forked from OSchip/llvm-project
723 lines
24 KiB
C++
723 lines
24 KiB
C++
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the LoopInfo class that is used to identify natural loops
|
|
// and determine the loop depth of various nodes of the CFG. Note that the
|
|
// loops identified may actually be several natural loops that share the same
|
|
// header node... not just a single natural loop.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Analysis/LoopInfoImpl.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
|
|
template class llvm::LoopBase<BasicBlock, Loop>;
|
|
template class llvm::LoopInfoBase<BasicBlock, Loop>;
|
|
|
|
// Always verify loopinfo if expensive checking is enabled.
|
|
#ifdef XDEBUG
|
|
static bool VerifyLoopInfo = true;
|
|
#else
|
|
static bool VerifyLoopInfo = false;
|
|
#endif
|
|
static cl::opt<bool,true>
|
|
VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
|
|
cl::desc("Verify loop info (time consuming)"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop implementation
|
|
//
|
|
|
|
bool Loop::isLoopInvariant(const Value *V) const {
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
return !contains(I);
|
|
return true; // All non-instructions are loop invariant
|
|
}
|
|
|
|
bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
|
|
return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
|
|
}
|
|
|
|
bool Loop::makeLoopInvariant(Value *V, bool &Changed,
|
|
Instruction *InsertPt) const {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
return makeLoopInvariant(I, Changed, InsertPt);
|
|
return true; // All non-instructions are loop-invariant.
|
|
}
|
|
|
|
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
|
|
Instruction *InsertPt) const {
|
|
// Test if the value is already loop-invariant.
|
|
if (isLoopInvariant(I))
|
|
return true;
|
|
if (!isSafeToSpeculativelyExecute(I))
|
|
return false;
|
|
if (I->mayReadFromMemory())
|
|
return false;
|
|
// EH block instructions are immobile.
|
|
if (I->isEHPad())
|
|
return false;
|
|
// Determine the insertion point, unless one was given.
|
|
if (!InsertPt) {
|
|
BasicBlock *Preheader = getLoopPreheader();
|
|
// Without a preheader, hoisting is not feasible.
|
|
if (!Preheader)
|
|
return false;
|
|
InsertPt = Preheader->getTerminator();
|
|
}
|
|
// Don't hoist instructions with loop-variant operands.
|
|
for (Value *Operand : I->operands())
|
|
if (!makeLoopInvariant(Operand, Changed, InsertPt))
|
|
return false;
|
|
|
|
// Hoist.
|
|
I->moveBefore(InsertPt);
|
|
|
|
// There is possibility of hoisting this instruction above some arbitrary
|
|
// condition. Any metadata defined on it can be control dependent on this
|
|
// condition. Conservatively strip it here so that we don't give any wrong
|
|
// information to the optimizer.
|
|
I->dropUnknownNonDebugMetadata();
|
|
|
|
Changed = true;
|
|
return true;
|
|
}
|
|
|
|
PHINode *Loop::getCanonicalInductionVariable() const {
|
|
BasicBlock *H = getHeader();
|
|
|
|
BasicBlock *Incoming = nullptr, *Backedge = nullptr;
|
|
pred_iterator PI = pred_begin(H);
|
|
assert(PI != pred_end(H) &&
|
|
"Loop must have at least one backedge!");
|
|
Backedge = *PI++;
|
|
if (PI == pred_end(H)) return nullptr; // dead loop
|
|
Incoming = *PI++;
|
|
if (PI != pred_end(H)) return nullptr; // multiple backedges?
|
|
|
|
if (contains(Incoming)) {
|
|
if (contains(Backedge))
|
|
return nullptr;
|
|
std::swap(Incoming, Backedge);
|
|
} else if (!contains(Backedge))
|
|
return nullptr;
|
|
|
|
// Loop over all of the PHI nodes, looking for a canonical indvar.
|
|
for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
|
|
if (CI->isNullValue())
|
|
if (Instruction *Inc =
|
|
dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
|
|
if (Inc->getOpcode() == Instruction::Add &&
|
|
Inc->getOperand(0) == PN)
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
|
|
if (CI->equalsInt(1))
|
|
return PN;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool Loop::isLCSSAForm(DominatorTree &DT) const {
|
|
for (BasicBlock *BB : this->blocks()) {
|
|
for (Instruction &I : *BB) {
|
|
// Tokens can't be used in PHI nodes and live-out tokens prevent loop
|
|
// optimizations, so for the purposes of considered LCSSA form, we
|
|
// can ignore them.
|
|
if (I.getType()->isTokenTy())
|
|
continue;
|
|
|
|
for (Use &U : I.uses()) {
|
|
Instruction *UI = cast<Instruction>(U.getUser());
|
|
BasicBlock *UserBB = UI->getParent();
|
|
if (PHINode *P = dyn_cast<PHINode>(UI))
|
|
UserBB = P->getIncomingBlock(U);
|
|
|
|
// Check the current block, as a fast-path, before checking whether
|
|
// the use is anywhere in the loop. Most values are used in the same
|
|
// block they are defined in. Also, blocks not reachable from the
|
|
// entry are special; uses in them don't need to go through PHIs.
|
|
if (UserBB != BB &&
|
|
!contains(UserBB) &&
|
|
DT.isReachableFromEntry(UserBB))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
|
|
if (!isLCSSAForm(DT))
|
|
return false;
|
|
|
|
return std::all_of(begin(), end(), [&](const Loop *L) {
|
|
return L->isRecursivelyLCSSAForm(DT);
|
|
});
|
|
}
|
|
|
|
bool Loop::isLoopSimplifyForm() const {
|
|
// Normal-form loops have a preheader, a single backedge, and all of their
|
|
// exits have all their predecessors inside the loop.
|
|
return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
|
|
}
|
|
|
|
// Routines that reform the loop CFG and split edges often fail on indirectbr.
|
|
bool Loop::isSafeToClone() const {
|
|
// Return false if any loop blocks contain indirectbrs, or there are any calls
|
|
// to noduplicate functions.
|
|
for (BasicBlock *BB : this->blocks()) {
|
|
if (isa<IndirectBrInst>(BB->getTerminator()))
|
|
return false;
|
|
|
|
if (const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
|
|
if (II->cannotDuplicate())
|
|
return false;
|
|
// Return false if any loop blocks contain invokes to EH-pads other than
|
|
// landingpads; we don't know how to split those edges yet.
|
|
auto *FirstNonPHI = II->getUnwindDest()->getFirstNonPHI();
|
|
if (FirstNonPHI->isEHPad() && !isa<LandingPadInst>(FirstNonPHI))
|
|
return false;
|
|
}
|
|
for (Instruction &I : *BB) {
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
if (CI->cannotDuplicate())
|
|
return false;
|
|
}
|
|
if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MDNode *Loop::getLoopID() const {
|
|
MDNode *LoopID = nullptr;
|
|
if (isLoopSimplifyForm()) {
|
|
LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop);
|
|
} else {
|
|
// Go through each predecessor of the loop header and check the
|
|
// terminator for the metadata.
|
|
BasicBlock *H = getHeader();
|
|
for (BasicBlock *BB : this->blocks()) {
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
MDNode *MD = nullptr;
|
|
|
|
// Check if this terminator branches to the loop header.
|
|
for (BasicBlock *Successor : TI->successors()) {
|
|
if (Successor == H) {
|
|
MD = TI->getMetadata(LLVMContext::MD_loop);
|
|
break;
|
|
}
|
|
}
|
|
if (!MD)
|
|
return nullptr;
|
|
|
|
if (!LoopID)
|
|
LoopID = MD;
|
|
else if (MD != LoopID)
|
|
return nullptr;
|
|
}
|
|
}
|
|
if (!LoopID || LoopID->getNumOperands() == 0 ||
|
|
LoopID->getOperand(0) != LoopID)
|
|
return nullptr;
|
|
return LoopID;
|
|
}
|
|
|
|
void Loop::setLoopID(MDNode *LoopID) const {
|
|
assert(LoopID && "Loop ID should not be null");
|
|
assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
|
|
assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
|
|
|
|
if (isLoopSimplifyForm()) {
|
|
getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
|
|
return;
|
|
}
|
|
|
|
BasicBlock *H = getHeader();
|
|
for (BasicBlock *BB : this->blocks()) {
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
for (BasicBlock *Successor : TI->successors()) {
|
|
if (Successor == H)
|
|
TI->setMetadata(LLVMContext::MD_loop, LoopID);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Loop::isAnnotatedParallel() const {
|
|
MDNode *DesiredLoopIdMetadata = getLoopID();
|
|
|
|
if (!DesiredLoopIdMetadata)
|
|
return false;
|
|
|
|
// The loop branch contains the parallel loop metadata. In order to ensure
|
|
// that any parallel-loop-unaware optimization pass hasn't added loop-carried
|
|
// dependencies (thus converted the loop back to a sequential loop), check
|
|
// that all the memory instructions in the loop contain parallelism metadata
|
|
// that point to the same unique "loop id metadata" the loop branch does.
|
|
for (BasicBlock *BB : this->blocks()) {
|
|
for (Instruction &I : *BB) {
|
|
if (!I.mayReadOrWriteMemory())
|
|
continue;
|
|
|
|
// The memory instruction can refer to the loop identifier metadata
|
|
// directly or indirectly through another list metadata (in case of
|
|
// nested parallel loops). The loop identifier metadata refers to
|
|
// itself so we can check both cases with the same routine.
|
|
MDNode *LoopIdMD =
|
|
I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
|
|
|
|
if (!LoopIdMD)
|
|
return false;
|
|
|
|
bool LoopIdMDFound = false;
|
|
for (const MDOperand &MDOp : LoopIdMD->operands()) {
|
|
if (MDOp == DesiredLoopIdMetadata) {
|
|
LoopIdMDFound = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!LoopIdMDFound)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Loop::hasDedicatedExits() const {
|
|
// Each predecessor of each exit block of a normal loop is contained
|
|
// within the loop.
|
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
|
getExitBlocks(ExitBlocks);
|
|
for (BasicBlock *BB : ExitBlocks)
|
|
for (BasicBlock *Predecessor : predecessors(BB))
|
|
if (!contains(Predecessor))
|
|
return false;
|
|
// All the requirements are met.
|
|
return true;
|
|
}
|
|
|
|
void
|
|
Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
|
|
assert(hasDedicatedExits() &&
|
|
"getUniqueExitBlocks assumes the loop has canonical form exits!");
|
|
|
|
SmallVector<BasicBlock *, 32> SwitchExitBlocks;
|
|
for (BasicBlock *BB : this->blocks()) {
|
|
SwitchExitBlocks.clear();
|
|
for (BasicBlock *Successor : successors(BB)) {
|
|
// If block is inside the loop then it is not an exit block.
|
|
if (contains(Successor))
|
|
continue;
|
|
|
|
pred_iterator PI = pred_begin(Successor);
|
|
BasicBlock *FirstPred = *PI;
|
|
|
|
// If current basic block is this exit block's first predecessor
|
|
// then only insert exit block in to the output ExitBlocks vector.
|
|
// This ensures that same exit block is not inserted twice into
|
|
// ExitBlocks vector.
|
|
if (BB != FirstPred)
|
|
continue;
|
|
|
|
// If a terminator has more then two successors, for example SwitchInst,
|
|
// then it is possible that there are multiple edges from current block
|
|
// to one exit block.
|
|
if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) {
|
|
ExitBlocks.push_back(Successor);
|
|
continue;
|
|
}
|
|
|
|
// In case of multiple edges from current block to exit block, collect
|
|
// only one edge in ExitBlocks. Use switchExitBlocks to keep track of
|
|
// duplicate edges.
|
|
if (std::find(SwitchExitBlocks.begin(), SwitchExitBlocks.end(), Successor)
|
|
== SwitchExitBlocks.end()) {
|
|
SwitchExitBlocks.push_back(Successor);
|
|
ExitBlocks.push_back(Successor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BasicBlock *Loop::getUniqueExitBlock() const {
|
|
SmallVector<BasicBlock *, 8> UniqueExitBlocks;
|
|
getUniqueExitBlocks(UniqueExitBlocks);
|
|
if (UniqueExitBlocks.size() == 1)
|
|
return UniqueExitBlocks[0];
|
|
return nullptr;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void Loop::dump() const {
|
|
print(dbgs());
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnloopUpdater implementation
|
|
//
|
|
|
|
namespace {
|
|
/// Find the new parent loop for all blocks within the "unloop" whose last
|
|
/// backedges has just been removed.
|
|
class UnloopUpdater {
|
|
Loop *Unloop;
|
|
LoopInfo *LI;
|
|
|
|
LoopBlocksDFS DFS;
|
|
|
|
// Map unloop's immediate subloops to their nearest reachable parents. Nested
|
|
// loops within these subloops will not change parents. However, an immediate
|
|
// subloop's new parent will be the nearest loop reachable from either its own
|
|
// exits *or* any of its nested loop's exits.
|
|
DenseMap<Loop*, Loop*> SubloopParents;
|
|
|
|
// Flag the presence of an irreducible backedge whose destination is a block
|
|
// directly contained by the original unloop.
|
|
bool FoundIB;
|
|
|
|
public:
|
|
UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
|
|
Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
|
|
|
|
void updateBlockParents();
|
|
|
|
void removeBlocksFromAncestors();
|
|
|
|
void updateSubloopParents();
|
|
|
|
protected:
|
|
Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Update the parent loop for all blocks that are directly contained within the
|
|
/// original "unloop".
|
|
void UnloopUpdater::updateBlockParents() {
|
|
if (Unloop->getNumBlocks()) {
|
|
// Perform a post order CFG traversal of all blocks within this loop,
|
|
// propagating the nearest loop from sucessors to predecessors.
|
|
LoopBlocksTraversal Traversal(DFS, LI);
|
|
for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
|
|
POE = Traversal.end(); POI != POE; ++POI) {
|
|
|
|
Loop *L = LI->getLoopFor(*POI);
|
|
Loop *NL = getNearestLoop(*POI, L);
|
|
|
|
if (NL != L) {
|
|
// For reducible loops, NL is now an ancestor of Unloop.
|
|
assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
|
|
"uninitialized successor");
|
|
LI->changeLoopFor(*POI, NL);
|
|
}
|
|
else {
|
|
// Or the current block is part of a subloop, in which case its parent
|
|
// is unchanged.
|
|
assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
|
|
}
|
|
}
|
|
}
|
|
// Each irreducible loop within the unloop induces a round of iteration using
|
|
// the DFS result cached by Traversal.
|
|
bool Changed = FoundIB;
|
|
for (unsigned NIters = 0; Changed; ++NIters) {
|
|
assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
|
|
|
|
// Iterate over the postorder list of blocks, propagating the nearest loop
|
|
// from successors to predecessors as before.
|
|
Changed = false;
|
|
for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
|
|
POE = DFS.endPostorder(); POI != POE; ++POI) {
|
|
|
|
Loop *L = LI->getLoopFor(*POI);
|
|
Loop *NL = getNearestLoop(*POI, L);
|
|
if (NL != L) {
|
|
assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
|
|
"uninitialized successor");
|
|
LI->changeLoopFor(*POI, NL);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove unloop's blocks from all ancestors below their new parents.
|
|
void UnloopUpdater::removeBlocksFromAncestors() {
|
|
// Remove all unloop's blocks (including those in nested subloops) from
|
|
// ancestors below the new parent loop.
|
|
for (Loop::block_iterator BI = Unloop->block_begin(),
|
|
BE = Unloop->block_end(); BI != BE; ++BI) {
|
|
Loop *OuterParent = LI->getLoopFor(*BI);
|
|
if (Unloop->contains(OuterParent)) {
|
|
while (OuterParent->getParentLoop() != Unloop)
|
|
OuterParent = OuterParent->getParentLoop();
|
|
OuterParent = SubloopParents[OuterParent];
|
|
}
|
|
// Remove blocks from former Ancestors except Unloop itself which will be
|
|
// deleted.
|
|
for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
|
|
OldParent = OldParent->getParentLoop()) {
|
|
assert(OldParent && "new loop is not an ancestor of the original");
|
|
OldParent->removeBlockFromLoop(*BI);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Update the parent loop for all subloops directly nested within unloop.
|
|
void UnloopUpdater::updateSubloopParents() {
|
|
while (!Unloop->empty()) {
|
|
Loop *Subloop = *std::prev(Unloop->end());
|
|
Unloop->removeChildLoop(std::prev(Unloop->end()));
|
|
|
|
assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
|
|
if (Loop *Parent = SubloopParents[Subloop])
|
|
Parent->addChildLoop(Subloop);
|
|
else
|
|
LI->addTopLevelLoop(Subloop);
|
|
}
|
|
}
|
|
|
|
/// Return the nearest parent loop among this block's successors. If a successor
|
|
/// is a subloop header, consider its parent to be the nearest parent of the
|
|
/// subloop's exits.
|
|
///
|
|
/// For subloop blocks, simply update SubloopParents and return NULL.
|
|
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
|
|
|
|
// Initially for blocks directly contained by Unloop, NearLoop == Unloop and
|
|
// is considered uninitialized.
|
|
Loop *NearLoop = BBLoop;
|
|
|
|
Loop *Subloop = nullptr;
|
|
if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
|
|
Subloop = NearLoop;
|
|
// Find the subloop ancestor that is directly contained within Unloop.
|
|
while (Subloop->getParentLoop() != Unloop) {
|
|
Subloop = Subloop->getParentLoop();
|
|
assert(Subloop && "subloop is not an ancestor of the original loop");
|
|
}
|
|
// Get the current nearest parent of the Subloop exits, initially Unloop.
|
|
NearLoop =
|
|
SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
|
|
}
|
|
|
|
succ_iterator I = succ_begin(BB), E = succ_end(BB);
|
|
if (I == E) {
|
|
assert(!Subloop && "subloop blocks must have a successor");
|
|
NearLoop = nullptr; // unloop blocks may now exit the function.
|
|
}
|
|
for (; I != E; ++I) {
|
|
if (*I == BB)
|
|
continue; // self loops are uninteresting
|
|
|
|
Loop *L = LI->getLoopFor(*I);
|
|
if (L == Unloop) {
|
|
// This successor has not been processed. This path must lead to an
|
|
// irreducible backedge.
|
|
assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
|
|
FoundIB = true;
|
|
}
|
|
if (L != Unloop && Unloop->contains(L)) {
|
|
// Successor is in a subloop.
|
|
if (Subloop)
|
|
continue; // Branching within subloops. Ignore it.
|
|
|
|
// BB branches from the original into a subloop header.
|
|
assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
|
|
|
|
// Get the current nearest parent of the Subloop's exits.
|
|
L = SubloopParents[L];
|
|
// L could be Unloop if the only exit was an irreducible backedge.
|
|
}
|
|
if (L == Unloop) {
|
|
continue;
|
|
}
|
|
// Handle critical edges from Unloop into a sibling loop.
|
|
if (L && !L->contains(Unloop)) {
|
|
L = L->getParentLoop();
|
|
}
|
|
// Remember the nearest parent loop among successors or subloop exits.
|
|
if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
|
|
NearLoop = L;
|
|
}
|
|
if (Subloop) {
|
|
SubloopParents[Subloop] = NearLoop;
|
|
return BBLoop;
|
|
}
|
|
return NearLoop;
|
|
}
|
|
|
|
LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
|
|
analyze(DomTree);
|
|
}
|
|
|
|
void LoopInfo::markAsRemoved(Loop *Unloop) {
|
|
assert(!Unloop->isInvalid() && "Loop has already been removed");
|
|
Unloop->invalidate();
|
|
RemovedLoops.push_back(Unloop);
|
|
|
|
// First handle the special case of no parent loop to simplify the algorithm.
|
|
if (!Unloop->getParentLoop()) {
|
|
// Since BBLoop had no parent, Unloop blocks are no longer in a loop.
|
|
for (Loop::block_iterator I = Unloop->block_begin(),
|
|
E = Unloop->block_end();
|
|
I != E; ++I) {
|
|
|
|
// Don't reparent blocks in subloops.
|
|
if (getLoopFor(*I) != Unloop)
|
|
continue;
|
|
|
|
// Blocks no longer have a parent but are still referenced by Unloop until
|
|
// the Unloop object is deleted.
|
|
changeLoopFor(*I, nullptr);
|
|
}
|
|
|
|
// Remove the loop from the top-level LoopInfo object.
|
|
for (iterator I = begin();; ++I) {
|
|
assert(I != end() && "Couldn't find loop");
|
|
if (*I == Unloop) {
|
|
removeLoop(I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Move all of the subloops to the top-level.
|
|
while (!Unloop->empty())
|
|
addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
|
|
|
|
return;
|
|
}
|
|
|
|
// Update the parent loop for all blocks within the loop. Blocks within
|
|
// subloops will not change parents.
|
|
UnloopUpdater Updater(Unloop, this);
|
|
Updater.updateBlockParents();
|
|
|
|
// Remove blocks from former ancestor loops.
|
|
Updater.removeBlocksFromAncestors();
|
|
|
|
// Add direct subloops as children in their new parent loop.
|
|
Updater.updateSubloopParents();
|
|
|
|
// Remove unloop from its parent loop.
|
|
Loop *ParentLoop = Unloop->getParentLoop();
|
|
for (Loop::iterator I = ParentLoop->begin();; ++I) {
|
|
assert(I != ParentLoop->end() && "Couldn't find loop");
|
|
if (*I == Unloop) {
|
|
ParentLoop->removeChildLoop(I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
char LoopAnalysis::PassID;
|
|
|
|
LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> &AM) {
|
|
// FIXME: Currently we create a LoopInfo from scratch for every function.
|
|
// This may prove to be too wasteful due to deallocating and re-allocating
|
|
// memory each time for the underlying map and vector datastructures. At some
|
|
// point it may prove worthwhile to use a freelist and recycle LoopInfo
|
|
// objects. I don't want to add that kind of complexity until the scope of
|
|
// the problem is better understood.
|
|
LoopInfo LI;
|
|
LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
|
|
return LI;
|
|
}
|
|
|
|
PreservedAnalyses LoopPrinterPass::run(Function &F,
|
|
AnalysisManager<Function> &AM) {
|
|
AM.getResult<LoopAnalysis>(F).print(OS);
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
|
|
PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
|
|
: OS(OS), Banner(Banner) {}
|
|
|
|
PreservedAnalyses PrintLoopPass::run(Loop &L) {
|
|
OS << Banner;
|
|
for (auto *Block : L.blocks())
|
|
if (Block)
|
|
Block->print(OS);
|
|
else
|
|
OS << "Printing <null> block";
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoopInfo implementation
|
|
//
|
|
|
|
char LoopInfoWrapperPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
|
|
true, true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
|
|
true, true)
|
|
|
|
bool LoopInfoWrapperPass::runOnFunction(Function &) {
|
|
releaseMemory();
|
|
LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
|
|
return false;
|
|
}
|
|
|
|
void LoopInfoWrapperPass::verifyAnalysis() const {
|
|
// LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
|
|
// function each time verifyAnalysis is called is very expensive. The
|
|
// -verify-loop-info option can enable this. In order to perform some
|
|
// checking by default, LoopPass has been taught to call verifyLoop manually
|
|
// during loop pass sequences.
|
|
if (VerifyLoopInfo)
|
|
LI.verify();
|
|
}
|
|
|
|
void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
}
|
|
|
|
void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
|
|
LI.print(OS);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoopBlocksDFS implementation
|
|
//
|
|
|
|
/// Traverse the loop blocks and store the DFS result.
|
|
/// Useful for clients that just want the final DFS result and don't need to
|
|
/// visit blocks during the initial traversal.
|
|
void LoopBlocksDFS::perform(LoopInfo *LI) {
|
|
LoopBlocksTraversal Traversal(*this, LI);
|
|
for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
|
|
POE = Traversal.end(); POI != POE; ++POI) ;
|
|
}
|