llvm-project/compiler-rt/lib/builtins/cpu_model.c

855 lines
25 KiB
C

//===-- cpu_model.c - Support for __cpu_model builtin ------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is based on LLVM's lib/Support/Host.cpp.
// It implements the operating system Host concept and builtin
// __cpu_model for the compiler_rt library for x86 and
// __aarch64_have_lse_atomics for AArch64.
//
//===----------------------------------------------------------------------===//
#ifndef __has_attribute
#define __has_attribute(attr) 0
#endif
#if __has_attribute(constructor)
#if __GNUC__ >= 9
// Ordinarily init priorities below 101 are disallowed as they are reserved for the
// implementation. However, we are the implementation, so silence the diagnostic,
// since it doesn't apply to us.
#pragma GCC diagnostic ignored "-Wprio-ctor-dtor"
#endif
// We're choosing init priority 90 to force our constructors to run before any
// constructors in the end user application (starting at priority 101). This value
// matches the libgcc choice for the same functions.
#define CONSTRUCTOR_ATTRIBUTE __attribute__((constructor(90)))
#else
// FIXME: For MSVC, we should make a function pointer global in .CRT$X?? so that
// this runs during initialization.
#define CONSTRUCTOR_ATTRIBUTE
#endif
#if (defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) || \
defined(_M_X64)) && \
(defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER))
#include <assert.h>
#define bool int
#define true 1
#define false 0
#ifdef _MSC_VER
#include <intrin.h>
#endif
enum VendorSignatures {
SIG_INTEL = 0x756e6547, // Genu
SIG_AMD = 0x68747541, // Auth
};
enum ProcessorVendors {
VENDOR_INTEL = 1,
VENDOR_AMD,
VENDOR_OTHER,
VENDOR_MAX
};
enum ProcessorTypes {
INTEL_BONNELL = 1,
INTEL_CORE2,
INTEL_COREI7,
AMDFAM10H,
AMDFAM15H,
INTEL_SILVERMONT,
INTEL_KNL,
AMD_BTVER1,
AMD_BTVER2,
AMDFAM17H,
INTEL_KNM,
INTEL_GOLDMONT,
INTEL_GOLDMONT_PLUS,
INTEL_TREMONT,
AMDFAM19H,
CPU_TYPE_MAX
};
enum ProcessorSubtypes {
INTEL_COREI7_NEHALEM = 1,
INTEL_COREI7_WESTMERE,
INTEL_COREI7_SANDYBRIDGE,
AMDFAM10H_BARCELONA,
AMDFAM10H_SHANGHAI,
AMDFAM10H_ISTANBUL,
AMDFAM15H_BDVER1,
AMDFAM15H_BDVER2,
AMDFAM15H_BDVER3,
AMDFAM15H_BDVER4,
AMDFAM17H_ZNVER1,
INTEL_COREI7_IVYBRIDGE,
INTEL_COREI7_HASWELL,
INTEL_COREI7_BROADWELL,
INTEL_COREI7_SKYLAKE,
INTEL_COREI7_SKYLAKE_AVX512,
INTEL_COREI7_CANNONLAKE,
INTEL_COREI7_ICELAKE_CLIENT,
INTEL_COREI7_ICELAKE_SERVER,
AMDFAM17H_ZNVER2,
INTEL_COREI7_CASCADELAKE,
INTEL_COREI7_TIGERLAKE,
INTEL_COREI7_COOPERLAKE,
INTEL_COREI7_SAPPHIRERAPIDS,
INTEL_COREI7_ALDERLAKE,
AMDFAM19H_ZNVER3,
INTEL_COREI7_ROCKETLAKE,
CPU_SUBTYPE_MAX
};
enum ProcessorFeatures {
FEATURE_CMOV = 0,
FEATURE_MMX,
FEATURE_POPCNT,
FEATURE_SSE,
FEATURE_SSE2,
FEATURE_SSE3,
FEATURE_SSSE3,
FEATURE_SSE4_1,
FEATURE_SSE4_2,
FEATURE_AVX,
FEATURE_AVX2,
FEATURE_SSE4_A,
FEATURE_FMA4,
FEATURE_XOP,
FEATURE_FMA,
FEATURE_AVX512F,
FEATURE_BMI,
FEATURE_BMI2,
FEATURE_AES,
FEATURE_PCLMUL,
FEATURE_AVX512VL,
FEATURE_AVX512BW,
FEATURE_AVX512DQ,
FEATURE_AVX512CD,
FEATURE_AVX512ER,
FEATURE_AVX512PF,
FEATURE_AVX512VBMI,
FEATURE_AVX512IFMA,
FEATURE_AVX5124VNNIW,
FEATURE_AVX5124FMAPS,
FEATURE_AVX512VPOPCNTDQ,
FEATURE_AVX512VBMI2,
FEATURE_GFNI,
FEATURE_VPCLMULQDQ,
FEATURE_AVX512VNNI,
FEATURE_AVX512BITALG,
FEATURE_AVX512BF16,
FEATURE_AVX512VP2INTERSECT,
CPU_FEATURE_MAX
};
// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
// support. Consequently, for i386, the presence of CPUID is checked first
// via the corresponding eflags bit.
static bool isCpuIdSupported(void) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__i386__)
int __cpuid_supported;
__asm__(" pushfl\n"
" popl %%eax\n"
" movl %%eax,%%ecx\n"
" xorl $0x00200000,%%eax\n"
" pushl %%eax\n"
" popfl\n"
" pushfl\n"
" popl %%eax\n"
" movl $0,%0\n"
" cmpl %%eax,%%ecx\n"
" je 1f\n"
" movl $1,%0\n"
"1:"
: "=r"(__cpuid_supported)
:
: "eax", "ecx");
if (!__cpuid_supported)
return false;
#endif
return true;
#endif
return true;
}
// This code is copied from lib/Support/Host.cpp.
// Changes to either file should be mirrored in the other.
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
/// the specified arguments. If we can't run cpuid on the host, return true.
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
// The MSVC intrinsic is portable across x86 and x64.
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
/// the 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
// Read control register 0 (XCR0). Used to detect features such as AVX.
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
return false;
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
*rEAX = Result;
*rEDX = Result >> 32;
return false;
#else
return true;
#endif
}
static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
unsigned *Model) {
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (*Family == 6 || *Family == 0xf) {
if (*Family == 0xf)
// Examine extended family ID if family ID is F.
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
static const char *
getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
const unsigned *Features,
unsigned *Type, unsigned *Subtype) {
#define testFeature(F) \
(Features[F / 32] & (1 << (F % 32))) != 0
// We select CPU strings to match the code in Host.cpp, but we don't use them
// in compiler-rt.
const char *CPU = 0;
switch (Family) {
case 6:
switch (Model) {
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
// mobile processor, Intel Core 2 Extreme processor, Intel
// Pentium Dual-Core processor, Intel Xeon processor, model
// 0Fh. All processors are manufactured using the 65 nm process.
case 0x16: // Intel Celeron processor model 16h. All processors are
// manufactured using the 65 nm process
CPU = "core2";
*Type = INTEL_CORE2;
break;
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
// 17h. All processors are manufactured using the 45 nm process.
//
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
// the 45 nm process.
CPU = "penryn";
*Type = INTEL_CORE2;
break;
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 45 nm process.
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 0x1f:
case 0x2e: // Nehalem EX
CPU = "nehalem";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_NEHALEM;
break;
case 0x25: // Intel Core i7, laptop version.
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 32 nm process.
case 0x2f: // Westmere EX
CPU = "westmere";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_WESTMERE;
break;
case 0x2a: // Intel Core i7 processor. All processors are manufactured
// using the 32 nm process.
case 0x2d:
CPU = "sandybridge";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SANDYBRIDGE;
break;
case 0x3a:
case 0x3e: // Ivy Bridge EP
CPU = "ivybridge";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_IVYBRIDGE;
break;
// Haswell:
case 0x3c:
case 0x3f:
case 0x45:
case 0x46:
CPU = "haswell";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_HASWELL;
break;
// Broadwell:
case 0x3d:
case 0x47:
case 0x4f:
case 0x56:
CPU = "broadwell";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_BROADWELL;
break;
// Skylake:
case 0x4e: // Skylake mobile
case 0x5e: // Skylake desktop
case 0x8e: // Kaby Lake mobile
case 0x9e: // Kaby Lake desktop
case 0xa5: // Comet Lake-H/S
case 0xa6: // Comet Lake-U
CPU = "skylake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SKYLAKE;
break;
// Rocketlake:
case 0xa7:
CPU = "rocketlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ROCKETLAKE;
break;
// Skylake Xeon:
case 0x55:
*Type = INTEL_COREI7;
if (testFeature(FEATURE_AVX512BF16)) {
CPU = "cooperlake";
*Subtype = INTEL_COREI7_COOPERLAKE;
} else if (testFeature(FEATURE_AVX512VNNI)) {
CPU = "cascadelake";
*Subtype = INTEL_COREI7_CASCADELAKE;
} else {
CPU = "skylake-avx512";
*Subtype = INTEL_COREI7_SKYLAKE_AVX512;
}
break;
// Cannonlake:
case 0x66:
CPU = "cannonlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_CANNONLAKE;
break;
// Icelake:
case 0x7d:
case 0x7e:
CPU = "icelake-client";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ICELAKE_CLIENT;
break;
// Tigerlake:
case 0x8c:
case 0x8d:
CPU = "tigerlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_TIGERLAKE;
break;
// Alderlake:
case 0x97:
case 0x9a:
CPU = "alderlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ALDERLAKE;
break;
// Icelake Xeon:
case 0x6a:
case 0x6c:
CPU = "icelake-server";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ICELAKE_SERVER;
break;
// Sapphire Rapids:
case 0x8f:
CPU = "sapphirerapids";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SAPPHIRERAPIDS;
break;
case 0x1c: // Most 45 nm Intel Atom processors
case 0x26: // 45 nm Atom Lincroft
case 0x27: // 32 nm Atom Medfield
case 0x35: // 32 nm Atom Midview
case 0x36: // 32 nm Atom Midview
CPU = "bonnell";
*Type = INTEL_BONNELL;
break;
// Atom Silvermont codes from the Intel software optimization guide.
case 0x37:
case 0x4a:
case 0x4d:
case 0x5a:
case 0x5d:
case 0x4c: // really airmont
CPU = "silvermont";
*Type = INTEL_SILVERMONT;
break;
// Goldmont:
case 0x5c: // Apollo Lake
case 0x5f: // Denverton
CPU = "goldmont";
*Type = INTEL_GOLDMONT;
break; // "goldmont"
case 0x7a:
CPU = "goldmont-plus";
*Type = INTEL_GOLDMONT_PLUS;
break;
case 0x86:
CPU = "tremont";
*Type = INTEL_TREMONT;
break;
case 0x57:
CPU = "knl";
*Type = INTEL_KNL;
break;
case 0x85:
CPU = "knm";
*Type = INTEL_KNM;
break;
default: // Unknown family 6 CPU.
break;
}
break;
default:
break; // Unknown.
}
return CPU;
}
static const char *
getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
const unsigned *Features,
unsigned *Type, unsigned *Subtype) {
// We select CPU strings to match the code in Host.cpp, but we don't use them
// in compiler-rt.
const char *CPU = 0;
switch (Family) {
case 16:
CPU = "amdfam10";
*Type = AMDFAM10H;
switch (Model) {
case 2:
*Subtype = AMDFAM10H_BARCELONA;
break;
case 4:
*Subtype = AMDFAM10H_SHANGHAI;
break;
case 8:
*Subtype = AMDFAM10H_ISTANBUL;
break;
}
break;
case 20:
CPU = "btver1";
*Type = AMD_BTVER1;
break;
case 21:
CPU = "bdver1";
*Type = AMDFAM15H;
if (Model >= 0x60 && Model <= 0x7f) {
CPU = "bdver4";
*Subtype = AMDFAM15H_BDVER4;
break; // 60h-7Fh: Excavator
}
if (Model >= 0x30 && Model <= 0x3f) {
CPU = "bdver3";
*Subtype = AMDFAM15H_BDVER3;
break; // 30h-3Fh: Steamroller
}
if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
CPU = "bdver2";
*Subtype = AMDFAM15H_BDVER2;
break; // 02h, 10h-1Fh: Piledriver
}
if (Model <= 0x0f) {
*Subtype = AMDFAM15H_BDVER1;
break; // 00h-0Fh: Bulldozer
}
break;
case 22:
CPU = "btver2";
*Type = AMD_BTVER2;
break;
case 23:
CPU = "znver1";
*Type = AMDFAM17H;
if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
CPU = "znver2";
*Subtype = AMDFAM17H_ZNVER2;
break; // 30h-3fh, 71h: Zen2
}
if (Model <= 0x0f) {
*Subtype = AMDFAM17H_ZNVER1;
break; // 00h-0Fh: Zen1
}
break;
case 25:
CPU = "znver3";
*Type = AMDFAM19H;
if (Model <= 0x0f || Model == 0x21) {
*Subtype = AMDFAM19H_ZNVER3;
break; // 00h-0Fh, 21h: Zen3
}
break;
default:
break; // Unknown AMD CPU.
}
return CPU;
}
static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
unsigned *Features) {
unsigned EAX, EBX;
#define setFeature(F) \
Features[F / 32] |= 1U << (F % 32)
if ((EDX >> 15) & 1)
setFeature(FEATURE_CMOV);
if ((EDX >> 23) & 1)
setFeature(FEATURE_MMX);
if ((EDX >> 25) & 1)
setFeature(FEATURE_SSE);
if ((EDX >> 26) & 1)
setFeature(FEATURE_SSE2);
if ((ECX >> 0) & 1)
setFeature(FEATURE_SSE3);
if ((ECX >> 1) & 1)
setFeature(FEATURE_PCLMUL);
if ((ECX >> 9) & 1)
setFeature(FEATURE_SSSE3);
if ((ECX >> 12) & 1)
setFeature(FEATURE_FMA);
if ((ECX >> 19) & 1)
setFeature(FEATURE_SSE4_1);
if ((ECX >> 20) & 1)
setFeature(FEATURE_SSE4_2);
if ((ECX >> 23) & 1)
setFeature(FEATURE_POPCNT);
if ((ECX >> 25) & 1)
setFeature(FEATURE_AES);
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
const unsigned AVXBits = (1 << 27) | (1 << 28);
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
((EAX & 0x6) == 0x6);
#if defined(__APPLE__)
// Darwin lazily saves the AVX512 context on first use: trust that the OS will
// save the AVX512 context if we use AVX512 instructions, even the bit is not
// set right now.
bool HasAVX512Save = true;
#else
// AVX512 requires additional context to be saved by the OS.
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
#endif
if (HasAVX)
setFeature(FEATURE_AVX);
bool HasLeaf7 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7 && ((EBX >> 3) & 1))
setFeature(FEATURE_BMI);
if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
setFeature(FEATURE_AVX2);
if (HasLeaf7 && ((EBX >> 8) & 1))
setFeature(FEATURE_BMI2);
if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512F);
if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512DQ);
if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512IFMA);
if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512PF);
if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512ER);
if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512CD);
if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BW);
if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VL);
if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VBMI);
if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VBMI2);
if (HasLeaf7 && ((ECX >> 8) & 1))
setFeature(FEATURE_GFNI);
if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
setFeature(FEATURE_VPCLMULQDQ);
if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VNNI);
if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BITALG);
if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VPOPCNTDQ);
if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX5124VNNIW);
if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX5124FMAPS);
if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VP2INTERSECT);
bool HasLeaf7Subleaf1 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BF16);
unsigned MaxExtLevel;
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
if (HasExtLeaf1 && ((ECX >> 6) & 1))
setFeature(FEATURE_SSE4_A);
if (HasExtLeaf1 && ((ECX >> 11) & 1))
setFeature(FEATURE_XOP);
if (HasExtLeaf1 && ((ECX >> 16) & 1))
setFeature(FEATURE_FMA4);
#undef setFeature
}
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
int __cpu_indicator_init(void) CONSTRUCTOR_ATTRIBUTE;
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
struct __processor_model {
unsigned int __cpu_vendor;
unsigned int __cpu_type;
unsigned int __cpu_subtype;
unsigned int __cpu_features[1];
} __cpu_model = {0, 0, 0, {0}};
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
unsigned int __cpu_features2 = 0;
// A constructor function that is sets __cpu_model and __cpu_features2 with
// the right values. This needs to run only once. This constructor is
// given the highest priority and it should run before constructors without
// the priority set. However, it still runs after ifunc initializers and
// needs to be called explicitly there.
int CONSTRUCTOR_ATTRIBUTE __cpu_indicator_init(void) {
unsigned EAX, EBX, ECX, EDX;
unsigned MaxLeaf = 5;
unsigned Vendor;
unsigned Model, Family;
unsigned Features[(CPU_FEATURE_MAX + 31) / 32] = {0};
// This function needs to run just once.
if (__cpu_model.__cpu_vendor)
return 0;
if (!isCpuIdSupported() ||
getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1) {
__cpu_model.__cpu_vendor = VENDOR_OTHER;
return -1;
}
getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
detectX86FamilyModel(EAX, &Family, &Model);
// Find available features.
getAvailableFeatures(ECX, EDX, MaxLeaf, &Features[0]);
assert((sizeof(Features)/sizeof(Features[0])) == 2);
__cpu_model.__cpu_features[0] = Features[0];
__cpu_features2 = Features[1];
if (Vendor == SIG_INTEL) {
// Get CPU type.
getIntelProcessorTypeAndSubtype(Family, Model, &Features[0],
&(__cpu_model.__cpu_type),
&(__cpu_model.__cpu_subtype));
__cpu_model.__cpu_vendor = VENDOR_INTEL;
} else if (Vendor == SIG_AMD) {
// Get CPU type.
getAMDProcessorTypeAndSubtype(Family, Model, &Features[0],
&(__cpu_model.__cpu_type),
&(__cpu_model.__cpu_subtype));
__cpu_model.__cpu_vendor = VENDOR_AMD;
} else
__cpu_model.__cpu_vendor = VENDOR_OTHER;
assert(__cpu_model.__cpu_vendor < VENDOR_MAX);
assert(__cpu_model.__cpu_type < CPU_TYPE_MAX);
assert(__cpu_model.__cpu_subtype < CPU_SUBTYPE_MAX);
return 0;
}
#elif defined(__aarch64__)
// LSE support detection for out-of-line atomics
// using HWCAP and Auxiliary vector
_Bool __aarch64_have_lse_atomics
__attribute__((visibility("hidden"), nocommon));
#if defined(__has_include)
#if __has_include(<sys/auxv.h>)
#include <sys/auxv.h>
#ifndef AT_HWCAP
#define AT_HWCAP 16
#endif
#ifndef HWCAP_ATOMICS
#define HWCAP_ATOMICS (1 << 8)
#endif
#if defined(__ANDROID__)
#include <string.h>
#include <sys/system_properties.h>
#elif defined(__Fuchsia__)
#include <zircon/features.h>
#include <zircon/syscalls.h>
#endif
static void CONSTRUCTOR_ATTRIBUTE init_have_lse_atomics(void) {
#if defined(__FreeBSD__)
unsigned long hwcap;
int result = elf_aux_info(AT_HWCAP, &hwcap, sizeof hwcap);
__aarch64_have_lse_atomics = result == 0 && (hwcap & HWCAP_ATOMICS) != 0;
#elif defined(__Fuchsia__)
// This ensures the vDSO is a direct link-time dependency of anything that
// needs this initializer code.
#pragma comment(lib, "zircon")
uint32_t features;
zx_status_t status = _zx_system_get_features(ZX_FEATURE_KIND_CPU, &features);
__aarch64_have_lse_atomics =
status == ZX_OK && (features & ZX_ARM64_FEATURE_ISA_ATOMICS) != 0;
#else
unsigned long hwcap = getauxval(AT_HWCAP);
_Bool result = (hwcap & HWCAP_ATOMICS) != 0;
#if defined(__ANDROID__)
if (result) {
char arch[PROP_VALUE_MAX];
if (__system_property_get("ro.arch", arch) > 0 &&
strncmp(arch, "exynos9810", sizeof("exynos9810") - 1) == 0) {
// Some cores in the Exynos 9810 CPU are ARMv8.2 and others are ARMv8.0;
// only the former support LSE atomics. However, the kernel in the
// initial Android 8.0 release of Galaxy S9/S9+ devices incorrectly
// reported the feature as being supported.
//
// The kernel appears to have been corrected to mark it unsupported as of
// the Android 9.0 release on those devices, and this issue has not been
// observed anywhere else. Thus, this workaround may be removed if
// compiler-rt ever drops support for Android 8.0.
result = false;
}
}
#endif // defined(__ANDROID__)
__aarch64_have_lse_atomics = result;
#endif // defined(__FreeBSD__)
}
#endif // defined(__has_include)
#endif // __has_include(<sys/auxv.h>)
#endif // defined(__aarch64__)