forked from OSchip/llvm-project
783 lines
32 KiB
C++
783 lines
32 KiB
C++
//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the linalg dialect Tiling pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <utility>
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arithmetic/Utils/Utils.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/Transforms/FoldUtils.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::scf;
|
|
|
|
#define DEBUG_TYPE "linalg-tiling"
|
|
|
|
static bool isZero(OpFoldResult v) {
|
|
if (!v)
|
|
return false;
|
|
if (auto attr = v.dyn_cast<Attribute>()) {
|
|
IntegerAttr intAttr = attr.dyn_cast<IntegerAttr>();
|
|
return intAttr && intAttr.getValue().isZero();
|
|
}
|
|
if (auto cst = v.get<Value>().getDefiningOp<arith::ConstantIndexOp>())
|
|
return cst.value() == 0;
|
|
return false;
|
|
}
|
|
|
|
std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
|
|
mlir::linalg::makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map,
|
|
ArrayRef<OpFoldResult> allShapeSizes,
|
|
ArrayRef<OpFoldResult> allTileSizes) {
|
|
assert(allTileSizes.size() == map.getNumResults());
|
|
// Apply `map` to get shape sizes in loop order.
|
|
SmallVector<OpFoldResult> shapeSizes =
|
|
makeComposedFoldedMultiResultAffineApply(b, loc, map, allShapeSizes);
|
|
SmallVector<OpFoldResult> tileSizes(allTileSizes.begin(), allTileSizes.end());
|
|
|
|
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
|
|
if (isZero(tileSizes[idx - zerosCount])) {
|
|
shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
|
|
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
|
|
++zerosCount;
|
|
continue;
|
|
}
|
|
loopIndexToRangeIndex[idx] = idx - zerosCount;
|
|
}
|
|
|
|
// Create a new range with the applied tile sizes.
|
|
SmallVector<Range, 4> res;
|
|
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
|
|
res.push_back(Range{b.getIndexAttr(0), shapeSizes[idx], tileSizes[idx]});
|
|
return std::make_tuple(res, loopIndexToRangeIndex);
|
|
}
|
|
|
|
void mlir::linalg::transformIndexOps(
|
|
RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
|
|
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
|
|
SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
|
|
for (auto &en : enumerate(allIvs)) {
|
|
auto rangeIndex = loopIndexToRangeIndex.find(en.index());
|
|
if (rangeIndex == loopIndexToRangeIndex.end())
|
|
continue;
|
|
en.value() = ivs[rangeIndex->second];
|
|
}
|
|
offsetIndices(b, op, getAsOpFoldResult(allIvs));
|
|
}
|
|
|
|
/// Asserts that the given index-typed value is strictly positive. If the value
|
|
/// is an attribute, asserts at compile time, otherwise emits an assertion
|
|
/// checked at runtime.
|
|
static void emitIsPositiveIndexAssertion(ImplicitLocOpBuilder &b,
|
|
OpFoldResult value) {
|
|
if (auto attr = value.dyn_cast<Attribute>()) {
|
|
assert(attr.cast<IntegerAttr>().getValue().isStrictlyPositive() &&
|
|
"expected strictly positive tile size and divisor");
|
|
return;
|
|
}
|
|
|
|
Value zero = b.create<arith::ConstantIndexOp>(0);
|
|
Value condition = b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt,
|
|
value.get<Value>(), zero);
|
|
b.create<cf::AssertOp>(
|
|
condition,
|
|
b.getStringAttr("expected strictly positive tile size and divisor"));
|
|
}
|
|
|
|
FailureOr<MultiSizeSpecification>
|
|
mlir::linalg::computeMultiTileSizes(OpBuilder &builder, LinalgOp op,
|
|
unsigned dimension, OpFoldResult targetSize,
|
|
OpFoldResult divisor, bool emitAssertions) {
|
|
// Bail out on dimension overflow.
|
|
if (dimension >= op.getNumLoops())
|
|
return failure();
|
|
|
|
// The code below works only on values.
|
|
ImplicitLocOpBuilder b(op.getLoc(), builder);
|
|
if (emitAssertions) {
|
|
emitIsPositiveIndexAssertion(b, targetSize);
|
|
emitIsPositiveIndexAssertion(b, divisor);
|
|
}
|
|
Value targetSizeValue = materializeOpFoldResult(b, targetSize);
|
|
Value divisorValue = materializeOpFoldResult(b, divisor);
|
|
|
|
// Find the trip count of the iteration space dimension for which the tile
|
|
// sizes are computed.
|
|
SmallVector<OpFoldResult> allShapes =
|
|
op.createFlatListOfOperandDims(b, b.getLoc());
|
|
AffineMap shapesToLoops = op.getShapesToLoopsMap();
|
|
IRRewriter rewriter(b);
|
|
SmallVector<OpFoldResult> loopRanges =
|
|
makeComposedFoldedMultiResultAffineApply(rewriter, op.getLoc(),
|
|
shapesToLoops, allShapes);
|
|
Value tripCount =
|
|
materializeOpFoldResult(rewriter, op.getLoc(), loopRanges[dimension]);
|
|
|
|
// Compute the tile sizes and the respective numbers of tiles.
|
|
AffineExpr s0 = b.getAffineSymbolExpr(0);
|
|
AffineExpr s1 = b.getAffineSymbolExpr(1);
|
|
AffineExpr s2 = b.getAffineSymbolExpr(2);
|
|
auto apply = [&](AffineExpr expr, ValueRange values) -> Value {
|
|
return makeComposedAffineApply(b, b.getLoc(), expr, values);
|
|
};
|
|
Value a = apply(s0.floorDiv(s1), {tripCount, divisorValue});
|
|
Value t = apply((s0 + s1 - 1).floorDiv(s1), {targetSizeValue, divisorValue});
|
|
Value d = apply((s0 + s1 - 1).floorDiv(s1), {a, t});
|
|
Value s = apply(s0.floorDiv(s1) * s2, {a, d, divisorValue});
|
|
Value v = apply(s0 % s1, {a, d});
|
|
Value u = apply(s0 - s1, {d, v});
|
|
|
|
MultiSizeSpecification spec;
|
|
spec.lowTileSize = s;
|
|
spec.highTileSize = apply(s0 + s1, {s, divisorValue});
|
|
spec.lowTripCount = u;
|
|
spec.highTripCount = v;
|
|
|
|
// If requested, emit the check that the tile sizes are computed correctly.
|
|
// For example, for iteration dimension size of 15 and the target size 8 it is
|
|
// impossible to find two tile sizes both divisible by 8 that fully cover the
|
|
// original space dimension.
|
|
if (emitAssertions) {
|
|
AffineExpr s3 = builder.getAffineSymbolExpr(3);
|
|
Value coveredSize =
|
|
apply(s0 * s1 + s2 * s3, {spec.lowTileSize, spec.lowTripCount,
|
|
spec.highTileSize, spec.highTripCount});
|
|
Value equals = b.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
|
|
coveredSize, tripCount);
|
|
b.create<cf::AssertOp>(
|
|
equals, builder.getStringAttr(
|
|
"could not compute dynamic multi-size tile shapes"));
|
|
}
|
|
|
|
return spec;
|
|
}
|
|
|
|
/// Given a `subsetExtractOp`, a `source` and a `dest`, create a new
|
|
/// `ParallelInsertSlice` op of `source` into `dest` at the same subset location
|
|
/// as `subsetExtractOp`.
|
|
static void
|
|
createMatchingParallelSubsetInsertOp(OpBuilder &b, Location loc,
|
|
tensor::ExtractSliceOp subsetExtractOp,
|
|
Value source, Value dest) {
|
|
b.create<tensor::ParallelInsertSliceOp>(
|
|
loc, source, dest, subsetExtractOp.getMixedOffsets(),
|
|
subsetExtractOp.getMixedSizes(), subsetExtractOp.getMixedStrides());
|
|
}
|
|
|
|
/// Returns true if the maximum tile offset `tileSize * numThreads-1` is less
|
|
/// than `iterationSize`.
|
|
static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize,
|
|
OpFoldResult numThreads,
|
|
OpFoldResult iterationSize) {
|
|
Optional<int64_t> tileSizeConst = getConstantIntValue(tileSize);
|
|
Optional<int64_t> numThreadsConst = getConstantIntValue(numThreads);
|
|
Optional<int64_t> iterSizeConst = getConstantIntValue(iterationSize);
|
|
if (!tileSizeConst || !numThreadsConst || !iterSizeConst)
|
|
return false;
|
|
return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst;
|
|
}
|
|
|
|
/// Build an `affine_max` of all the `vals`.
|
|
static OpFoldResult buildMax(OpBuilder &b, Location loc,
|
|
ArrayRef<OpFoldResult> vals) {
|
|
IRRewriter rewriter(b);
|
|
return makeComposedFoldedAffineMax(
|
|
rewriter, loc,
|
|
AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()), vals);
|
|
}
|
|
|
|
/// Build an `affine_min` of all the `vals`.
|
|
static OpFoldResult buildMin(OpBuilder &b, Location loc,
|
|
ArrayRef<OpFoldResult> vals) {
|
|
IRRewriter rewriter(b);
|
|
return makeComposedFoldedAffineMin(
|
|
rewriter, loc,
|
|
AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()), vals);
|
|
}
|
|
|
|
/// Rewrite a TilingInterface `op` to a tiled `scf.foreach_thread`. The
|
|
/// tiling is specified by the number of tiles/threads `numThreads` and the
|
|
/// optional nominal tile size `nominalTileSizes`. If `nominalTilSizes` is
|
|
/// not specified, then it is derived from `numThreads` as `ceilDiv(dimSize[i],
|
|
/// numThreads[i])`. If non-empty, the `threadDimMapping` is added as an
|
|
/// attribute to the resulting `scf.foreach_thread`. A zero tile sizes indicate
|
|
/// that the dimension is not tiled, and can be thought of as tiling by the full
|
|
/// size of data.
|
|
/// It is the user's responsibility to ensure that `numThreads` is a valid
|
|
/// tiling specification (i.e. that only tiles parallel dimensions, e.g. in the
|
|
/// Linalg case). If `omitTileOffsetBoundsCheck` is true, then the function will
|
|
/// assume that `tileSize[i] * (numThread[i] -1) <= dimSize[i]` holds.
|
|
static FailureOr<ForeachThreadTilingResult> tileToForeachThreadOpImpl(
|
|
RewriterBase &b, TilingInterface op, ArrayRef<OpFoldResult> numThreads,
|
|
Optional<ArrayRef<OpFoldResult>> nominalTileSizes,
|
|
ArrayRef<int64_t> threadDimMapping, bool omitTileOffsetBoundsCheck) {
|
|
Location loc = op->getLoc();
|
|
OpBuilder::InsertionGuard g(b);
|
|
SmallVector<Range> loopRanges = op.getIterationDomain(b);
|
|
if (loopRanges.empty())
|
|
return op->emitOpError("expected non-empty loop ranges");
|
|
auto hasStrideOne = [](Range r) { return !isConstantIntValue(r.stride, 1); };
|
|
if (llvm::any_of(loopRanges, hasStrideOne))
|
|
return op->emitOpError("only stride-1 supported atm");
|
|
// TODO: support `getTiledImplementation` with >1 produced tiled ops.
|
|
auto destOperands = op.getDestinationOperands(b);
|
|
if (destOperands.size() != 1)
|
|
return op->emitOpError("only single dest operand supported atm");
|
|
|
|
SmallVector<OpFoldResult> nonZeroNumThreads =
|
|
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
|
|
return !isConstantIntValue(ofr, 0);
|
|
}));
|
|
SmallVector<Value> materializedNonZeroNumThreads =
|
|
llvm::to_vector(llvm::map_range(nonZeroNumThreads, [&](OpFoldResult ofr) {
|
|
ImplicitLocOpBuilder ilocb(loc, b);
|
|
return materializeOpFoldResult(ilocb, ofr);
|
|
}));
|
|
|
|
Operation *tiledOp = nullptr;
|
|
|
|
// Create the ForeachThreadOp. We don't use the lambda body-builder
|
|
// version because we require the use of RewriterBase in the body, so we
|
|
// manually move the insertion point to the body below.
|
|
scf::ForeachThreadOp foreachThreadOp = b.create<scf::ForeachThreadOp>(
|
|
loc, op->getResultTypes(), ValueRange(materializedNonZeroNumThreads),
|
|
threadDimMapping);
|
|
|
|
// Fill out the ForeachThreadOp body.
|
|
b.setInsertionPointToStart(foreachThreadOp.getBody(0));
|
|
ValueRange threadIds = foreachThreadOp.getThreadIndices();
|
|
int64_t nLoops = loopRanges.size();
|
|
SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
|
|
tiledOffsets.reserve(nLoops);
|
|
tiledSizes.reserve(nLoops);
|
|
for (unsigned loopIdx = 0, threadIdIdx = 0; loopIdx < nLoops; ++loopIdx) {
|
|
bool overflow = loopIdx >= numThreads.size();
|
|
bool isZero = !overflow && isConstantIntValue(numThreads[loopIdx], 0);
|
|
// Degenerate case: take the whole domain.
|
|
if (overflow || isZero) {
|
|
tiledOffsets.push_back(loopRanges[loopIdx].offset);
|
|
tiledSizes.push_back(loopRanges[loopIdx].size);
|
|
continue;
|
|
}
|
|
|
|
// Tiled case: compute the offset and size.
|
|
AffineExpr i, j, M, N, O;
|
|
bindDims(b.getContext(), i, j);
|
|
bindSymbols(b.getContext(), M, N, O);
|
|
OpFoldResult size = loopRanges[loopIdx].size;
|
|
OpFoldResult offset = loopRanges[loopIdx].offset;
|
|
OpFoldResult threadId = threadIds[threadIdIdx];
|
|
// Symbolic fixed max size per thread.
|
|
// TODO: floor + 0/1 depending on case for better load-balancing.
|
|
OpFoldResult tileSizePerThread =
|
|
nominalTileSizes.has_value()
|
|
? (*nominalTileSizes)[loopIdx]
|
|
: makeComposedFoldedAffineApply(
|
|
b, loc, M.ceilDiv(N),
|
|
ArrayRef<OpFoldResult>{size, nonZeroNumThreads[threadIdIdx]});
|
|
|
|
// Dynamic offset shifted by threadId * maxSizePerThread.
|
|
OpFoldResult offsetPerThread = makeComposedFoldedAffineApply(
|
|
b, loc, i + j * M, {offset, threadId, tileSizePerThread});
|
|
// Dynamic upper-bound depending on the threadId.
|
|
OpFoldResult residualTileSize = makeComposedFoldedAffineApply(
|
|
b, loc, i + j * M - N,
|
|
{offset, nonZeroNumThreads[threadIdIdx], tileSizePerThread, size});
|
|
if (!isConstantIntValue(residualTileSize, 0)) {
|
|
OpFoldResult sizeMinusOffsetPerThread = makeComposedFoldedAffineApply(
|
|
b, loc, -i + M, {offsetPerThread, size});
|
|
tileSizePerThread =
|
|
buildMin(b, loc, {sizeMinusOffsetPerThread, tileSizePerThread});
|
|
}
|
|
|
|
tiledOffsets.push_back(offsetPerThread);
|
|
// TODO: if tileSizePerThread <= 0 early exit.
|
|
if (!omitTileOffsetBoundsCheck &&
|
|
!canOmitTileOffsetInBoundsCheck(tileSizePerThread,
|
|
nonZeroNumThreads[threadIdIdx], size))
|
|
tileSizePerThread =
|
|
buildMax(b, loc, {b.getIndexAttr(0), tileSizePerThread});
|
|
|
|
tiledSizes.push_back(tileSizePerThread);
|
|
++threadIdIdx;
|
|
}
|
|
|
|
SmallVector<Operation *> tiledOps =
|
|
op.getTiledImplementation(b, destOperands, tiledOffsets, tiledSizes,
|
|
/*tileDestOperands=*/true);
|
|
assert(tiledOps.size() == 1 && "expected a single produced tiled op");
|
|
tiledOp = tiledOps.front();
|
|
|
|
auto tilingInterfaceOp = dyn_cast<TilingInterface>(tiledOp);
|
|
assert(tilingInterfaceOp && "Tiled op does not implement TilingInterface");
|
|
|
|
auto tiledDestOperands = tilingInterfaceOp.getDestinationOperands(b);
|
|
|
|
// Create terminator with parallel subset insert operations.
|
|
b.setInsertionPointToStart(foreachThreadOp.getTerminator().getBody());
|
|
for (auto it : llvm::zip(tiledDestOperands, tilingInterfaceOp->getResults(),
|
|
destOperands)) {
|
|
createMatchingParallelSubsetInsertOp(
|
|
b, loc, cast<tensor::ExtractSliceOp>(std::get<0>(it).getDefiningOp()),
|
|
std::get<1>(it), std::get<2>(it));
|
|
}
|
|
return ForeachThreadTilingResult{foreachThreadOp, tiledOp};
|
|
}
|
|
|
|
FailureOr<ForeachThreadTilingResult>
|
|
linalg::tileToForeachThreadOp(RewriterBase &b, TilingInterface op,
|
|
ArrayRef<OpFoldResult> numThreads,
|
|
ArrayRef<int64_t> threadDimMapping) {
|
|
return tileToForeachThreadOpImpl(b, op, numThreads, /*nominalTileSizes=*/None,
|
|
threadDimMapping,
|
|
/*omitTileOffsetBoundsCheck=*/false);
|
|
}
|
|
|
|
FailureOr<ForeachThreadTilingResult>
|
|
linalg::tileToForeachThreadOpUsingTileSizes(
|
|
RewriterBase &b, TilingInterface op, ArrayRef<OpFoldResult> tileSizes,
|
|
ArrayRef<int64_t> threadDimMapping) {
|
|
SmallVector<Range> loopRanges = op.getIterationDomain(b);
|
|
unsigned nLoops = loopRanges.size();
|
|
SmallVector<OpFoldResult> numThreads;
|
|
numThreads.reserve(nLoops);
|
|
AffineExpr s0, s1;
|
|
bindSymbols(b.getContext(), s0, s1);
|
|
AffineExpr divExpr = s0.ceilDiv(s1);
|
|
for (const auto &it : llvm::zip(tileSizes, loopRanges)) {
|
|
OpFoldResult numTiles = std::get<0>(it);
|
|
if (!isConstantIntValue(numTiles, 0))
|
|
numTiles = makeComposedFoldedAffineApply(
|
|
b, op.getLoc(), divExpr, {std::get<1>(it).size, std::get<0>(it)});
|
|
numThreads.push_back(numTiles);
|
|
}
|
|
return tileToForeachThreadOpImpl(b, op, numThreads,
|
|
/*nominalTileSizes=*/tileSizes,
|
|
threadDimMapping,
|
|
/*omitTileOffsetBoundsCheck=*/true);
|
|
}
|
|
|
|
// Insert a tile `source` into the destination tensor `dest`. The position at
|
|
// which the tile is inserted (as well as size of tile) is taken from a given
|
|
// ExtractSliceOp `sliceOp`.
|
|
static Value insertSliceIntoTensor(RewriterBase &b, Location loc,
|
|
tensor::ExtractSliceOp sliceOp, Value source,
|
|
Value dest) {
|
|
return b.create<tensor::InsertSliceOp>(
|
|
loc, sliceOp.getSource().getType(), source, dest, sliceOp.getOffsets(),
|
|
sliceOp.getSizes(), sliceOp.getStrides(), sliceOp.getStaticOffsets(),
|
|
sliceOp.getStaticSizes(), sliceOp.getStaticStrides());
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
static FailureOr<TiledLinalgOp>
|
|
tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ArrayRef<OpFoldResult> tileSizes,
|
|
const LinalgTilingOptions &options) {
|
|
auto nLoops = op.getNumLoops();
|
|
// Initial tile sizes may be too big, only take the first nLoops.
|
|
tileSizes = tileSizes.take_front(nLoops);
|
|
|
|
if (llvm::all_of(tileSizes, isZero)) {
|
|
TiledLinalgOp tiledOp;
|
|
tiledOp.op = cast<LinalgOp>(b.clone(*op.getOperation()));
|
|
tiledOp.tensorResults.assign(tiledOp.op->result_begin(),
|
|
tiledOp.op->result_end());
|
|
return tiledOp;
|
|
}
|
|
|
|
// 1. Build the tiled loop ranges.
|
|
SmallVector<OpFoldResult> allShapeSizes =
|
|
op.createFlatListOfOperandDims(b, op.getLoc());
|
|
AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
|
|
if (!shapeSizesToLoopsMap)
|
|
return failure();
|
|
|
|
SmallVector<Range, 4> loopRanges;
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
|
|
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
|
|
|
|
SmallVector<Attribute, 4> iteratorTypes;
|
|
for (const auto &attr :
|
|
enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
|
|
if (loopIndexToRangeIndex.count(attr.index()))
|
|
iteratorTypes.push_back(attr.value());
|
|
}
|
|
// If interchangeVector is empty, use the identity. Build the permutation map
|
|
// otherwise.
|
|
auto invPermutationMap =
|
|
AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
|
|
if (!options.interchangeVector.empty()) {
|
|
// Based on the pruned iterations (due to zero tile size), recompute the
|
|
// interchange vector.
|
|
SmallVector<unsigned, 4> interchangeVector;
|
|
interchangeVector.reserve(options.interchangeVector.size());
|
|
for (auto pos : options.interchangeVector) {
|
|
auto it = loopIndexToRangeIndex.find(pos);
|
|
if (it == loopIndexToRangeIndex.end())
|
|
continue;
|
|
interchangeVector.push_back(it->second);
|
|
}
|
|
// Interchange vector is guaranteed to be a permutation,
|
|
// `inversePermutation` must succeed.
|
|
invPermutationMap = inversePermutation(
|
|
AffineMap::getPermutationMap(interchangeVector, b.getContext()));
|
|
assert(invPermutationMap);
|
|
SmallVector<int64_t> permutation(interchangeVector.begin(),
|
|
interchangeVector.end());
|
|
applyPermutationToVector(loopRanges, permutation);
|
|
applyPermutationToVector(iteratorTypes, permutation);
|
|
}
|
|
|
|
// 2. Create the tiled loops.
|
|
LinalgOp res = op;
|
|
SmallVector<Value, 4> ivs, tensorResults;
|
|
auto tiledLoopBodyBuilder =
|
|
[&](OpBuilder &builder, Location loc, ValueRange localIvs,
|
|
ValueRange operandValuesToUse) -> scf::ValueVector {
|
|
ivs.assign(localIvs.begin(), localIvs.end());
|
|
|
|
// When an `interchangeVector` is present, it has been applied to the
|
|
// loop ranges and the iterator types. Apply its inverse to the
|
|
// resulting loop `ivs` to match the op definition.
|
|
SmallVector<Value, 4> interchangedIvs;
|
|
if (!options.interchangeVector.empty())
|
|
interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs);
|
|
else
|
|
interchangedIvs.assign(ivs.begin(), ivs.end());
|
|
|
|
// Tile the `operandValuesToUse` that either match the `op` operands
|
|
// themselves or the tile loop arguments forwarding them.
|
|
assert(operandValuesToUse.size() ==
|
|
static_cast<size_t>(op.getNumInputsAndOutputs()) &&
|
|
"expect the number of operands and inputs and outputs to match");
|
|
SmallVector<Value> valuesToTile = operandValuesToUse;
|
|
IRRewriter rewriter(b);
|
|
SmallVector<OpFoldResult> sizeBounds =
|
|
makeComposedFoldedMultiResultAffineApply(
|
|
rewriter, loc, shapeSizesToLoopsMap, allShapeSizes);
|
|
SmallVector<Value> tiledOperands = makeTiledShapes(
|
|
b, loc, op, valuesToTile, getAsOpFoldResult(interchangedIvs), tileSizes,
|
|
sizeBounds,
|
|
/*omitPartialTileCheck=*/false);
|
|
|
|
SmallVector<Type> resultTensorTypes =
|
|
getTensorOutputTypes(op, tiledOperands);
|
|
res = op.clone(b, loc, resultTensorTypes, tiledOperands);
|
|
tensorResults =
|
|
insertSlicesBack(builder, loc, op, tiledOperands, res->getResults());
|
|
return scf::ValueVector(tensorResults.begin(), tensorResults.end());
|
|
};
|
|
GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
|
|
tiledLoopBodyBuilder, options.distribution,
|
|
options.distributionTypes);
|
|
|
|
// 3. Transform IndexOp results w.r.t. the tiling.
|
|
transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
|
|
|
|
// 4. Gather the newly created loops and return them with the new op.
|
|
SmallVector<Operation *, 8> loops;
|
|
loops.reserve(ivs.size());
|
|
for (auto iv : ivs) {
|
|
if (iv.isa<BlockArgument>()) {
|
|
loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
|
|
assert(loops.back() && "no owner found for induction variable!");
|
|
} else {
|
|
// TODO: Instead of doing this, try to recover the ops used instead of the
|
|
// loop.
|
|
loops.push_back(nullptr);
|
|
}
|
|
}
|
|
|
|
// 5. Get the tensor results from the outermost loop if available. Otherwise
|
|
// use the previously captured `tensorResults`.
|
|
Operation *outermostLoop = nullptr;
|
|
for (Operation *loop : loops)
|
|
if ((outermostLoop = loop))
|
|
break;
|
|
|
|
return TiledLinalgOp{
|
|
res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
FailureOr<TiledLinalgOp> static tileLinalgOpImpl(
|
|
RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
|
|
if (!options.tileSizeComputationFunction)
|
|
return failure();
|
|
|
|
// Enforce the convention that "tiling by zero" skips tiling a particular
|
|
// dimension. This convention is significantly simpler to handle instead of
|
|
// adjusting affine maps to account for missing dimensions.
|
|
auto nLoops = op.getNumLoops();
|
|
SmallVector<OpFoldResult> tileSizeVector =
|
|
getAsOpFoldResult(options.tileSizeComputationFunction(b, op));
|
|
if (tileSizeVector.size() < nLoops) {
|
|
tileSizeVector.append(nLoops - tileSizeVector.size(), b.getIndexAttr(0));
|
|
}
|
|
|
|
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
|
|
}
|
|
|
|
FailureOr<TiledLinalgOp>
|
|
mlir::linalg::tileLinalgOp(RewriterBase &b, LinalgOp op,
|
|
const LinalgTilingOptions &options) {
|
|
switch (options.loopType) {
|
|
case LinalgTilingLoopType::Loops:
|
|
return tileLinalgOpImpl<scf::ForOp>(b, op, options);
|
|
case LinalgTilingLoopType::ParallelLoops:
|
|
return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
|
|
default:;
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
/// Generate a loop nest around a given tensor::PadOp (for tiling). `newPadOp`
|
|
/// and `loopNest` are output parameters that return the new (tiled)
|
|
/// tensor::PadOp and the loop nest.
|
|
static LogicalResult tilePadOp(RewriterBase &builder, tensor::PadOp op,
|
|
tensor::PadOp &newPadOp, LoopNest &loopNest,
|
|
const LinalgTilingOptions &options) {
|
|
Location loc = op.getLoc();
|
|
OpBuilder::InsertionGuard g(builder);
|
|
builder.setInsertionPoint(op);
|
|
|
|
// Clone tensor::PadOp so that the existing op can be replaced more easily.
|
|
newPadOp = cast<tensor::PadOp>(builder.clone(*op.getOperation()));
|
|
// Get rank and tile sizes.
|
|
int64_t rank = op.getResultType().getRank();
|
|
SmallVector<OpFoldResult> tileSizes =
|
|
getAsOpFoldResult(options.tileSizeComputationFunction(builder, op));
|
|
// Normalize untiled padding dimensions to 0.
|
|
tileSizes.append(rank - tileSizes.size(), builder.getIndexAttr(0));
|
|
// Compute lower and upper bounds of the loop nest.
|
|
TilingInterface tilingInterface =
|
|
dyn_cast<TilingInterface>(op.getOperation());
|
|
SmallVector<Range> ranges = tilingInterface.getIterationDomain(builder);
|
|
SmallVector<Value> lbs, dims, steps;
|
|
SmallVector<OpFoldResult> allDims;
|
|
for (int64_t i = 0; i < rank; ++i) {
|
|
allDims.push_back(ranges[i].size);
|
|
if (!isZero(tileSizes[i])) {
|
|
lbs.push_back(materializeOpFoldResult(builder, loc, ranges[i].offset));
|
|
dims.push_back(materializeOpFoldResult(builder, loc, ranges[i].size));
|
|
steps.push_back(materializeOpFoldResult(builder, loc, tileSizes[i]));
|
|
}
|
|
}
|
|
// Generate loop nest: One loop per dimension.
|
|
SmallVector<Value> destOperand =
|
|
tilingInterface.getDestinationOperands(builder);
|
|
loopNest = mlir::scf::buildLoopNest(
|
|
builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(destOperand),
|
|
[&](OpBuilder &b, Location loc, ValueRange localIvs,
|
|
ValueRange iterArgs) -> scf::ValueVector {
|
|
// Compute offsets and sizes of ExtractSliceOp.
|
|
SmallVector<Value> localIVVector = llvm::to_vector(localIvs);
|
|
SmallVector<OpFoldResult> offsets = computeTileOffsets(
|
|
b, loc, getAsOpFoldResult(localIVVector), tileSizes);
|
|
SmallVector<OpFoldResult> sizes =
|
|
computeTileSizes(b, loc, tileSizes, allDims);
|
|
// Create ExtractSliceOp: Extract a tile from the tensor::PadOp.
|
|
// Note: The tensor::PadOp is located outside of the loop nest. It is
|
|
// later moved inside by ExtractSliceOfPadTensorSwapPattern.
|
|
auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext());
|
|
Value tiledOutput = makeTiledShape(
|
|
b, loc, newPadOp->getResult(0), tileSizes, map, offsets, allDims,
|
|
sizes, /*omitPartialTileCheck=*/false);
|
|
auto sliceOp = tiledOutput.getDefiningOp<tensor::ExtractSliceOp>();
|
|
assert(sliceOp && "expected ExtractSliceOp");
|
|
// Insert the tile into the output tensor.
|
|
// TODO: Propagate RewriterBase everywhere.
|
|
IRRewriter rewriter(b);
|
|
Value yieldValue =
|
|
insertSliceIntoTensor(rewriter, loc, sliceOp, sliceOp, iterArgs[0]);
|
|
return scf::ValueVector({yieldValue});
|
|
});
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
struct PadOpTilingPattern : public OpRewritePattern<tensor::PadOp> {
|
|
PadOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt)
|
|
: OpRewritePattern<tensor::PadOp>(ctx), options(std::move(opt)) {}
|
|
|
|
LogicalResult matchAndRewrite(tensor::PadOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker))
|
|
return failure();
|
|
tensor::PadOp newPadOp;
|
|
LoopNest loopNest;
|
|
if (failed(tilePadOp(rewriter, op, newPadOp, loopNest, options)))
|
|
return failure();
|
|
newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker,
|
|
rewriter.getUnitAttr());
|
|
// Replace all uses of the original tensor::PadOp.
|
|
rewriter.replaceOp(op, loopNest.getResults()[0]);
|
|
return success();
|
|
}
|
|
|
|
LinalgTilingOptions options;
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
/// Helper classes for type list expansion.
|
|
template <typename... OpTypes>
|
|
class CanonicalizationPatternList;
|
|
|
|
template <>
|
|
class CanonicalizationPatternList<> {
|
|
public:
|
|
static void insert(RewritePatternSet &patterns) {}
|
|
};
|
|
|
|
template <typename OpTy, typename... OpTypes>
|
|
class CanonicalizationPatternList<OpTy, OpTypes...> {
|
|
public:
|
|
static void insert(RewritePatternSet &patterns) {
|
|
OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
|
|
CanonicalizationPatternList<OpTypes...>::insert(patterns);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
RewritePatternSet
|
|
mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
|
|
RewritePatternSet patterns(ctx);
|
|
populateLinalgTilingCanonicalizationPatterns(patterns);
|
|
return patterns;
|
|
}
|
|
|
|
void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
|
|
RewritePatternSet &patterns) {
|
|
auto *ctx = patterns.getContext();
|
|
AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
|
|
AffineForOp::getCanonicalizationPatterns(patterns, ctx);
|
|
AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
|
|
AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
|
|
arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
|
|
memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
|
|
scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
InitTensorOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::PadOp::getCanonicalizationPatterns(patterns, ctx);
|
|
ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
|
|
|
|
CanonicalizationPatternList<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
>::insert(patterns);
|
|
}
|
|
|
|
/// Populate the given list with patterns that apply Linalg tiling.
|
|
static void insertTilingPatterns(RewritePatternSet &patterns,
|
|
const LinalgTilingOptions &options) {
|
|
auto *ctx = patterns.getContext();
|
|
LinalgTransformationFilter f(ArrayRef<StringAttr>{},
|
|
StringAttr::get(ctx, "tiled"));
|
|
TilingPatterns<GenericOp,
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
>::insert(patterns, options, f);
|
|
patterns.add<PadOpTilingPattern>(ctx, options);
|
|
}
|
|
|
|
void mlir::linalg::populatePadTensorTilingPatterns(
|
|
RewritePatternSet &patterns, const LinalgTilingOptions &options) {
|
|
auto *ctx = patterns.getContext();
|
|
patterns.add<PadOpTilingPattern>(ctx, options);
|
|
}
|
|
|
|
static void applyExtractSliceOfPadTensorSwapPattern(func::FuncOp funcOp) {
|
|
MLIRContext *ctx = funcOp.getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
patterns.add<ExtractSliceOfPadTensorSwapPattern>(patterns.getContext());
|
|
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
|
|
(void)applyPatternsAndFoldGreedily(
|
|
funcOp, getLinalgTilingCanonicalizationPatterns(ctx));
|
|
}
|
|
|
|
namespace {
|
|
struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
|
|
LinalgTilingPass() = default;
|
|
LinalgTilingPass(ArrayRef<int64_t> tileSizes, LinalgTilingLoopType loopType) {
|
|
this->tileSizes = tileSizes;
|
|
this->loopType = "";
|
|
this->loopTypeEnum = loopType;
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
func::FuncOp funcOp = getOperation();
|
|
LinalgTilingLoopType type =
|
|
llvm::StringSwitch<LinalgTilingLoopType>(loopType)
|
|
.Case("for", LinalgTilingLoopType::Loops)
|
|
.Case("affine", LinalgTilingLoopType::AffineLoops)
|
|
.Case("parallel", LinalgTilingLoopType::ParallelLoops)
|
|
.Default(loopTypeEnum);
|
|
auto options =
|
|
LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(type);
|
|
MLIRContext *ctx = funcOp.getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
insertTilingPatterns(patterns, options);
|
|
scf::populateSCFForLoopCanonicalizationPatterns(patterns);
|
|
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
|
|
(void)applyPatternsAndFoldGreedily(
|
|
funcOp, getLinalgTilingCanonicalizationPatterns(ctx));
|
|
// Drop the marker.
|
|
funcOp.walk([](LinalgOp op) {
|
|
op->removeAttr(LinalgTransforms::kLinalgTransformMarker);
|
|
});
|
|
|
|
// Apply swap pattern after generating loop nest and running
|
|
// canonicalizations.
|
|
applyExtractSliceOfPadTensorSwapPattern(funcOp);
|
|
}
|
|
|
|
LinalgTilingLoopType loopTypeEnum;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes,
|
|
linalg::LinalgTilingLoopType loopType) {
|
|
return std::make_unique<LinalgTilingPass>(tileSizes, loopType);
|
|
}
|