forked from OSchip/llvm-project
1747 lines
39 KiB
C
1747 lines
39 KiB
C
/*
|
|
* Copyright 2010 INRIA Saclay
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
|
|
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
|
|
* 91893 Orsay, France
|
|
*/
|
|
|
|
#define ISL_DIM_H
|
|
#include <isl_map_private.h>
|
|
#include <isl_union_map_private.h>
|
|
#include <isl_polynomial_private.h>
|
|
#include <isl_point_private.h>
|
|
#include <isl_space_private.h>
|
|
#include <isl_lp_private.h>
|
|
#include <isl_seq.h>
|
|
#include <isl_mat_private.h>
|
|
#include <isl_val_private.h>
|
|
#include <isl_vec_private.h>
|
|
#include <isl_config.h>
|
|
#include <isl/deprecated/polynomial_int.h>
|
|
|
|
enum isl_fold isl_fold_type_negate(enum isl_fold type)
|
|
{
|
|
switch (type) {
|
|
case isl_fold_min:
|
|
return isl_fold_max;
|
|
case isl_fold_max:
|
|
return isl_fold_min;
|
|
case isl_fold_list:
|
|
return isl_fold_list;
|
|
}
|
|
|
|
isl_die(NULL, isl_error_internal, "unhandled isl_fold type", abort());
|
|
}
|
|
|
|
static __isl_give isl_qpolynomial_fold *qpolynomial_fold_alloc(
|
|
enum isl_fold type, __isl_take isl_space *dim, int n)
|
|
{
|
|
isl_qpolynomial_fold *fold;
|
|
|
|
if (!dim)
|
|
goto error;
|
|
|
|
isl_assert(dim->ctx, n >= 0, goto error);
|
|
fold = isl_calloc(dim->ctx, struct isl_qpolynomial_fold,
|
|
sizeof(struct isl_qpolynomial_fold) +
|
|
(n - 1) * sizeof(struct isl_qpolynomial *));
|
|
if (!fold)
|
|
goto error;
|
|
|
|
fold->ref = 1;
|
|
fold->size = n;
|
|
fold->n = 0;
|
|
fold->type = type;
|
|
fold->dim = dim;
|
|
|
|
return fold;
|
|
error:
|
|
isl_space_free(dim);
|
|
return NULL;
|
|
}
|
|
|
|
isl_ctx *isl_qpolynomial_fold_get_ctx(__isl_keep isl_qpolynomial_fold *fold)
|
|
{
|
|
return fold ? fold->dim->ctx : NULL;
|
|
}
|
|
|
|
__isl_give isl_space *isl_qpolynomial_fold_get_domain_space(
|
|
__isl_keep isl_qpolynomial_fold *fold)
|
|
{
|
|
return fold ? isl_space_copy(fold->dim) : NULL;
|
|
}
|
|
|
|
__isl_give isl_space *isl_qpolynomial_fold_get_space(
|
|
__isl_keep isl_qpolynomial_fold *fold)
|
|
{
|
|
isl_space *space;
|
|
if (!fold)
|
|
return NULL;
|
|
space = isl_space_copy(fold->dim);
|
|
space = isl_space_from_domain(space);
|
|
space = isl_space_add_dims(space, isl_dim_out, 1);
|
|
return space;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_domain_space(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim)
|
|
{
|
|
int i;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold || !dim)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_reset_domain_space(fold->qp[i],
|
|
isl_space_copy(dim));
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
isl_space_free(fold->dim);
|
|
fold->dim = dim;
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_space_free(dim);
|
|
return NULL;
|
|
}
|
|
|
|
/* Reset the space of "fold". This function is called from isl_pw_templ.c
|
|
* and doesn't know if the space of an element object is represented
|
|
* directly or through its domain. It therefore passes along both.
|
|
*/
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_space_and_domain(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *space,
|
|
__isl_take isl_space *domain)
|
|
{
|
|
isl_space_free(space);
|
|
return isl_qpolynomial_fold_reset_domain_space(fold, domain);
|
|
}
|
|
|
|
int isl_qpolynomial_fold_involves_dims(__isl_keep isl_qpolynomial_fold *fold,
|
|
enum isl_dim_type type, unsigned first, unsigned n)
|
|
{
|
|
int i;
|
|
|
|
if (!fold)
|
|
return -1;
|
|
if (fold->n == 0 || n == 0)
|
|
return 0;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
int involves = isl_qpolynomial_involves_dims(fold->qp[i],
|
|
type, first, n);
|
|
if (involves < 0 || involves)
|
|
return involves;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_set_dim_name(
|
|
__isl_take isl_qpolynomial_fold *fold,
|
|
enum isl_dim_type type, unsigned pos, const char *s)
|
|
{
|
|
int i;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
return NULL;
|
|
fold->dim = isl_space_set_dim_name(fold->dim, type, pos, s);
|
|
if (!fold->dim)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_set_dim_name(fold->qp[i],
|
|
type, pos, s);
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_drop_dims(
|
|
__isl_take isl_qpolynomial_fold *fold,
|
|
enum isl_dim_type type, unsigned first, unsigned n)
|
|
{
|
|
int i;
|
|
enum isl_dim_type set_type;
|
|
|
|
if (!fold)
|
|
return NULL;
|
|
if (n == 0)
|
|
return fold;
|
|
|
|
set_type = type == isl_dim_in ? isl_dim_set : type;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
return NULL;
|
|
fold->dim = isl_space_drop_dims(fold->dim, set_type, first, n);
|
|
if (!fold->dim)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_drop_dims(fold->qp[i],
|
|
type, first, n);
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_insert_dims(
|
|
__isl_take isl_qpolynomial_fold *fold,
|
|
enum isl_dim_type type, unsigned first, unsigned n)
|
|
{
|
|
int i;
|
|
|
|
if (!fold)
|
|
return NULL;
|
|
if (n == 0 && !isl_space_is_named_or_nested(fold->dim, type))
|
|
return fold;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
return NULL;
|
|
fold->dim = isl_space_insert_dims(fold->dim, type, first, n);
|
|
if (!fold->dim)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_insert_dims(fold->qp[i],
|
|
type, first, n);
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
/* Determine the sign of the constant quasipolynomial "qp".
|
|
*
|
|
* Return
|
|
* -1 if qp <= 0
|
|
* 1 if qp >= 0
|
|
* 0 if unknown
|
|
*
|
|
* For qp == 0, we can return either -1 or 1. In practice, we return 1.
|
|
* For qp == NaN, the sign is undefined, so we return 0.
|
|
*/
|
|
static int isl_qpolynomial_cst_sign(__isl_keep isl_qpolynomial *qp)
|
|
{
|
|
struct isl_upoly_cst *cst;
|
|
|
|
if (isl_qpolynomial_is_nan(qp))
|
|
return 0;
|
|
|
|
cst = isl_upoly_as_cst(qp->upoly);
|
|
if (!cst)
|
|
return 0;
|
|
|
|
return isl_int_sgn(cst->n) < 0 ? -1 : 1;
|
|
}
|
|
|
|
static int isl_qpolynomial_aff_sign(__isl_keep isl_set *set,
|
|
__isl_keep isl_qpolynomial *qp)
|
|
{
|
|
enum isl_lp_result res;
|
|
isl_vec *aff;
|
|
isl_int opt;
|
|
int sgn = 0;
|
|
|
|
aff = isl_qpolynomial_extract_affine(qp);
|
|
if (!aff)
|
|
return 0;
|
|
|
|
isl_int_init(opt);
|
|
|
|
res = isl_set_solve_lp(set, 0, aff->el + 1, aff->el[0],
|
|
&opt, NULL, NULL);
|
|
if (res == isl_lp_error)
|
|
goto done;
|
|
if (res == isl_lp_empty ||
|
|
(res == isl_lp_ok && !isl_int_is_neg(opt))) {
|
|
sgn = 1;
|
|
goto done;
|
|
}
|
|
|
|
res = isl_set_solve_lp(set, 1, aff->el + 1, aff->el[0],
|
|
&opt, NULL, NULL);
|
|
if (res == isl_lp_ok && !isl_int_is_pos(opt))
|
|
sgn = -1;
|
|
|
|
done:
|
|
isl_int_clear(opt);
|
|
isl_vec_free(aff);
|
|
return sgn;
|
|
}
|
|
|
|
/* Determine, if possible, the sign of the quasipolynomial "qp" on
|
|
* the domain "set".
|
|
*
|
|
* If qp is a constant, then the problem is trivial.
|
|
* If qp is linear, then we check if the minimum of the corresponding
|
|
* affine constraint is non-negative or if the maximum is non-positive.
|
|
*
|
|
* Otherwise, we check if the outermost variable "v" has a lower bound "l"
|
|
* in "set". If so, we write qp(v,v') as
|
|
*
|
|
* q(v,v') * (v - l) + r(v')
|
|
*
|
|
* if q(v,v') and r(v') have the same known sign, then the original
|
|
* quasipolynomial has the same sign as well.
|
|
*
|
|
* Return
|
|
* -1 if qp <= 0
|
|
* 1 if qp >= 0
|
|
* 0 if unknown
|
|
*/
|
|
static int isl_qpolynomial_sign(__isl_keep isl_set *set,
|
|
__isl_keep isl_qpolynomial *qp)
|
|
{
|
|
int d;
|
|
int i;
|
|
int is;
|
|
struct isl_upoly_rec *rec;
|
|
isl_vec *v;
|
|
isl_int l;
|
|
enum isl_lp_result res;
|
|
int sgn = 0;
|
|
|
|
is = isl_qpolynomial_is_cst(qp, NULL, NULL);
|
|
if (is < 0)
|
|
return 0;
|
|
if (is)
|
|
return isl_qpolynomial_cst_sign(qp);
|
|
|
|
is = isl_qpolynomial_is_affine(qp);
|
|
if (is < 0)
|
|
return 0;
|
|
if (is)
|
|
return isl_qpolynomial_aff_sign(set, qp);
|
|
|
|
if (qp->div->n_row > 0)
|
|
return 0;
|
|
|
|
rec = isl_upoly_as_rec(qp->upoly);
|
|
if (!rec)
|
|
return 0;
|
|
|
|
d = isl_space_dim(qp->dim, isl_dim_all);
|
|
v = isl_vec_alloc(set->ctx, 2 + d);
|
|
if (!v)
|
|
return 0;
|
|
|
|
isl_seq_clr(v->el + 1, 1 + d);
|
|
isl_int_set_si(v->el[0], 1);
|
|
isl_int_set_si(v->el[2 + qp->upoly->var], 1);
|
|
|
|
isl_int_init(l);
|
|
|
|
res = isl_set_solve_lp(set, 0, v->el + 1, v->el[0], &l, NULL, NULL);
|
|
if (res == isl_lp_ok) {
|
|
isl_qpolynomial *min;
|
|
isl_qpolynomial *base;
|
|
isl_qpolynomial *r, *q;
|
|
isl_qpolynomial *t;
|
|
|
|
min = isl_qpolynomial_cst_on_domain(isl_space_copy(qp->dim), l);
|
|
base = isl_qpolynomial_var_pow_on_domain(isl_space_copy(qp->dim),
|
|
qp->upoly->var, 1);
|
|
|
|
r = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0,
|
|
isl_upoly_copy(rec->p[rec->n - 1]));
|
|
q = isl_qpolynomial_copy(r);
|
|
|
|
for (i = rec->n - 2; i >= 0; --i) {
|
|
r = isl_qpolynomial_mul(r, isl_qpolynomial_copy(min));
|
|
t = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0,
|
|
isl_upoly_copy(rec->p[i]));
|
|
r = isl_qpolynomial_add(r, t);
|
|
if (i == 0)
|
|
break;
|
|
q = isl_qpolynomial_mul(q, isl_qpolynomial_copy(base));
|
|
q = isl_qpolynomial_add(q, isl_qpolynomial_copy(r));
|
|
}
|
|
|
|
if (isl_qpolynomial_is_zero(q))
|
|
sgn = isl_qpolynomial_sign(set, r);
|
|
else if (isl_qpolynomial_is_zero(r))
|
|
sgn = isl_qpolynomial_sign(set, q);
|
|
else {
|
|
int sgn_q, sgn_r;
|
|
sgn_r = isl_qpolynomial_sign(set, r);
|
|
sgn_q = isl_qpolynomial_sign(set, q);
|
|
if (sgn_r == sgn_q)
|
|
sgn = sgn_r;
|
|
}
|
|
|
|
isl_qpolynomial_free(min);
|
|
isl_qpolynomial_free(base);
|
|
isl_qpolynomial_free(q);
|
|
isl_qpolynomial_free(r);
|
|
}
|
|
|
|
isl_int_clear(l);
|
|
|
|
isl_vec_free(v);
|
|
|
|
return sgn;
|
|
}
|
|
|
|
/* Combine "fold1" and "fold2" into a single reduction, eliminating
|
|
* those elements of one reduction that are already covered by the other
|
|
* reduction on "set".
|
|
*
|
|
* If "fold1" or "fold2" is an empty reduction, then return
|
|
* the other reduction.
|
|
* If "fold1" or "fold2" is a NaN, then return this NaN.
|
|
*/
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold_on_domain(
|
|
__isl_keep isl_set *set,
|
|
__isl_take isl_qpolynomial_fold *fold1,
|
|
__isl_take isl_qpolynomial_fold *fold2)
|
|
{
|
|
int i, j;
|
|
int n1;
|
|
struct isl_qpolynomial_fold *res = NULL;
|
|
int better;
|
|
|
|
if (!fold1 || !fold2)
|
|
goto error;
|
|
|
|
isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error);
|
|
isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim),
|
|
goto error);
|
|
|
|
better = fold1->type == isl_fold_max ? -1 : 1;
|
|
|
|
if (isl_qpolynomial_fold_is_empty(fold1) ||
|
|
isl_qpolynomial_fold_is_nan(fold2)) {
|
|
isl_qpolynomial_fold_free(fold1);
|
|
return fold2;
|
|
}
|
|
|
|
if (isl_qpolynomial_fold_is_empty(fold2) ||
|
|
isl_qpolynomial_fold_is_nan(fold1)) {
|
|
isl_qpolynomial_fold_free(fold2);
|
|
return fold1;
|
|
}
|
|
|
|
res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim),
|
|
fold1->n + fold2->n);
|
|
if (!res)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold1->n; ++i) {
|
|
res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]);
|
|
if (!res->qp[res->n])
|
|
goto error;
|
|
res->n++;
|
|
}
|
|
n1 = res->n;
|
|
|
|
for (i = 0; i < fold2->n; ++i) {
|
|
for (j = n1 - 1; j >= 0; --j) {
|
|
isl_qpolynomial *d;
|
|
int sgn, equal;
|
|
equal = isl_qpolynomial_plain_is_equal(res->qp[j],
|
|
fold2->qp[i]);
|
|
if (equal < 0)
|
|
goto error;
|
|
if (equal)
|
|
break;
|
|
d = isl_qpolynomial_sub(
|
|
isl_qpolynomial_copy(res->qp[j]),
|
|
isl_qpolynomial_copy(fold2->qp[i]));
|
|
sgn = isl_qpolynomial_sign(set, d);
|
|
isl_qpolynomial_free(d);
|
|
if (sgn == 0)
|
|
continue;
|
|
if (sgn != better)
|
|
break;
|
|
isl_qpolynomial_free(res->qp[j]);
|
|
if (j != n1 - 1)
|
|
res->qp[j] = res->qp[n1 - 1];
|
|
n1--;
|
|
if (n1 != res->n - 1)
|
|
res->qp[n1] = res->qp[res->n - 1];
|
|
res->n--;
|
|
}
|
|
if (j >= 0)
|
|
continue;
|
|
res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]);
|
|
if (!res->qp[res->n])
|
|
goto error;
|
|
res->n++;
|
|
}
|
|
|
|
isl_qpolynomial_fold_free(fold1);
|
|
isl_qpolynomial_fold_free(fold2);
|
|
|
|
return res;
|
|
error:
|
|
isl_qpolynomial_fold_free(res);
|
|
isl_qpolynomial_fold_free(fold1);
|
|
isl_qpolynomial_fold_free(fold2);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_qpolynomial(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_qpolynomial *qp)
|
|
{
|
|
int i;
|
|
|
|
if (!fold || !qp)
|
|
goto error;
|
|
|
|
if (isl_qpolynomial_is_zero(qp)) {
|
|
isl_qpolynomial_free(qp);
|
|
return fold;
|
|
}
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_add(fold->qp[i],
|
|
isl_qpolynomial_copy(qp));
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
isl_qpolynomial_free(qp);
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_qpolynomial_free(qp);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_on_domain(
|
|
__isl_keep isl_set *dom,
|
|
__isl_take isl_qpolynomial_fold *fold1,
|
|
__isl_take isl_qpolynomial_fold *fold2)
|
|
{
|
|
int i;
|
|
isl_qpolynomial_fold *res = NULL;
|
|
|
|
if (!fold1 || !fold2)
|
|
goto error;
|
|
|
|
if (isl_qpolynomial_fold_is_empty(fold1)) {
|
|
isl_qpolynomial_fold_free(fold1);
|
|
return fold2;
|
|
}
|
|
|
|
if (isl_qpolynomial_fold_is_empty(fold2)) {
|
|
isl_qpolynomial_fold_free(fold2);
|
|
return fold1;
|
|
}
|
|
|
|
if (fold1->n == 1 && fold2->n != 1)
|
|
return isl_qpolynomial_fold_add_on_domain(dom, fold2, fold1);
|
|
|
|
if (fold2->n == 1) {
|
|
res = isl_qpolynomial_fold_add_qpolynomial(fold1,
|
|
isl_qpolynomial_copy(fold2->qp[0]));
|
|
isl_qpolynomial_fold_free(fold2);
|
|
return res;
|
|
}
|
|
|
|
res = isl_qpolynomial_fold_add_qpolynomial(
|
|
isl_qpolynomial_fold_copy(fold1),
|
|
isl_qpolynomial_copy(fold2->qp[0]));
|
|
|
|
for (i = 1; i < fold2->n; ++i) {
|
|
isl_qpolynomial_fold *res_i;
|
|
res_i = isl_qpolynomial_fold_add_qpolynomial(
|
|
isl_qpolynomial_fold_copy(fold1),
|
|
isl_qpolynomial_copy(fold2->qp[i]));
|
|
res = isl_qpolynomial_fold_fold_on_domain(dom, res, res_i);
|
|
}
|
|
|
|
isl_qpolynomial_fold_free(fold1);
|
|
isl_qpolynomial_fold_free(fold2);
|
|
return res;
|
|
error:
|
|
isl_qpolynomial_fold_free(res);
|
|
isl_qpolynomial_fold_free(fold1);
|
|
isl_qpolynomial_fold_free(fold2);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute_equalities(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_basic_set *eq)
|
|
{
|
|
int i;
|
|
|
|
if (!fold || !eq)
|
|
goto error;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
return NULL;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_substitute_equalities(fold->qp[i],
|
|
isl_basic_set_copy(eq));
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
isl_basic_set_free(eq);
|
|
return fold;
|
|
error:
|
|
isl_basic_set_free(eq);
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context)
|
|
{
|
|
int i;
|
|
|
|
if (!fold || !context)
|
|
goto error;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
return NULL;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_gist(fold->qp[i],
|
|
isl_set_copy(context));
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
isl_set_free(context);
|
|
return fold;
|
|
error:
|
|
isl_set_free(context);
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context)
|
|
{
|
|
isl_space *space = isl_qpolynomial_fold_get_domain_space(fold);
|
|
isl_set *dom_context = isl_set_universe(space);
|
|
dom_context = isl_set_intersect_params(dom_context, context);
|
|
return isl_qpolynomial_fold_gist(fold, dom_context);
|
|
}
|
|
|
|
#define HAS_TYPE
|
|
|
|
#undef PW
|
|
#define PW isl_pw_qpolynomial_fold
|
|
#undef EL
|
|
#define EL isl_qpolynomial_fold
|
|
#undef EL_IS_ZERO
|
|
#define EL_IS_ZERO is_empty
|
|
#undef ZERO
|
|
#define ZERO zero
|
|
#undef IS_ZERO
|
|
#define IS_ZERO is_zero
|
|
#undef FIELD
|
|
#define FIELD fold
|
|
#undef DEFAULT_IS_ZERO
|
|
#define DEFAULT_IS_ZERO 1
|
|
|
|
#define NO_NEG
|
|
#define NO_SUB
|
|
#define NO_PULLBACK
|
|
|
|
#include <isl_pw_templ.c>
|
|
|
|
#undef UNION
|
|
#define UNION isl_union_pw_qpolynomial_fold
|
|
#undef PART
|
|
#define PART isl_pw_qpolynomial_fold
|
|
#undef PARTS
|
|
#define PARTS pw_qpolynomial_fold
|
|
|
|
#define NO_SUB
|
|
|
|
#include <isl_union_single.c>
|
|
#include <isl_union_eval.c>
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_empty(enum isl_fold type,
|
|
__isl_take isl_space *dim)
|
|
{
|
|
return qpolynomial_fold_alloc(type, dim, 0);
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_alloc(
|
|
enum isl_fold type, __isl_take isl_qpolynomial *qp)
|
|
{
|
|
isl_qpolynomial_fold *fold;
|
|
|
|
if (!qp)
|
|
return NULL;
|
|
|
|
fold = qpolynomial_fold_alloc(type, isl_space_copy(qp->dim), 1);
|
|
if (!fold)
|
|
goto error;
|
|
|
|
fold->qp[0] = qp;
|
|
fold->n++;
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_qpolynomial_free(qp);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
|
|
__isl_keep isl_qpolynomial_fold *fold)
|
|
{
|
|
if (!fold)
|
|
return NULL;
|
|
|
|
fold->ref++;
|
|
return fold;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_dup(
|
|
__isl_keep isl_qpolynomial_fold *fold)
|
|
{
|
|
int i;
|
|
isl_qpolynomial_fold *dup;
|
|
|
|
if (!fold)
|
|
return NULL;
|
|
dup = qpolynomial_fold_alloc(fold->type,
|
|
isl_space_copy(fold->dim), fold->n);
|
|
if (!dup)
|
|
return NULL;
|
|
|
|
dup->n = fold->n;
|
|
for (i = 0; i < fold->n; ++i) {
|
|
dup->qp[i] = isl_qpolynomial_copy(fold->qp[i]);
|
|
if (!dup->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
return dup;
|
|
error:
|
|
isl_qpolynomial_fold_free(dup);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_cow(
|
|
__isl_take isl_qpolynomial_fold *fold)
|
|
{
|
|
if (!fold)
|
|
return NULL;
|
|
|
|
if (fold->ref == 1)
|
|
return fold;
|
|
fold->ref--;
|
|
return isl_qpolynomial_fold_dup(fold);
|
|
}
|
|
|
|
void isl_qpolynomial_fold_free(__isl_take isl_qpolynomial_fold *fold)
|
|
{
|
|
int i;
|
|
|
|
if (!fold)
|
|
return;
|
|
if (--fold->ref > 0)
|
|
return;
|
|
|
|
for (i = 0; i < fold->n; ++i)
|
|
isl_qpolynomial_free(fold->qp[i]);
|
|
isl_space_free(fold->dim);
|
|
free(fold);
|
|
}
|
|
|
|
int isl_qpolynomial_fold_is_empty(__isl_keep isl_qpolynomial_fold *fold)
|
|
{
|
|
if (!fold)
|
|
return -1;
|
|
|
|
return fold->n == 0;
|
|
}
|
|
|
|
/* Does "fold" represent max(NaN) or min(NaN)?
|
|
*/
|
|
isl_bool isl_qpolynomial_fold_is_nan(__isl_keep isl_qpolynomial_fold *fold)
|
|
{
|
|
if (!fold)
|
|
return isl_bool_error;
|
|
if (fold->n != 1)
|
|
return isl_bool_false;
|
|
return isl_qpolynomial_is_nan(fold->qp[0]);
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold(
|
|
__isl_take isl_qpolynomial_fold *fold1,
|
|
__isl_take isl_qpolynomial_fold *fold2)
|
|
{
|
|
int i;
|
|
struct isl_qpolynomial_fold *res = NULL;
|
|
|
|
if (!fold1 || !fold2)
|
|
goto error;
|
|
|
|
isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error);
|
|
isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim),
|
|
goto error);
|
|
|
|
if (isl_qpolynomial_fold_is_empty(fold1)) {
|
|
isl_qpolynomial_fold_free(fold1);
|
|
return fold2;
|
|
}
|
|
|
|
if (isl_qpolynomial_fold_is_empty(fold2)) {
|
|
isl_qpolynomial_fold_free(fold2);
|
|
return fold1;
|
|
}
|
|
|
|
res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim),
|
|
fold1->n + fold2->n);
|
|
if (!res)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold1->n; ++i) {
|
|
res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]);
|
|
if (!res->qp[res->n])
|
|
goto error;
|
|
res->n++;
|
|
}
|
|
|
|
for (i = 0; i < fold2->n; ++i) {
|
|
res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]);
|
|
if (!res->qp[res->n])
|
|
goto error;
|
|
res->n++;
|
|
}
|
|
|
|
isl_qpolynomial_fold_free(fold1);
|
|
isl_qpolynomial_fold_free(fold2);
|
|
|
|
return res;
|
|
error:
|
|
isl_qpolynomial_fold_free(res);
|
|
isl_qpolynomial_fold_free(fold1);
|
|
isl_qpolynomial_fold_free(fold2);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
|
|
__isl_take isl_pw_qpolynomial_fold *pw1,
|
|
__isl_take isl_pw_qpolynomial_fold *pw2)
|
|
{
|
|
int i, j, n;
|
|
struct isl_pw_qpolynomial_fold *res;
|
|
isl_set *set;
|
|
|
|
if (!pw1 || !pw2)
|
|
goto error;
|
|
|
|
isl_assert(pw1->dim->ctx, isl_space_is_equal(pw1->dim, pw2->dim), goto error);
|
|
|
|
if (isl_pw_qpolynomial_fold_is_zero(pw1)) {
|
|
isl_pw_qpolynomial_fold_free(pw1);
|
|
return pw2;
|
|
}
|
|
|
|
if (isl_pw_qpolynomial_fold_is_zero(pw2)) {
|
|
isl_pw_qpolynomial_fold_free(pw2);
|
|
return pw1;
|
|
}
|
|
|
|
if (pw1->type != pw2->type)
|
|
isl_die(pw1->dim->ctx, isl_error_invalid,
|
|
"fold types don't match", goto error);
|
|
|
|
n = (pw1->n + 1) * (pw2->n + 1);
|
|
res = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pw1->dim),
|
|
pw1->type, n);
|
|
|
|
for (i = 0; i < pw1->n; ++i) {
|
|
set = isl_set_copy(pw1->p[i].set);
|
|
for (j = 0; j < pw2->n; ++j) {
|
|
struct isl_set *common;
|
|
isl_qpolynomial_fold *sum;
|
|
set = isl_set_subtract(set,
|
|
isl_set_copy(pw2->p[j].set));
|
|
common = isl_set_intersect(isl_set_copy(pw1->p[i].set),
|
|
isl_set_copy(pw2->p[j].set));
|
|
if (isl_set_plain_is_empty(common)) {
|
|
isl_set_free(common);
|
|
continue;
|
|
}
|
|
|
|
sum = isl_qpolynomial_fold_fold_on_domain(common,
|
|
isl_qpolynomial_fold_copy(pw1->p[i].fold),
|
|
isl_qpolynomial_fold_copy(pw2->p[j].fold));
|
|
|
|
res = isl_pw_qpolynomial_fold_add_piece(res, common, sum);
|
|
}
|
|
res = isl_pw_qpolynomial_fold_add_piece(res, set,
|
|
isl_qpolynomial_fold_copy(pw1->p[i].fold));
|
|
}
|
|
|
|
for (j = 0; j < pw2->n; ++j) {
|
|
set = isl_set_copy(pw2->p[j].set);
|
|
for (i = 0; i < pw1->n; ++i)
|
|
set = isl_set_subtract(set, isl_set_copy(pw1->p[i].set));
|
|
res = isl_pw_qpolynomial_fold_add_piece(res, set,
|
|
isl_qpolynomial_fold_copy(pw2->p[j].fold));
|
|
}
|
|
|
|
isl_pw_qpolynomial_fold_free(pw1);
|
|
isl_pw_qpolynomial_fold_free(pw2);
|
|
|
|
return res;
|
|
error:
|
|
isl_pw_qpolynomial_fold_free(pw1);
|
|
isl_pw_qpolynomial_fold_free(pw2);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
|
|
__isl_take isl_union_pw_qpolynomial_fold *u,
|
|
__isl_take isl_pw_qpolynomial_fold *part)
|
|
{
|
|
struct isl_hash_table_entry *entry;
|
|
|
|
u = isl_union_pw_qpolynomial_fold_cow(u);
|
|
|
|
if (!part || !u)
|
|
goto error;
|
|
|
|
isl_assert(u->space->ctx,
|
|
isl_space_match(part->dim, isl_dim_param, u->space, isl_dim_param),
|
|
goto error);
|
|
|
|
entry = isl_union_pw_qpolynomial_fold_find_part_entry(u, part->dim, 1);
|
|
if (!entry)
|
|
goto error;
|
|
|
|
if (!entry->data)
|
|
entry->data = part;
|
|
else {
|
|
entry->data = isl_pw_qpolynomial_fold_fold(entry->data,
|
|
isl_pw_qpolynomial_fold_copy(part));
|
|
if (!entry->data)
|
|
goto error;
|
|
isl_pw_qpolynomial_fold_free(part);
|
|
}
|
|
|
|
return u;
|
|
error:
|
|
isl_pw_qpolynomial_fold_free(part);
|
|
isl_union_pw_qpolynomial_fold_free(u);
|
|
return NULL;
|
|
}
|
|
|
|
static isl_stat fold_part(__isl_take isl_pw_qpolynomial_fold *part, void *user)
|
|
{
|
|
isl_union_pw_qpolynomial_fold **u;
|
|
u = (isl_union_pw_qpolynomial_fold **)user;
|
|
|
|
*u = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(*u, part);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
|
|
__isl_take isl_union_pw_qpolynomial_fold *u1,
|
|
__isl_take isl_union_pw_qpolynomial_fold *u2)
|
|
{
|
|
u1 = isl_union_pw_qpolynomial_fold_cow(u1);
|
|
|
|
if (!u1 || !u2)
|
|
goto error;
|
|
|
|
if (isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(u2,
|
|
&fold_part, &u1) < 0)
|
|
goto error;
|
|
|
|
isl_union_pw_qpolynomial_fold_free(u2);
|
|
|
|
return u1;
|
|
error:
|
|
isl_union_pw_qpolynomial_fold_free(u1);
|
|
isl_union_pw_qpolynomial_fold_free(u2);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_pw_qpolynomial(
|
|
enum isl_fold type, __isl_take isl_pw_qpolynomial *pwqp)
|
|
{
|
|
int i;
|
|
isl_pw_qpolynomial_fold *pwf;
|
|
|
|
if (!pwqp)
|
|
return NULL;
|
|
|
|
pwf = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pwqp->dim),
|
|
type, pwqp->n);
|
|
|
|
for (i = 0; i < pwqp->n; ++i)
|
|
pwf = isl_pw_qpolynomial_fold_add_piece(pwf,
|
|
isl_set_copy(pwqp->p[i].set),
|
|
isl_qpolynomial_fold_alloc(type,
|
|
isl_qpolynomial_copy(pwqp->p[i].qp)));
|
|
|
|
isl_pw_qpolynomial_free(pwqp);
|
|
|
|
return pwf;
|
|
}
|
|
|
|
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
|
|
__isl_take isl_pw_qpolynomial_fold *pwf1,
|
|
__isl_take isl_pw_qpolynomial_fold *pwf2)
|
|
{
|
|
return isl_pw_qpolynomial_fold_union_add_(pwf1, pwf2);
|
|
}
|
|
|
|
int isl_qpolynomial_fold_plain_is_equal(__isl_keep isl_qpolynomial_fold *fold1,
|
|
__isl_keep isl_qpolynomial_fold *fold2)
|
|
{
|
|
int i;
|
|
|
|
if (!fold1 || !fold2)
|
|
return -1;
|
|
|
|
if (fold1->n != fold2->n)
|
|
return 0;
|
|
|
|
/* We probably want to sort the qps first... */
|
|
for (i = 0; i < fold1->n; ++i) {
|
|
int eq = isl_qpolynomial_plain_is_equal(fold1->qp[i], fold2->qp[i]);
|
|
if (eq < 0 || !eq)
|
|
return eq;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
__isl_give isl_val *isl_qpolynomial_fold_eval(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_point *pnt)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_val *v;
|
|
|
|
if (!fold || !pnt)
|
|
goto error;
|
|
ctx = isl_point_get_ctx(pnt);
|
|
isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, fold->dim), goto error);
|
|
isl_assert(pnt->dim->ctx,
|
|
fold->type == isl_fold_max || fold->type == isl_fold_min,
|
|
goto error);
|
|
|
|
if (fold->n == 0)
|
|
v = isl_val_zero(ctx);
|
|
else {
|
|
int i;
|
|
v = isl_qpolynomial_eval(isl_qpolynomial_copy(fold->qp[0]),
|
|
isl_point_copy(pnt));
|
|
for (i = 1; i < fold->n; ++i) {
|
|
isl_val *v_i;
|
|
v_i = isl_qpolynomial_eval(
|
|
isl_qpolynomial_copy(fold->qp[i]),
|
|
isl_point_copy(pnt));
|
|
if (fold->type == isl_fold_max)
|
|
v = isl_val_max(v, v_i);
|
|
else
|
|
v = isl_val_min(v, v_i);
|
|
}
|
|
}
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_point_free(pnt);
|
|
|
|
return v;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_point_free(pnt);
|
|
return NULL;
|
|
}
|
|
|
|
size_t isl_pw_qpolynomial_fold_size(__isl_keep isl_pw_qpolynomial_fold *pwf)
|
|
{
|
|
int i;
|
|
size_t n = 0;
|
|
|
|
for (i = 0; i < pwf->n; ++i)
|
|
n += pwf->p[i].fold->n;
|
|
|
|
return n;
|
|
}
|
|
|
|
__isl_give isl_val *isl_qpolynomial_fold_opt_on_domain(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *set, int max)
|
|
{
|
|
int i;
|
|
isl_val *opt;
|
|
|
|
if (!set || !fold)
|
|
goto error;
|
|
|
|
if (fold->n == 0) {
|
|
opt = isl_val_zero(isl_set_get_ctx(set));
|
|
isl_set_free(set);
|
|
isl_qpolynomial_fold_free(fold);
|
|
return opt;
|
|
}
|
|
|
|
opt = isl_qpolynomial_opt_on_domain(isl_qpolynomial_copy(fold->qp[0]),
|
|
isl_set_copy(set), max);
|
|
for (i = 1; i < fold->n; ++i) {
|
|
isl_val *opt_i;
|
|
opt_i = isl_qpolynomial_opt_on_domain(
|
|
isl_qpolynomial_copy(fold->qp[i]),
|
|
isl_set_copy(set), max);
|
|
if (max)
|
|
opt = isl_val_max(opt, opt_i);
|
|
else
|
|
opt = isl_val_min(opt, opt_i);
|
|
}
|
|
|
|
isl_set_free(set);
|
|
isl_qpolynomial_fold_free(fold);
|
|
|
|
return opt;
|
|
error:
|
|
isl_set_free(set);
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
/* Check whether for each quasi-polynomial in "fold2" there is
|
|
* a quasi-polynomial in "fold1" that dominates it on "set".
|
|
*/
|
|
static int qpolynomial_fold_covers_on_domain(__isl_keep isl_set *set,
|
|
__isl_keep isl_qpolynomial_fold *fold1,
|
|
__isl_keep isl_qpolynomial_fold *fold2)
|
|
{
|
|
int i, j;
|
|
int covers;
|
|
|
|
if (!set || !fold1 || !fold2)
|
|
return -1;
|
|
|
|
covers = fold1->type == isl_fold_max ? 1 : -1;
|
|
|
|
for (i = 0; i < fold2->n; ++i) {
|
|
for (j = 0; j < fold1->n; ++j) {
|
|
isl_qpolynomial *d;
|
|
int sgn;
|
|
|
|
d = isl_qpolynomial_sub(
|
|
isl_qpolynomial_copy(fold1->qp[j]),
|
|
isl_qpolynomial_copy(fold2->qp[i]));
|
|
sgn = isl_qpolynomial_sign(set, d);
|
|
isl_qpolynomial_free(d);
|
|
if (sgn == covers)
|
|
break;
|
|
}
|
|
if (j >= fold1->n)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Check whether "pwf1" dominated "pwf2", i.e., the domain of "pwf1" contains
|
|
* that of "pwf2" and on each cell, the corresponding fold from pwf1 dominates
|
|
* that of pwf2.
|
|
*/
|
|
int isl_pw_qpolynomial_fold_covers(__isl_keep isl_pw_qpolynomial_fold *pwf1,
|
|
__isl_keep isl_pw_qpolynomial_fold *pwf2)
|
|
{
|
|
int i, j;
|
|
isl_set *dom1, *dom2;
|
|
int is_subset;
|
|
|
|
if (!pwf1 || !pwf2)
|
|
return -1;
|
|
|
|
if (pwf2->n == 0)
|
|
return 1;
|
|
if (pwf1->n == 0)
|
|
return 0;
|
|
|
|
dom1 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf1));
|
|
dom2 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf2));
|
|
is_subset = isl_set_is_subset(dom2, dom1);
|
|
isl_set_free(dom1);
|
|
isl_set_free(dom2);
|
|
|
|
if (is_subset < 0 || !is_subset)
|
|
return is_subset;
|
|
|
|
for (i = 0; i < pwf2->n; ++i) {
|
|
for (j = 0; j < pwf1->n; ++j) {
|
|
int is_empty;
|
|
isl_set *common;
|
|
int covers;
|
|
|
|
common = isl_set_intersect(isl_set_copy(pwf1->p[j].set),
|
|
isl_set_copy(pwf2->p[i].set));
|
|
is_empty = isl_set_is_empty(common);
|
|
if (is_empty < 0 || is_empty) {
|
|
isl_set_free(common);
|
|
if (is_empty < 0)
|
|
return -1;
|
|
continue;
|
|
}
|
|
covers = qpolynomial_fold_covers_on_domain(common,
|
|
pwf1->p[j].fold, pwf2->p[i].fold);
|
|
isl_set_free(common);
|
|
if (covers < 0 || !covers)
|
|
return covers;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_morph_domain(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_morph *morph)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
|
|
if (!fold || !morph)
|
|
goto error;
|
|
|
|
ctx = fold->dim->ctx;
|
|
isl_assert(ctx, isl_space_is_equal(fold->dim, morph->dom->dim), goto error);
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
goto error;
|
|
|
|
isl_space_free(fold->dim);
|
|
fold->dim = isl_space_copy(morph->ran->dim);
|
|
if (!fold->dim)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_morph_domain(fold->qp[i],
|
|
isl_morph_copy(morph));
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
isl_morph_free(morph);
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_morph_free(morph);
|
|
return NULL;
|
|
}
|
|
|
|
enum isl_fold isl_qpolynomial_fold_get_type(__isl_keep isl_qpolynomial_fold *fold)
|
|
{
|
|
if (!fold)
|
|
return isl_fold_list;
|
|
return fold->type;
|
|
}
|
|
|
|
enum isl_fold isl_union_pw_qpolynomial_fold_get_type(
|
|
__isl_keep isl_union_pw_qpolynomial_fold *upwf)
|
|
{
|
|
if (!upwf)
|
|
return isl_fold_list;
|
|
return upwf->type;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_lift(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim)
|
|
{
|
|
int i;
|
|
|
|
if (!fold || !dim)
|
|
goto error;
|
|
|
|
if (isl_space_is_equal(fold->dim, dim)) {
|
|
isl_space_free(dim);
|
|
return fold;
|
|
}
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
goto error;
|
|
|
|
isl_space_free(fold->dim);
|
|
fold->dim = isl_space_copy(dim);
|
|
if (!fold->dim)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_lift(fold->qp[i],
|
|
isl_space_copy(dim));
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
isl_space_free(dim);
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_space_free(dim);
|
|
return NULL;
|
|
}
|
|
|
|
isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
|
|
__isl_keep isl_qpolynomial_fold *fold,
|
|
isl_stat (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user)
|
|
{
|
|
int i;
|
|
|
|
if (!fold)
|
|
return isl_stat_error;
|
|
|
|
for (i = 0; i < fold->n; ++i)
|
|
if (fn(isl_qpolynomial_copy(fold->qp[i]), user) < 0)
|
|
return isl_stat_error;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_move_dims(
|
|
__isl_take isl_qpolynomial_fold *fold,
|
|
enum isl_dim_type dst_type, unsigned dst_pos,
|
|
enum isl_dim_type src_type, unsigned src_pos, unsigned n)
|
|
{
|
|
int i;
|
|
|
|
if (n == 0)
|
|
return fold;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
return NULL;
|
|
|
|
fold->dim = isl_space_move_dims(fold->dim, dst_type, dst_pos,
|
|
src_type, src_pos, n);
|
|
if (!fold->dim)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_move_dims(fold->qp[i],
|
|
dst_type, dst_pos, src_type, src_pos, n);
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
/* For each 0 <= i < "n", replace variable "first" + i of type "type"
|
|
* in fold->qp[k] by subs[i].
|
|
*/
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute(
|
|
__isl_take isl_qpolynomial_fold *fold,
|
|
enum isl_dim_type type, unsigned first, unsigned n,
|
|
__isl_keep isl_qpolynomial **subs)
|
|
{
|
|
int i;
|
|
|
|
if (n == 0)
|
|
return fold;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
return NULL;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_substitute(fold->qp[i],
|
|
type, first, n, subs);
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
static isl_stat add_pwqp(__isl_take isl_pw_qpolynomial *pwqp, void *user)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_pw_qpolynomial_fold *pwf;
|
|
isl_union_pw_qpolynomial_fold **upwf;
|
|
struct isl_hash_table_entry *entry;
|
|
|
|
upwf = (isl_union_pw_qpolynomial_fold **)user;
|
|
|
|
ctx = pwqp->dim->ctx;
|
|
entry = isl_union_pw_qpolynomial_fold_find_part_entry(*upwf,
|
|
pwqp->dim, 1);
|
|
if (!entry)
|
|
goto error;
|
|
|
|
pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial((*upwf)->type, pwqp);
|
|
if (!entry->data)
|
|
entry->data = pwf;
|
|
else {
|
|
entry->data = isl_pw_qpolynomial_fold_add(entry->data, pwf);
|
|
if (!entry->data)
|
|
return isl_stat_error;
|
|
if (isl_pw_qpolynomial_fold_is_zero(entry->data))
|
|
*upwf = isl_union_pw_qpolynomial_fold_remove_part_entry(
|
|
*upwf, entry);
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_pw_qpolynomial_free(pwqp);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_add_union_pw_qpolynomial(
|
|
__isl_take isl_union_pw_qpolynomial_fold *upwf,
|
|
__isl_take isl_union_pw_qpolynomial *upwqp)
|
|
{
|
|
upwf = isl_union_pw_qpolynomial_fold_align_params(upwf,
|
|
isl_union_pw_qpolynomial_get_space(upwqp));
|
|
upwqp = isl_union_pw_qpolynomial_align_params(upwqp,
|
|
isl_union_pw_qpolynomial_fold_get_space(upwf));
|
|
|
|
upwf = isl_union_pw_qpolynomial_fold_cow(upwf);
|
|
if (!upwf || !upwqp)
|
|
goto error;
|
|
|
|
if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp, &add_pwqp,
|
|
&upwf) < 0)
|
|
goto error;
|
|
|
|
isl_union_pw_qpolynomial_free(upwqp);
|
|
|
|
return upwf;
|
|
error:
|
|
isl_union_pw_qpolynomial_fold_free(upwf);
|
|
isl_union_pw_qpolynomial_free(upwqp);
|
|
return NULL;
|
|
}
|
|
|
|
static int join_compatible(__isl_keep isl_space *dim1, __isl_keep isl_space *dim2)
|
|
{
|
|
int m;
|
|
m = isl_space_match(dim1, isl_dim_param, dim2, isl_dim_param);
|
|
if (m < 0 || !m)
|
|
return m;
|
|
return isl_space_tuple_is_equal(dim1, isl_dim_out, dim2, isl_dim_in);
|
|
}
|
|
|
|
/* Compute the intersection of the range of the map and the domain
|
|
* of the piecewise quasipolynomial reduction and then compute a bound
|
|
* on the associated quasipolynomial reduction over all elements
|
|
* in this intersection.
|
|
*
|
|
* We first introduce some unconstrained dimensions in the
|
|
* piecewise quasipolynomial, intersect the resulting domain
|
|
* with the wrapped map and the compute the sum.
|
|
*/
|
|
__isl_give isl_pw_qpolynomial_fold *isl_map_apply_pw_qpolynomial_fold(
|
|
__isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf,
|
|
int *tight)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_set *dom;
|
|
isl_space *map_dim;
|
|
isl_space *pwf_dim;
|
|
unsigned n_in;
|
|
int ok;
|
|
|
|
ctx = isl_map_get_ctx(map);
|
|
if (!ctx)
|
|
goto error;
|
|
|
|
map_dim = isl_map_get_space(map);
|
|
pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf);
|
|
ok = join_compatible(map_dim, pwf_dim);
|
|
isl_space_free(map_dim);
|
|
isl_space_free(pwf_dim);
|
|
if (!ok)
|
|
isl_die(ctx, isl_error_invalid, "incompatible dimensions",
|
|
goto error);
|
|
|
|
n_in = isl_map_dim(map, isl_dim_in);
|
|
pwf = isl_pw_qpolynomial_fold_insert_dims(pwf, isl_dim_in, 0, n_in);
|
|
|
|
dom = isl_map_wrap(map);
|
|
pwf = isl_pw_qpolynomial_fold_reset_domain_space(pwf,
|
|
isl_set_get_space(dom));
|
|
|
|
pwf = isl_pw_qpolynomial_fold_intersect_domain(pwf, dom);
|
|
pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
|
|
|
|
return pwf;
|
|
error:
|
|
isl_map_free(map);
|
|
isl_pw_qpolynomial_fold_free(pwf);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_pw_qpolynomial_fold *isl_set_apply_pw_qpolynomial_fold(
|
|
__isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf,
|
|
int *tight)
|
|
{
|
|
return isl_map_apply_pw_qpolynomial_fold(set, pwf, tight);
|
|
}
|
|
|
|
struct isl_apply_fold_data {
|
|
isl_union_pw_qpolynomial_fold *upwf;
|
|
isl_union_pw_qpolynomial_fold *res;
|
|
isl_map *map;
|
|
int tight;
|
|
};
|
|
|
|
static isl_stat pw_qpolynomial_fold_apply(
|
|
__isl_take isl_pw_qpolynomial_fold *pwf, void *user)
|
|
{
|
|
isl_space *map_dim;
|
|
isl_space *pwf_dim;
|
|
struct isl_apply_fold_data *data = user;
|
|
int ok;
|
|
|
|
map_dim = isl_map_get_space(data->map);
|
|
pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf);
|
|
ok = join_compatible(map_dim, pwf_dim);
|
|
isl_space_free(map_dim);
|
|
isl_space_free(pwf_dim);
|
|
|
|
if (ok) {
|
|
pwf = isl_map_apply_pw_qpolynomial_fold(isl_map_copy(data->map),
|
|
pwf, data->tight ? &data->tight : NULL);
|
|
data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
|
|
data->res, pwf);
|
|
} else
|
|
isl_pw_qpolynomial_fold_free(pwf);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
static isl_stat map_apply(__isl_take isl_map *map, void *user)
|
|
{
|
|
struct isl_apply_fold_data *data = user;
|
|
isl_stat r;
|
|
|
|
data->map = map;
|
|
r = isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
|
|
data->upwf, &pw_qpolynomial_fold_apply, data);
|
|
|
|
isl_map_free(map);
|
|
return r;
|
|
}
|
|
|
|
__isl_give isl_union_pw_qpolynomial_fold *isl_union_map_apply_union_pw_qpolynomial_fold(
|
|
__isl_take isl_union_map *umap,
|
|
__isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight)
|
|
{
|
|
isl_space *dim;
|
|
enum isl_fold type;
|
|
struct isl_apply_fold_data data;
|
|
|
|
upwf = isl_union_pw_qpolynomial_fold_align_params(upwf,
|
|
isl_union_map_get_space(umap));
|
|
umap = isl_union_map_align_params(umap,
|
|
isl_union_pw_qpolynomial_fold_get_space(upwf));
|
|
|
|
data.upwf = upwf;
|
|
data.tight = tight ? 1 : 0;
|
|
dim = isl_union_pw_qpolynomial_fold_get_space(upwf);
|
|
type = isl_union_pw_qpolynomial_fold_get_type(upwf);
|
|
data.res = isl_union_pw_qpolynomial_fold_zero(dim, type);
|
|
if (isl_union_map_foreach_map(umap, &map_apply, &data) < 0)
|
|
goto error;
|
|
|
|
isl_union_map_free(umap);
|
|
isl_union_pw_qpolynomial_fold_free(upwf);
|
|
|
|
if (tight)
|
|
*tight = data.tight;
|
|
|
|
return data.res;
|
|
error:
|
|
isl_union_map_free(umap);
|
|
isl_union_pw_qpolynomial_fold_free(upwf);
|
|
isl_union_pw_qpolynomial_fold_free(data.res);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_union_pw_qpolynomial_fold *isl_union_set_apply_union_pw_qpolynomial_fold(
|
|
__isl_take isl_union_set *uset,
|
|
__isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight)
|
|
{
|
|
return isl_union_map_apply_union_pw_qpolynomial_fold(uset, upwf, tight);
|
|
}
|
|
|
|
/* Reorder the dimension of "fold" according to the given reordering.
|
|
*/
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_realign_domain(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_reordering *r)
|
|
{
|
|
int i;
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold || !r)
|
|
goto error;
|
|
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_realign_domain(fold->qp[i],
|
|
isl_reordering_copy(r));
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
fold = isl_qpolynomial_fold_reset_domain_space(fold,
|
|
isl_space_copy(r->dim));
|
|
|
|
isl_reordering_free(r);
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_reordering_free(r);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_mul_isl_int(
|
|
__isl_take isl_qpolynomial_fold *fold, isl_int v)
|
|
{
|
|
int i;
|
|
|
|
if (isl_int_is_one(v))
|
|
return fold;
|
|
if (fold && isl_int_is_zero(v)) {
|
|
isl_qpolynomial_fold *zero;
|
|
isl_space *dim = isl_space_copy(fold->dim);
|
|
zero = isl_qpolynomial_fold_empty(fold->type, dim);
|
|
isl_qpolynomial_fold_free(fold);
|
|
return zero;
|
|
}
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
return NULL;
|
|
|
|
if (isl_int_is_neg(v))
|
|
fold->type = isl_fold_type_negate(fold->type);
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_mul_isl_int(fold->qp[i], v);
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
return fold;
|
|
error:
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
|
|
__isl_take isl_qpolynomial_fold *fold, isl_int v)
|
|
{
|
|
return isl_qpolynomial_fold_mul_isl_int(fold, v);
|
|
}
|
|
|
|
/* Multiply "fold" by "v".
|
|
*/
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v)
|
|
{
|
|
int i;
|
|
|
|
if (!fold || !v)
|
|
goto error;
|
|
|
|
if (isl_val_is_one(v)) {
|
|
isl_val_free(v);
|
|
return fold;
|
|
}
|
|
if (isl_val_is_zero(v)) {
|
|
isl_qpolynomial_fold *zero;
|
|
isl_space *space = isl_qpolynomial_fold_get_domain_space(fold);
|
|
zero = isl_qpolynomial_fold_empty(fold->type, space);
|
|
isl_qpolynomial_fold_free(fold);
|
|
isl_val_free(v);
|
|
return zero;
|
|
}
|
|
if (!isl_val_is_rat(v))
|
|
isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid,
|
|
"expecting rational factor", goto error);
|
|
|
|
fold = isl_qpolynomial_fold_cow(fold);
|
|
if (!fold)
|
|
goto error;
|
|
|
|
if (isl_val_is_neg(v))
|
|
fold->type = isl_fold_type_negate(fold->type);
|
|
for (i = 0; i < fold->n; ++i) {
|
|
fold->qp[i] = isl_qpolynomial_scale_val(fold->qp[i],
|
|
isl_val_copy(v));
|
|
if (!fold->qp[i])
|
|
goto error;
|
|
}
|
|
|
|
isl_val_free(v);
|
|
return fold;
|
|
error:
|
|
isl_val_free(v);
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|
|
|
|
/* Divide "fold" by "v".
|
|
*/
|
|
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_down_val(
|
|
__isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v)
|
|
{
|
|
if (!fold || !v)
|
|
goto error;
|
|
|
|
if (isl_val_is_one(v)) {
|
|
isl_val_free(v);
|
|
return fold;
|
|
}
|
|
if (!isl_val_is_rat(v))
|
|
isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid,
|
|
"expecting rational factor", goto error);
|
|
if (isl_val_is_zero(v))
|
|
isl_die(isl_val_get_ctx(v), isl_error_invalid,
|
|
"cannot scale down by zero", goto error);
|
|
|
|
return isl_qpolynomial_fold_scale_val(fold, isl_val_inv(v));
|
|
error:
|
|
isl_val_free(v);
|
|
isl_qpolynomial_fold_free(fold);
|
|
return NULL;
|
|
}
|