forked from OSchip/llvm-project
173 lines
5.4 KiB
C
173 lines
5.4 KiB
C
//===----- lib/fp_add_impl.inc - floaing point addition -----------*- C -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements soft-float addition with the IEEE-754 default rounding
|
|
// (to nearest, ties to even).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "fp_lib.h"
|
|
#include "fp_mode.h"
|
|
|
|
static __inline fp_t __addXf3__(fp_t a, fp_t b) {
|
|
rep_t aRep = toRep(a);
|
|
rep_t bRep = toRep(b);
|
|
const rep_t aAbs = aRep & absMask;
|
|
const rep_t bAbs = bRep & absMask;
|
|
|
|
// Detect if a or b is zero, infinity, or NaN.
|
|
if (aAbs - REP_C(1) >= infRep - REP_C(1) ||
|
|
bAbs - REP_C(1) >= infRep - REP_C(1)) {
|
|
// NaN + anything = qNaN
|
|
if (aAbs > infRep)
|
|
return fromRep(toRep(a) | quietBit);
|
|
// anything + NaN = qNaN
|
|
if (bAbs > infRep)
|
|
return fromRep(toRep(b) | quietBit);
|
|
|
|
if (aAbs == infRep) {
|
|
// +/-infinity + -/+infinity = qNaN
|
|
if ((toRep(a) ^ toRep(b)) == signBit)
|
|
return fromRep(qnanRep);
|
|
// +/-infinity + anything remaining = +/- infinity
|
|
else
|
|
return a;
|
|
}
|
|
|
|
// anything remaining + +/-infinity = +/-infinity
|
|
if (bAbs == infRep)
|
|
return b;
|
|
|
|
// zero + anything = anything
|
|
if (!aAbs) {
|
|
// We need to get the sign right for zero + zero.
|
|
if (!bAbs)
|
|
return fromRep(toRep(a) & toRep(b));
|
|
else
|
|
return b;
|
|
}
|
|
|
|
// anything + zero = anything
|
|
if (!bAbs)
|
|
return a;
|
|
}
|
|
|
|
// Swap a and b if necessary so that a has the larger absolute value.
|
|
if (bAbs > aAbs) {
|
|
const rep_t temp = aRep;
|
|
aRep = bRep;
|
|
bRep = temp;
|
|
}
|
|
|
|
// Extract the exponent and significand from the (possibly swapped) a and b.
|
|
int aExponent = aRep >> significandBits & maxExponent;
|
|
int bExponent = bRep >> significandBits & maxExponent;
|
|
rep_t aSignificand = aRep & significandMask;
|
|
rep_t bSignificand = bRep & significandMask;
|
|
|
|
// Normalize any denormals, and adjust the exponent accordingly.
|
|
if (aExponent == 0)
|
|
aExponent = normalize(&aSignificand);
|
|
if (bExponent == 0)
|
|
bExponent = normalize(&bSignificand);
|
|
|
|
// The sign of the result is the sign of the larger operand, a. If they
|
|
// have opposite signs, we are performing a subtraction. Otherwise, we
|
|
// perform addition.
|
|
const rep_t resultSign = aRep & signBit;
|
|
const bool subtraction = (aRep ^ bRep) & signBit;
|
|
|
|
// Shift the significands to give us round, guard and sticky, and set the
|
|
// implicit significand bit. If we fell through from the denormal path it
|
|
// was already set by normalize( ), but setting it twice won't hurt
|
|
// anything.
|
|
aSignificand = (aSignificand | implicitBit) << 3;
|
|
bSignificand = (bSignificand | implicitBit) << 3;
|
|
|
|
// Shift the significand of b by the difference in exponents, with a sticky
|
|
// bottom bit to get rounding correct.
|
|
const unsigned int align = aExponent - bExponent;
|
|
if (align) {
|
|
if (align < typeWidth) {
|
|
const bool sticky = (bSignificand << (typeWidth - align)) != 0;
|
|
bSignificand = bSignificand >> align | sticky;
|
|
} else {
|
|
bSignificand = 1; // Set the sticky bit. b is known to be non-zero.
|
|
}
|
|
}
|
|
if (subtraction) {
|
|
aSignificand -= bSignificand;
|
|
// If a == -b, return +zero.
|
|
if (aSignificand == 0)
|
|
return fromRep(0);
|
|
|
|
// If partial cancellation occured, we need to left-shift the result
|
|
// and adjust the exponent.
|
|
if (aSignificand < implicitBit << 3) {
|
|
const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
|
|
aSignificand <<= shift;
|
|
aExponent -= shift;
|
|
}
|
|
} else /* addition */ {
|
|
aSignificand += bSignificand;
|
|
|
|
// If the addition carried up, we need to right-shift the result and
|
|
// adjust the exponent.
|
|
if (aSignificand & implicitBit << 4) {
|
|
const bool sticky = aSignificand & 1;
|
|
aSignificand = aSignificand >> 1 | sticky;
|
|
aExponent += 1;
|
|
}
|
|
}
|
|
|
|
// If we have overflowed the type, return +/- infinity.
|
|
if (aExponent >= maxExponent)
|
|
return fromRep(infRep | resultSign);
|
|
|
|
if (aExponent <= 0) {
|
|
// The result is denormal before rounding. The exponent is zero and we
|
|
// need to shift the significand.
|
|
const int shift = 1 - aExponent;
|
|
const bool sticky = (aSignificand << (typeWidth - shift)) != 0;
|
|
aSignificand = aSignificand >> shift | sticky;
|
|
aExponent = 0;
|
|
}
|
|
|
|
// Low three bits are round, guard, and sticky.
|
|
const int roundGuardSticky = aSignificand & 0x7;
|
|
|
|
// Shift the significand into place, and mask off the implicit bit.
|
|
rep_t result = aSignificand >> 3 & significandMask;
|
|
|
|
// Insert the exponent and sign.
|
|
result |= (rep_t)aExponent << significandBits;
|
|
result |= resultSign;
|
|
|
|
// Perform the final rounding. The result may overflow to infinity, but
|
|
// that is the correct result in that case.
|
|
switch (__fe_getround()) {
|
|
case CRT_FE_TONEAREST:
|
|
if (roundGuardSticky > 0x4)
|
|
result++;
|
|
if (roundGuardSticky == 0x4)
|
|
result += result & 1;
|
|
break;
|
|
case CRT_FE_DOWNWARD:
|
|
if (resultSign && roundGuardSticky) result++;
|
|
break;
|
|
case CRT_FE_UPWARD:
|
|
if (!resultSign && roundGuardSticky) result++;
|
|
break;
|
|
case CRT_FE_TOWARDZERO:
|
|
break;
|
|
}
|
|
if (roundGuardSticky)
|
|
__fe_raise_inexact();
|
|
return fromRep(result);
|
|
}
|