llvm-project/mlir/lib/Dialect/Linalg/Transforms/BubbleUpExtractSlice.cpp

140 lines
5.3 KiB
C++

//===- BubbleUpExtractSlice.cpp - bubble up tensor.extract_slice ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns that transforms linalg.<op> +
// tensor.extract_slice into tensor.extract_slice + linalg.<op> to reduce
// the computation for the linalg op.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Bubble up extract_slice above Linalg operation.
///
/// A sequence of operations
///
/// ```mlir
/// %0 = linalg.<op> ... arg0, arg1, ...
/// %1 = tensor.extract_slice %0 ...
/// ```
///
/// can be replaced with
///
/// ```mlir
/// %0 = tensor.extract_slice %arg0
/// %1 = tensor.extract_slice %arg1
/// %2 = linalg.<op> ... %0, %1, ...
/// ```
///
/// This results in the reduce computation of the linalg operation.
///
struct BubbleUpExtractSliceOpPattern
: OpRewritePattern<tensor::ExtractSliceOp> {
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const final {
Value source = sliceOp.getSource();
auto linalgOp = source.getDefiningOp<LinalgOp>();
if (!linalgOp) {
return rewriter.notifyMatchFailure(sliceOp,
"expected source to be linalg op");
}
// TODO: we might relax this if we want heuristics to detect that all uses
// are small portion of the output.
if (!linalgOp->hasOneUse()) {
return rewriter.notifyMatchFailure(sliceOp,
"expected single use of linalg op");
}
if (linalgOp.getNumOutputs() != 1) {
return rewriter.notifyMatchFailure(sliceOp,
"expected single output of linalg op");
}
if (!linalgOp.hasTensorSemantics()) {
return rewriter.notifyMatchFailure(sliceOp,
"expected tensor of linalg op");
}
if (!sliceOp.hasUnitStride())
return rewriter.notifyMatchFailure(sliceOp, "expected unit stride");
if (sliceOp.getType().getRank() != sliceOp.getSourceType().getRank()) {
return rewriter.notifyMatchFailure(sliceOp, "expected no rank reduction");
}
OpOperand *outOperand = linalgOp.getOutputOperand(0);
AffineMap indexingMap = linalgOp.getTiedIndexingMap(outOperand);
if (!indexingMap.isProjectedPermutation()) {
return rewriter.notifyMatchFailure(
sliceOp, "expected a projected permutation for output");
}
auto linalgLoc = linalgOp.getLoc();
SmallVector<OpFoldResult> allShapeSizes =
linalgOp.createFlatListOfOperandDims(rewriter, linalgLoc);
AffineMap shapeSizesToLoopsMap = linalgOp.getShapesToLoopsMap();
if (!shapeSizesToLoopsMap) {
return rewriter.notifyMatchFailure(
linalgOp, "failed to get loops map from shape sizes");
}
SmallVector<OpFoldResult> sizeBounds =
makeComposedFoldedMultiResultAffineApply(
rewriter, linalgLoc, shapeSizesToLoopsMap, allShapeSizes);
// The offsets and sizes from the slice operation only give you the tile
// size of the output. Use that compute the tile sizes and offsets of the
// loops. For loops not used to access the output, set the tile sizes to
// loop bounds and set the offset to 0.
SmallVector<OpFoldResult> tileOffsets(sizeBounds.size(),
rewriter.getIndexAttr(0));
SmallVector<OpFoldResult> tileSizes = sizeBounds;
for (auto const &result : enumerate(indexingMap.getResults())) {
unsigned position = result.value().cast<AffineDimExpr>().getPosition();
tileOffsets[position] = sliceOp.getMixedOffsets()[result.index()];
tileSizes[position] = sliceOp.getMixedSizes()[result.index()];
}
SmallVector<Value> valuesToTile = linalgOp.getInputAndOutputOperands();
SmallVector<Value> tiledOperands =
makeTiledShapes(rewriter, linalgLoc, linalgOp, valuesToTile,
tileOffsets, tileSizes, sizeBounds,
/*omitPartialTileCheck=*/true);
SmallVector<Type, 4> resultTensorTypes;
for (OpOperand *opOperand : linalgOp.getOutputTensorOperands())
resultTensorTypes.push_back(
tiledOperands[opOperand->getOperandNumber()].getType());
Operation *newOp =
linalgOp.clone(rewriter, linalgLoc, resultTensorTypes, tiledOperands);
rewriter.replaceOp(sliceOp, newOp->getResults());
return success();
}
};
} // namespace
void mlir::linalg::populateBubbleUpExtractSliceOpPatterns(
RewritePatternSet &patterns) {
auto *context = patterns.getContext();
patterns.add<BubbleUpExtractSliceOpPattern>(context);
}