forked from OSchip/llvm-project
244 lines
7.5 KiB
LLVM
244 lines
7.5 KiB
LLVM
; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s
|
|
|
|
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
|
|
|
|
; Make sure that we can handle multiple integer induction variables.
|
|
; CHECK-LABEL: @multi_int_induction(
|
|
; CHECK: vector.body:
|
|
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
|
|
; CHECK: %[[VAR:.*]] = trunc i64 %index to i32
|
|
; CHECK: %offset.idx = add i32 190, %[[VAR]]
|
|
define void @multi_int_induction(i32* %A, i32 %N) {
|
|
for.body.lr.ph:
|
|
br label %for.body
|
|
|
|
for.body:
|
|
%indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
|
|
%count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ]
|
|
%arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
|
|
store i32 %count.09, i32* %arrayidx2, align 4
|
|
%inc = add nsw i32 %count.09, 1
|
|
%indvars.iv.next = add i64 %indvars.iv, 1
|
|
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
|
%exitcond = icmp ne i32 %lftr.wideiv, %N
|
|
br i1 %exitcond, label %for.body, label %for.end
|
|
|
|
for.end:
|
|
ret void
|
|
}
|
|
|
|
; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND
|
|
|
|
; Make sure we remove unneeded vectorization of induction variables.
|
|
; In order for instcombine to cleanup the vectorized induction variables that we
|
|
; create in the loop vectorizer we need to perform some form of redundancy
|
|
; elimination to get rid of multiple uses.
|
|
|
|
; IND-LABEL: scalar_use
|
|
|
|
; IND: br label %vector.body
|
|
; IND: vector.body:
|
|
; Vectorized induction variable.
|
|
; IND-NOT: insertelement <2 x i64>
|
|
; IND-NOT: shufflevector <2 x i64>
|
|
; IND: br {{.*}}, label %vector.body
|
|
|
|
define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body:
|
|
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
|
|
%ind.sum = add i64 %iv, %offset
|
|
%arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum
|
|
%l1 = load float, float* %arr.idx, align 4
|
|
%ind.sum2 = add i64 %iv, %offset2
|
|
%arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2
|
|
%l2 = load float, float* %arr.idx2, align 4
|
|
%m = fmul fast float %b, %l2
|
|
%ad = fadd fast float %l1, %m
|
|
store float %ad, float* %arr.idx, align 4
|
|
%iv.next = add nuw nsw i64 %iv, 1
|
|
%exitcond = icmp eq i64 %iv.next, %n
|
|
br i1 %exitcond, label %loopexit, label %for.body
|
|
|
|
loopexit:
|
|
ret void
|
|
}
|
|
|
|
|
|
; Make sure that the loop exit count computation does not overflow for i8 and
|
|
; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the
|
|
; induction variable to a bigger type the exit count computation will overflow
|
|
; to 0.
|
|
; PR17532
|
|
|
|
; CHECK-LABEL: i8_loop
|
|
; CHECK: icmp eq i32 {{.*}}, 256
|
|
define i32 @i8_loop() nounwind readnone ssp uwtable {
|
|
br label %1
|
|
|
|
; <label>:1 ; preds = %1, %0
|
|
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
|
|
%b.0 = phi i8 [ 0, %0 ], [ %3, %1 ]
|
|
%2 = and i32 %a.0, 4
|
|
%3 = add i8 %b.0, -1
|
|
%4 = icmp eq i8 %3, 0
|
|
br i1 %4, label %5, label %1
|
|
|
|
; <label>:5 ; preds = %1
|
|
ret i32 %2
|
|
}
|
|
|
|
; CHECK-LABEL: i16_loop
|
|
; CHECK: icmp eq i32 {{.*}}, 65536
|
|
|
|
define i32 @i16_loop() nounwind readnone ssp uwtable {
|
|
br label %1
|
|
|
|
; <label>:1 ; preds = %1, %0
|
|
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
|
|
%b.0 = phi i16 [ 0, %0 ], [ %3, %1 ]
|
|
%2 = and i32 %a.0, 4
|
|
%3 = add i16 %b.0, -1
|
|
%4 = icmp eq i16 %3, 0
|
|
br i1 %4, label %5, label %1
|
|
|
|
; <label>:5 ; preds = %1
|
|
ret i32 %2
|
|
}
|
|
|
|
; This loop has a backedge taken count of i32_max. We need to check for this
|
|
; condition and branch directly to the scalar loop.
|
|
|
|
; CHECK-LABEL: max_i32_backedgetaken
|
|
; CHECK: br i1 true, label %scalar.ph, label %min.iters.checked
|
|
|
|
; CHECK: scalar.ph:
|
|
; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %0 ]
|
|
; CHECK: %bc.merge.rdx = phi i32 [ 1, %0 ], [ 1, %min.iters.checked ], [ %5, %middle.block ]
|
|
|
|
define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable {
|
|
|
|
br label %1
|
|
|
|
; <label>:1 ; preds = %1, %0
|
|
%a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
|
|
%b.0 = phi i32 [ 0, %0 ], [ %3, %1 ]
|
|
%2 = and i32 %a.0, 4
|
|
%3 = add i32 %b.0, -1
|
|
%4 = icmp eq i32 %3, 0
|
|
br i1 %4, label %5, label %1
|
|
|
|
; <label>:5 ; preds = %1
|
|
ret i32 %2
|
|
}
|
|
|
|
; When generating the overflow check we must sure that the induction start value
|
|
; is defined before the branch to the scalar preheader.
|
|
|
|
; CHECK-LABEL: testoverflowcheck
|
|
; CHECK: entry
|
|
; CHECK: %[[LOAD:.*]] = load i8
|
|
; CHECK: br
|
|
|
|
; CHECK: scalar.ph
|
|
; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ]
|
|
|
|
@e = global i8 1, align 1
|
|
@d = common global i32 0, align 4
|
|
@c = common global i32 0, align 4
|
|
define i32 @testoverflowcheck() {
|
|
entry:
|
|
%.pr.i = load i8, i8* @e, align 1
|
|
%0 = load i32, i32* @d, align 4
|
|
%c.promoted.i = load i32, i32* @c, align 4
|
|
br label %cond.end.i
|
|
|
|
cond.end.i:
|
|
%inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ]
|
|
%and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ]
|
|
%and.i = and i32 %0, %and3.i
|
|
%inc.i = add i8 %inc4.i, 1
|
|
%tobool.i = icmp eq i8 %inc.i, 0
|
|
br i1 %tobool.i, label %loopexit, label %cond.end.i
|
|
|
|
loopexit:
|
|
ret i32 %and.i
|
|
}
|
|
|
|
; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32)
|
|
; In order to recognize %sphi as an induction PHI and vectorize this loop,
|
|
; we need to convert the SCEV expression into an AddRecExpr.
|
|
; The expression gets converted to {zext i8 %t to i32,+,1}.
|
|
|
|
; CHECK-LABEL: wrappingindvars1
|
|
; CHECK-LABEL: vector.scevcheck
|
|
; CHECK-LABEL: vector.body
|
|
; CHECK: add <2 x i32> {{%[^ ]*}}, <i32 0, i32 1>
|
|
define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) {
|
|
entry:
|
|
%st = zext i8 %t to i16
|
|
%ext = zext i8 %t to i32
|
|
%ecmp = icmp ult i16 %st, 42
|
|
br i1 %ecmp, label %loop, label %exit
|
|
|
|
loop:
|
|
|
|
%idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
|
|
%idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
|
|
%sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop]
|
|
|
|
%ptr = getelementptr inbounds i32, i32* %A, i8 %idx
|
|
store i32 %sphi, i32* %ptr
|
|
|
|
%idx.inc = add i8 %idx, 1
|
|
%idx.inc.ext = zext i8 %idx.inc to i32
|
|
%idx.b.inc = add nuw nsw i32 %idx.b, 1
|
|
|
|
%c = icmp ult i32 %idx.b, %len
|
|
br i1 %c, label %loop, label %exit
|
|
|
|
exit:
|
|
ret void
|
|
}
|
|
|
|
; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32))
|
|
; In order to recognize %sphi as an induction PHI and vectorize this loop,
|
|
; we need to convert the SCEV expression into an AddRecExpr.
|
|
; The expression gets converted to ({4 * (zext %t to i32),+,4}).
|
|
; CHECK-LABEL: wrappingindvars2
|
|
; CHECK-LABEL: vector.scevcheck
|
|
; CHECK-LABEL: vector.body
|
|
; CHECK: add <2 x i32> {{%[^ ]*}}, <i32 0, i32 4>
|
|
define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) {
|
|
|
|
entry:
|
|
%st = zext i8 %t to i16
|
|
%ext = zext i8 %t to i32
|
|
%ext.mul = mul i32 %ext, 4
|
|
|
|
%ecmp = icmp ult i16 %st, 42
|
|
br i1 %ecmp, label %loop, label %exit
|
|
|
|
loop:
|
|
|
|
%idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
|
|
%sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop]
|
|
%idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
|
|
|
|
%ptr = getelementptr inbounds i32, i32* %A, i8 %idx
|
|
store i32 %sphi, i32* %ptr
|
|
|
|
%idx.inc = add i8 %idx, 1
|
|
%idx.inc.ext = zext i8 %idx.inc to i32
|
|
%mul = mul i32 %idx.inc.ext, 4
|
|
%idx.b.inc = add nuw nsw i32 %idx.b, 1
|
|
|
|
%c = icmp ult i32 %idx.b, %len
|
|
br i1 %c, label %loop, label %exit
|
|
|
|
exit:
|
|
ret void
|
|
}
|