.push_back(ToInsert.back());
}
// TODO: Reuse FunctionLoweringInfo.
FunctionLoweringInfo FuncInfo;
lowerFormalArguments(MIRBuilder, *CF, VRegArgs, FuncInfo);
MIRBuilder.setInsertPt(OldBB, OldII);
}
}
// Make sure there's a valid return reg, even for functions returning void.
if (!ResVReg.isValid()) {
ResVReg = MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
}
SPIRVType *RetType =
GR->assignTypeToVReg(Info.OrigRet.Ty, ResVReg, MIRBuilder);
// Emit the OpFunctionCall and its args.
auto MIB = MIRBuilder.buildInstr(SPIRV::OpFunctionCall)
.addDef(ResVReg)
.addUse(GR->getSPIRVTypeID(RetType))
.add(Info.Callee);
for (const auto &Arg : Info.OrigArgs) {
// Currently call args should have single vregs.
if (Arg.Regs.size() > 1)
return false;
MIB.addUse(Arg.Regs[0]);
}
return MIB.constrainAllUses(MIRBuilder.getTII(), *ST.getRegisterInfo(),
*ST.getRegBankInfo());
}