llvm-project/llvm/lib/Target/X86/X86InstrControl.td

426 lines
20 KiB
TableGen

//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 jump, return, call, and related instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
// Return instructions.
//
// The X86retflag return instructions are variadic because we may add ST0 and
// ST1 arguments when returning values on the x87 stack.
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops),
"ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops),
"ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
def RETW : I <0xC3, RawFrm, (outs), (ins),
"ret{w}", []>, OpSize16;
def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
"ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
"ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
"ret{w}\t$amt", []>, OpSize16;
def LRETL : I <0xCB, RawFrm, (outs), (ins),
"{l}ret{l|f}", []>, OpSize32;
def LRETQ : RI <0xCB, RawFrm, (outs), (ins),
"{l}ret{|f}q", []>, Requires<[In64BitMode]>;
def LRETW : I <0xCB, RawFrm, (outs), (ins),
"{l}ret{w|f}", []>, OpSize16;
def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
"{l}ret{l|f}\t$amt", []>, OpSize32;
def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
"{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
"{l}ret{w|f}\t$amt", []>, OpSize16;
// The machine return from interrupt instruction, but sometimes we need to
// perform a post-epilogue stack adjustment. Codegen emits the pseudo form
// which expands to include an SP adjustment if necessary.
def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
OpSize16;
def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
let isCodeGenOnly = 1 in
def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
def RET : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
}
// Unconditional branches.
let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
"jmp\t$dst", [(br bb:$dst)]>;
let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
"jmp\t$dst", []>, OpSize16;
def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
"jmp\t$dst", []>, OpSize32;
}
}
// Conditional Branches.
let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump],
isCodeGenOnly = 1, ForceDisassemble = 1 in {
def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs),
(ins brtarget8:$dst, ccode:$cond),
"j${cond}\t$dst",
[(X86brcond bb:$dst, timm:$cond, EFLAGS)]>;
let hasSideEffects = 0 in {
def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs),
(ins brtarget16:$dst, ccode:$cond),
"j${cond}\t$dst",
[]>, OpSize16, TB;
def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs),
(ins brtarget32:$dst, ccode:$cond),
"j${cond}\t$dst",
[]>, TB, OpSize32;
}
}
def : InstAlias<"jo\t$dst", (JCC_1 brtarget8:$dst, 0), 0>;
def : InstAlias<"jno\t$dst", (JCC_1 brtarget8:$dst, 1), 0>;
def : InstAlias<"jb\t$dst", (JCC_1 brtarget8:$dst, 2), 0>;
def : InstAlias<"jae\t$dst", (JCC_1 brtarget8:$dst, 3), 0>;
def : InstAlias<"je\t$dst", (JCC_1 brtarget8:$dst, 4), 0>;
def : InstAlias<"jne\t$dst", (JCC_1 brtarget8:$dst, 5), 0>;
def : InstAlias<"jbe\t$dst", (JCC_1 brtarget8:$dst, 6), 0>;
def : InstAlias<"ja\t$dst", (JCC_1 brtarget8:$dst, 7), 0>;
def : InstAlias<"js\t$dst", (JCC_1 brtarget8:$dst, 8), 0>;
def : InstAlias<"jns\t$dst", (JCC_1 brtarget8:$dst, 9), 0>;
def : InstAlias<"jp\t$dst", (JCC_1 brtarget8:$dst, 10), 0>;
def : InstAlias<"jnp\t$dst", (JCC_1 brtarget8:$dst, 11), 0>;
def : InstAlias<"jl\t$dst", (JCC_1 brtarget8:$dst, 12), 0>;
def : InstAlias<"jge\t$dst", (JCC_1 brtarget8:$dst, 13), 0>;
def : InstAlias<"jle\t$dst", (JCC_1 brtarget8:$dst, 14), 0>;
def : InstAlias<"jg\t$dst", (JCC_1 brtarget8:$dst, 15), 0>;
// jcx/jecx/jrcx instructions.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
// These are the 32-bit versions of this instruction for the asmparser. In
// 32-bit mode, the address size prefix is jcxz and the unprefixed version is
// jecxz.
let Uses = [CX] in
def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
"jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
let Uses = [ECX] in
def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
"jecxz\t$dst", []>, AdSize32;
let Uses = [RCX] in
def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
"jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
}
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
[(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
OpSize16, Sched<[WriteJump]>;
def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
[(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
OpSize16, Sched<[WriteJumpLd]>;
def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
[(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
OpSize32, Sched<[WriteJump]>;
def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
[(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
OpSize32, Sched<[WriteJumpLd]>;
def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
[(brind GR64:$dst)]>, Requires<[In64BitMode]>,
Sched<[WriteJump]>;
def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
[(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
Sched<[WriteJumpLd]>;
// Win64 wants indirect jumps leaving the function to have a REX_W prefix.
// These are switched from TAILJMPr/m64_REX in MCInstLower.
let isCodeGenOnly = 1, hasREX_WPrefix = 1 in {
def JMP64r_REX : I<0xFF, MRM4r, (outs), (ins GR64:$dst),
"rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJump]>;
let mayLoad = 1 in
def JMP64m_REX : I<0xFF, MRM4m, (outs), (ins i64mem:$dst),
"rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJumpLd]>;
}
// Non-tracking jumps for IBT, use with caution.
let isCodeGenOnly = 1 in {
def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
[(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
OpSize16, Sched<[WriteJump]>, NOTRACK;
def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
[(X86NoTrackBrind (loadi16 addr : $dst))]>,
Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
NOTRACK;
def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
[(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
OpSize32, Sched<[WriteJump]>, NOTRACK;
def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
[(X86NoTrackBrind (loadi32 addr : $dst))]>,
Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
NOTRACK;
def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
[(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
Sched<[WriteJump]>, NOTRACK;
def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
[(X86NoTrackBrind(loadi64 addr : $dst))]>,
Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
}
let Predicates = [Not64BitMode], AsmVariantName = "att" in {
def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs),
(ins i16imm:$off, i16imm:$seg),
"ljmp{w}\t$seg, $off", []>,
OpSize16, Sched<[WriteJump]>;
def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs),
(ins i32imm:$off, i16imm:$seg),
"ljmp{l}\t$seg, $off", []>,
OpSize32, Sched<[WriteJump]>;
}
def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
"ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;
let AsmVariantName = "att" in
def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
"ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
"{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
}
// Loop instructions
let SchedRW = [WriteJump] in {
def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
}
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let Uses = [ESP, SSP] in {
def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
(outs), (ins i32imm_brtarget:$dst),
"call{l}\t$dst", []>, OpSize32,
Requires<[Not64BitMode]>, Sched<[WriteJump]>;
let hasSideEffects = 0 in
def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
(outs), (ins i16imm_brtarget:$dst),
"call{w}\t$dst", []>, OpSize16,
Sched<[WriteJump]>;
def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
"call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
"call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
Sched<[WriteJumpLd]>;
def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
"call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
Requires<[Not64BitMode,NotUseRetpolineIndirectCalls]>,
Sched<[WriteJump]>;
def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
"call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
OpSize32,
Requires<[Not64BitMode,FavorMemIndirectCall,
NotUseRetpolineIndirectCalls]>,
Sched<[WriteJumpLd]>;
// Non-tracking calls for IBT, use with caution.
let isCodeGenOnly = 1 in {
def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
"call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
"call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
Sched<[WriteJumpLd]>, NOTRACK;
def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
"call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
"call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
Sched<[WriteJumpLd]>, NOTRACK;
}
let Predicates = [Not64BitMode], AsmVariantName = "att" in {
def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs),
(ins i16imm:$off, i16imm:$seg),
"lcall{w}\t$seg, $off", []>,
OpSize16, Sched<[WriteJump]>;
def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs),
(ins i32imm:$off, i16imm:$seg),
"lcall{l}\t$seg, $off", []>,
OpSize32, Sched<[WriteJump]>;
}
def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
"lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
"{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
}
// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
isCodeGenOnly = 1, Uses = [ESP, SSP] in {
def TCRETURNdi : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$offset),
[]>, Sched<[WriteJump]>, NotMemoryFoldable;
def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset),
[]>, Sched<[WriteJump]>, NotMemoryFoldable;
let mayLoad = 1 in
def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset),
[]>, Sched<[WriteJumpLd]>;
def TAILJMPd : PseudoI<(outs), (ins i32imm_brtarget:$dst),
[]>, Sched<[WriteJump]>;
def TAILJMPr : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
[]>, Sched<[WriteJump]>;
let mayLoad = 1 in
def TAILJMPm : PseudoI<(outs), (ins i32mem_TC:$dst),
[]>, Sched<[WriteJumpLd]>;
}
// Conditional tail calls are similar to the above, but they are branches
// rather than barriers, and they use EFLAGS.
let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
isCodeGenOnly = 1, SchedRW = [WriteJump] in
let Uses = [ESP, EFLAGS, SSP] in {
def TCRETURNdicc : PseudoI<(outs),
(ins i32imm_brtarget:$dst, i32imm:$offset, i32imm:$cond),
[]>;
// This gets substituted to a conditional jump instruction in MC lowering.
def TAILJMPd_CC : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$cond), []>;
}
//===----------------------------------------------------------------------===//
// Call Instructions...
//
// RSP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
// NOTE: this pattern doesn't match "X86call imm", because we do not know
// that the offset between an arbitrary immediate and the call will fit in
// the 32-bit pcrel field that we have.
def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
(outs), (ins i64i32imm_brtarget:$dst),
"call{q}\t$dst", []>, OpSize32,
Requires<[In64BitMode]>;
def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
"call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
Requires<[In64BitMode,NotUseRetpolineIndirectCalls]>;
def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
"call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
Requires<[In64BitMode,FavorMemIndirectCall,
NotUseRetpolineIndirectCalls]>;
// Non-tracking calls for IBT, use with caution.
let isCodeGenOnly = 1 in {
def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
"call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
Requires<[In64BitMode]>, NOTRACK;
def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
"call{q}\t{*}$dst",
[(X86NoTrackCall(loadi64 addr : $dst))]>,
Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
}
def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
"lcall{q}\t{*}$dst", []>;
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
isCodeGenOnly = 1, Uses = [RSP, SSP] in {
def TCRETURNdi64 : PseudoI<(outs),
(ins i64i32imm_brtarget:$dst, i32imm:$offset),
[]>, Sched<[WriteJump]>;
def TCRETURNri64 : PseudoI<(outs),
(ins ptr_rc_tailcall:$dst, i32imm:$offset),
[]>, Sched<[WriteJump]>, NotMemoryFoldable;
let mayLoad = 1 in
def TCRETURNmi64 : PseudoI<(outs),
(ins i64mem_TC:$dst, i32imm:$offset),
[]>, Sched<[WriteJumpLd]>, NotMemoryFoldable;
def TAILJMPd64 : PseudoI<(outs), (ins i64i32imm_brtarget:$dst),
[]>, Sched<[WriteJump]>;
def TAILJMPr64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
[]>, Sched<[WriteJump]>;
let mayLoad = 1 in
def TAILJMPm64 : PseudoI<(outs), (ins i64mem_TC:$dst),
[]>, Sched<[WriteJumpLd]>;
// Win64 wants indirect jumps leaving the function to have a REX_W prefix.
let hasREX_WPrefix = 1 in {
def TAILJMPr64_REX : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
[]>, Sched<[WriteJump]>;
let mayLoad = 1 in
def TAILJMPm64_REX : PseudoI<(outs), (ins i64mem_TC:$dst),
[]>, Sched<[WriteJumpLd]>;
}
}
let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
Uses = [RSP, SSP],
usesCustomInserter = 1,
SchedRW = [WriteJump] in {
def RETPOLINE_CALL32 :
PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
Requires<[Not64BitMode,UseRetpolineIndirectCalls]>;
def RETPOLINE_CALL64 :
PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
Requires<[In64BitMode,UseRetpolineIndirectCalls]>;
// Retpoline variant of indirect tail calls.
let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
def RETPOLINE_TCRETURN64 :
PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
def RETPOLINE_TCRETURN32 :
PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
}
}
// Conditional tail calls are similar to the above, but they are branches
// rather than barriers, and they use EFLAGS.
let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
isCodeGenOnly = 1, SchedRW = [WriteJump] in
let Uses = [RSP, EFLAGS, SSP] in {
def TCRETURNdi64cc : PseudoI<(outs),
(ins i64i32imm_brtarget:$dst, i32imm:$offset,
i32imm:$cond), []>;
// This gets substituted to a conditional jump instruction in MC lowering.
def TAILJMPd64_CC : PseudoI<(outs),
(ins i64i32imm_brtarget:$dst, i32imm:$cond), []>;
}