forked from OSchip/llvm-project
2203 lines
87 KiB
C++
2203 lines
87 KiB
C++
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "SemaUtil.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
using namespace clang;
|
|
|
|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
|
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
|
|
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
|
|
/// multiple tokens. However, the common case is that StringToks points to one
|
|
/// string.
|
|
///
|
|
Action::ExprResult
|
|
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
|
|
assert(NumStringToks && "Must have at least one string!");
|
|
|
|
StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
|
|
if (Literal.hadError)
|
|
return ExprResult(true);
|
|
|
|
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
|
|
for (unsigned i = 0; i != NumStringToks; ++i)
|
|
StringTokLocs.push_back(StringToks[i].getLocation());
|
|
|
|
// FIXME: handle wchar_t
|
|
QualType t;
|
|
|
|
if (Literal.Pascal)
|
|
t = Context.getPointerType(Context.UnsignedCharTy);
|
|
else
|
|
t = Context.getPointerType(Context.CharTy);
|
|
|
|
if (Literal.Pascal && Literal.GetStringLength() > 256)
|
|
return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
|
|
SourceRange(StringToks[0].getLocation(),
|
|
StringToks[NumStringToks-1].getLocation()));
|
|
|
|
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
|
|
return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
|
|
Literal.AnyWide, t,
|
|
StringToks[0].getLocation(),
|
|
StringToks[NumStringToks-1].getLocation());
|
|
}
|
|
|
|
|
|
/// ActOnIdentifierExpr - The parser read an identifier in expression context,
|
|
/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
|
|
/// identifier is used in an function call context.
|
|
Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
|
|
IdentifierInfo &II,
|
|
bool HasTrailingLParen) {
|
|
// Could be enum-constant or decl.
|
|
ScopedDecl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
|
|
if (D == 0) {
|
|
// Otherwise, this could be an implicitly declared function reference (legal
|
|
// in C90, extension in C99).
|
|
if (HasTrailingLParen &&
|
|
// Not in C++.
|
|
!getLangOptions().CPlusPlus)
|
|
D = ImplicitlyDefineFunction(Loc, II, S);
|
|
else {
|
|
if (CurMethodDecl) {
|
|
ObjCInterfaceDecl *IFace = CurMethodDecl->getClassInterface();
|
|
ObjCInterfaceDecl *clsDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II, clsDeclared)) {
|
|
IdentifierInfo &II = Context.Idents.get("self");
|
|
ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
|
|
return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
|
|
static_cast<Expr*>(SelfExpr.Val), true, true);
|
|
}
|
|
}
|
|
// If this name wasn't predeclared and if this is not a function call,
|
|
// diagnose the problem.
|
|
return Diag(Loc, diag::err_undeclared_var_use, II.getName());
|
|
}
|
|
}
|
|
if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
|
|
// Only create DeclRefExpr's for valid Decl's.
|
|
if (VD->isInvalidDecl())
|
|
return true;
|
|
return new DeclRefExpr(VD, VD->getType(), Loc);
|
|
}
|
|
if (isa<TypedefDecl>(D))
|
|
return Diag(Loc, diag::err_unexpected_typedef, II.getName());
|
|
if (isa<ObjCInterfaceDecl>(D))
|
|
return Diag(Loc, diag::err_unexpected_interface, II.getName());
|
|
|
|
assert(0 && "Invalid decl");
|
|
abort();
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
|
|
tok::TokenKind Kind) {
|
|
PreDefinedExpr::IdentType IT;
|
|
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown simple primary expr!");
|
|
case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
|
|
case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
|
|
case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
|
|
}
|
|
|
|
// Verify that this is in a function context.
|
|
if (CurFunctionDecl == 0 && CurMethodDecl == 0)
|
|
return Diag(Loc, diag::err_predef_outside_function);
|
|
|
|
// Pre-defined identifiers are of type char[x], where x is the length of the
|
|
// string.
|
|
unsigned Length;
|
|
if (CurFunctionDecl)
|
|
Length = CurFunctionDecl->getIdentifier()->getLength();
|
|
else
|
|
Length = CurMethodDecl->getSynthesizedMethodSize();
|
|
|
|
llvm::APInt LengthI(32, Length + 1);
|
|
QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
|
|
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
|
|
return new PreDefinedExpr(Loc, ResTy, IT);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
|
|
llvm::SmallString<16> CharBuffer;
|
|
CharBuffer.resize(Tok.getLength());
|
|
const char *ThisTokBegin = &CharBuffer[0];
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
|
|
|
|
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError())
|
|
return ExprResult(true);
|
|
return new CharacterLiteral(Literal.getValue(), Context.IntTy,
|
|
Tok.getLocation());
|
|
}
|
|
|
|
Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
|
|
// fast path for a single digit (which is quite common). A single digit
|
|
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
|
|
if (Tok.getLength() == 1) {
|
|
const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
|
|
|
|
unsigned IntSize = static_cast<unsigned>(
|
|
Context.getTypeSize(Context.IntTy, Tok.getLocation()));
|
|
return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
|
|
Context.IntTy,
|
|
Tok.getLocation()));
|
|
}
|
|
llvm::SmallString<512> IntegerBuffer;
|
|
IntegerBuffer.resize(Tok.getLength());
|
|
const char *ThisTokBegin = &IntegerBuffer[0];
|
|
|
|
// Get the spelling of the token, which eliminates trigraphs, etc.
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
|
|
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError)
|
|
return ExprResult(true);
|
|
|
|
Expr *Res;
|
|
|
|
if (Literal.isFloatingLiteral()) {
|
|
QualType Ty;
|
|
const llvm::fltSemantics *Format;
|
|
uint64_t Size; unsigned Align;
|
|
|
|
if (Literal.isFloat) {
|
|
Ty = Context.FloatTy;
|
|
Context.Target.getFloatInfo(Size, Align, Format,
|
|
Context.getFullLoc(Tok.getLocation()));
|
|
|
|
} else if (Literal.isLong) {
|
|
Ty = Context.LongDoubleTy;
|
|
Context.Target.getLongDoubleInfo(Size, Align, Format,
|
|
Context.getFullLoc(Tok.getLocation()));
|
|
} else {
|
|
Ty = Context.DoubleTy;
|
|
Context.Target.getDoubleInfo(Size, Align, Format,
|
|
Context.getFullLoc(Tok.getLocation()));
|
|
}
|
|
|
|
// isExact will be set by GetFloatValue().
|
|
bool isExact = false;
|
|
|
|
Res = new FloatingLiteral(Literal.GetFloatValue(*Format,&isExact), &isExact,
|
|
Ty, Tok.getLocation());
|
|
|
|
} else if (!Literal.isIntegerLiteral()) {
|
|
return ExprResult(true);
|
|
} else {
|
|
QualType t;
|
|
|
|
// long long is a C99 feature.
|
|
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
|
|
Literal.isLongLong)
|
|
Diag(Tok.getLocation(), diag::ext_longlong);
|
|
|
|
// Get the value in the widest-possible width.
|
|
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(
|
|
Context.getFullLoc(Tok.getLocation())), 0);
|
|
|
|
if (Literal.GetIntegerValue(ResultVal)) {
|
|
// If this value didn't fit into uintmax_t, warn and force to ull.
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large);
|
|
t = Context.UnsignedLongLongTy;
|
|
assert(Context.getTypeSize(t, Tok.getLocation()) ==
|
|
ResultVal.getBitWidth() && "long long is not intmax_t?");
|
|
} else {
|
|
// If this value fits into a ULL, try to figure out what else it fits into
|
|
// according to the rules of C99 6.4.4.1p5.
|
|
|
|
// Octal, Hexadecimal, and integers with a U suffix are allowed to
|
|
// be an unsigned int.
|
|
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
|
|
|
|
// Check from smallest to largest, picking the smallest type we can.
|
|
if (!Literal.isLong && !Literal.isLongLong) {
|
|
// Are int/unsigned possibilities?
|
|
unsigned IntSize = static_cast<unsigned>(
|
|
Context.getTypeSize(Context.IntTy,Tok.getLocation()));
|
|
// Does it fit in a unsigned int?
|
|
if (ResultVal.isIntN(IntSize)) {
|
|
// Does it fit in a signed int?
|
|
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
|
|
t = Context.IntTy;
|
|
else if (AllowUnsigned)
|
|
t = Context.UnsignedIntTy;
|
|
}
|
|
|
|
if (!t.isNull())
|
|
ResultVal.trunc(IntSize);
|
|
}
|
|
|
|
// Are long/unsigned long possibilities?
|
|
if (t.isNull() && !Literal.isLongLong) {
|
|
unsigned LongSize = static_cast<unsigned>(
|
|
Context.getTypeSize(Context.LongTy, Tok.getLocation()));
|
|
|
|
// Does it fit in a unsigned long?
|
|
if (ResultVal.isIntN(LongSize)) {
|
|
// Does it fit in a signed long?
|
|
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
|
|
t = Context.LongTy;
|
|
else if (AllowUnsigned)
|
|
t = Context.UnsignedLongTy;
|
|
}
|
|
if (!t.isNull())
|
|
ResultVal.trunc(LongSize);
|
|
}
|
|
|
|
// Finally, check long long if needed.
|
|
if (t.isNull()) {
|
|
unsigned LongLongSize = static_cast<unsigned>(
|
|
Context.getTypeSize(Context.LongLongTy, Tok.getLocation()));
|
|
|
|
// Does it fit in a unsigned long long?
|
|
if (ResultVal.isIntN(LongLongSize)) {
|
|
// Does it fit in a signed long long?
|
|
if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
|
|
t = Context.LongLongTy;
|
|
else if (AllowUnsigned)
|
|
t = Context.UnsignedLongLongTy;
|
|
}
|
|
}
|
|
|
|
// If we still couldn't decide a type, we probably have something that
|
|
// does not fit in a signed long long, but has no U suffix.
|
|
if (t.isNull()) {
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
|
|
t = Context.UnsignedLongLongTy;
|
|
}
|
|
}
|
|
|
|
Res = new IntegerLiteral(ResultVal, t, Tok.getLocation());
|
|
}
|
|
|
|
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
|
|
if (Literal.isImaginary)
|
|
Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
|
|
|
|
return Res;
|
|
}
|
|
|
|
Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
|
|
ExprTy *Val) {
|
|
Expr *e = (Expr *)Val;
|
|
assert((e != 0) && "ActOnParenExpr() missing expr");
|
|
return new ParenExpr(L, R, e);
|
|
}
|
|
|
|
/// The UsualUnaryConversions() function is *not* called by this routine.
|
|
/// See C99 6.3.2.1p[2-4] for more details.
|
|
QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
|
|
SourceLocation OpLoc, bool isSizeof) {
|
|
// C99 6.5.3.4p1:
|
|
if (isa<FunctionType>(exprType) && isSizeof)
|
|
// alignof(function) is allowed.
|
|
Diag(OpLoc, diag::ext_sizeof_function_type);
|
|
else if (exprType->isVoidType())
|
|
Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
|
|
else if (exprType->isIncompleteType()) {
|
|
Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
|
|
diag::err_alignof_incomplete_type,
|
|
exprType.getAsString());
|
|
return QualType(); // error
|
|
}
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return Context.getSizeType();
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
|
|
SourceLocation LPLoc, TypeTy *Ty,
|
|
SourceLocation RPLoc) {
|
|
// If error parsing type, ignore.
|
|
if (Ty == 0) return true;
|
|
|
|
// Verify that this is a valid expression.
|
|
QualType ArgTy = QualType::getFromOpaquePtr(Ty);
|
|
|
|
QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
|
|
|
|
if (resultType.isNull())
|
|
return true;
|
|
return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
|
|
}
|
|
|
|
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
|
|
DefaultFunctionArrayConversion(V);
|
|
|
|
// These operators return the element type of a complex type.
|
|
if (const ComplexType *CT = V->getType()->getAsComplexType())
|
|
return CT->getElementType();
|
|
|
|
// Otherwise they pass through real integer and floating point types here.
|
|
if (V->getType()->isArithmeticType())
|
|
return V->getType();
|
|
|
|
// Reject anything else.
|
|
Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
|
|
return QualType();
|
|
}
|
|
|
|
|
|
|
|
Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
|
|
tok::TokenKind Kind,
|
|
ExprTy *Input) {
|
|
UnaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
|
|
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
|
|
}
|
|
QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
|
|
if (result.isNull())
|
|
return true;
|
|
return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
|
|
ExprTy *Idx, SourceLocation RLoc) {
|
|
Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(LHSExp);
|
|
DefaultFunctionArrayConversion(RHSExp);
|
|
|
|
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
|
|
|
|
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
|
|
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
|
|
// in the subscript position. As a result, we need to derive the array base
|
|
// and index from the expression types.
|
|
Expr *BaseExpr, *IndexExpr;
|
|
QualType ResultType;
|
|
if (const PointerType *PTy = LHSTy->getAsPointerType()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
// FIXME: need to deal with const...
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
// FIXME: need to deal with const...
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
|
|
BaseExpr = LHSExp; // vectors: V[123]
|
|
IndexExpr = RHSExp;
|
|
|
|
// Component access limited to variables (reject vec4.rg[1]).
|
|
if (!isa<DeclRefExpr>(BaseExpr))
|
|
return Diag(LLoc, diag::err_ocuvector_component_access,
|
|
SourceRange(LLoc, RLoc));
|
|
// FIXME: need to deal with const...
|
|
ResultType = VTy->getElementType();
|
|
} else {
|
|
return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
|
|
RHSExp->getSourceRange());
|
|
}
|
|
// C99 6.5.2.1p1
|
|
if (!IndexExpr->getType()->isIntegerType())
|
|
return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
|
|
IndexExpr->getSourceRange());
|
|
|
|
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
|
|
// the following check catches trying to index a pointer to a function (e.g.
|
|
// void (*)(int)). Functions are not objects in C99.
|
|
if (!ResultType->isObjectType())
|
|
return Diag(BaseExpr->getLocStart(),
|
|
diag::err_typecheck_subscript_not_object,
|
|
BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
|
|
|
|
return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
|
|
}
|
|
|
|
QualType Sema::
|
|
CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
|
|
IdentifierInfo &CompName, SourceLocation CompLoc) {
|
|
const OCUVectorType *vecType = baseType->getAsOCUVectorType();
|
|
|
|
// The vector accessor can't exceed the number of elements.
|
|
const char *compStr = CompName.getName();
|
|
if (strlen(compStr) > vecType->getNumElements()) {
|
|
Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
|
|
baseType.getAsString(), SourceRange(CompLoc));
|
|
return QualType();
|
|
}
|
|
// The component names must come from the same set.
|
|
if (vecType->getPointAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
|
|
} else if (vecType->getColorAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
|
|
} else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
|
|
}
|
|
|
|
if (*compStr) {
|
|
// We didn't get to the end of the string. This means the component names
|
|
// didn't come from the same set *or* we encountered an illegal name.
|
|
Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
|
|
std::string(compStr,compStr+1), SourceRange(CompLoc));
|
|
return QualType();
|
|
}
|
|
// Each component accessor can't exceed the vector type.
|
|
compStr = CompName.getName();
|
|
while (*compStr) {
|
|
if (vecType->isAccessorWithinNumElements(*compStr))
|
|
compStr++;
|
|
else
|
|
break;
|
|
}
|
|
if (*compStr) {
|
|
// We didn't get to the end of the string. This means a component accessor
|
|
// exceeds the number of elements in the vector.
|
|
Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
|
|
baseType.getAsString(), SourceRange(CompLoc));
|
|
return QualType();
|
|
}
|
|
// The component accessor looks fine - now we need to compute the actual type.
|
|
// The vector type is implied by the component accessor. For example,
|
|
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
|
|
unsigned CompSize = strlen(CompName.getName());
|
|
if (CompSize == 1)
|
|
return vecType->getElementType();
|
|
|
|
QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
|
|
// Now look up the TypeDefDecl from the vector type. Without this,
|
|
// diagostics look bad. We want OCU vector types to appear built-in.
|
|
for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
|
|
if (OCUVectorDecls[i]->getUnderlyingType() == VT)
|
|
return Context.getTypedefType(OCUVectorDecls[i]);
|
|
}
|
|
return VT; // should never get here (a typedef type should always be found).
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
|
|
tok::TokenKind OpKind, SourceLocation MemberLoc,
|
|
IdentifierInfo &Member) {
|
|
Expr *BaseExpr = static_cast<Expr *>(Base);
|
|
assert(BaseExpr && "no record expression");
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(BaseExpr);
|
|
|
|
QualType BaseType = BaseExpr->getType();
|
|
assert(!BaseType.isNull() && "no type for member expression");
|
|
|
|
if (OpKind == tok::arrow) {
|
|
if (const PointerType *PT = BaseType->getAsPointerType())
|
|
BaseType = PT->getPointeeType();
|
|
else
|
|
return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
|
|
SourceRange(MemberLoc));
|
|
}
|
|
// The base type is either a record or an OCUVectorType.
|
|
if (const RecordType *RTy = BaseType->getAsRecordType()) {
|
|
RecordDecl *RDecl = RTy->getDecl();
|
|
if (RTy->isIncompleteType())
|
|
return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
|
|
BaseExpr->getSourceRange());
|
|
// The record definition is complete, now make sure the member is valid.
|
|
FieldDecl *MemberDecl = RDecl->getMember(&Member);
|
|
if (!MemberDecl)
|
|
return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
|
|
SourceRange(MemberLoc));
|
|
return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, MemberLoc);
|
|
} else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
|
|
// Component access limited to variables (reject vec4.rg.g).
|
|
if (!isa<DeclRefExpr>(BaseExpr))
|
|
return Diag(OpLoc, diag::err_ocuvector_component_access,
|
|
SourceRange(MemberLoc));
|
|
QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
|
|
if (ret.isNull())
|
|
return true;
|
|
return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
|
|
} else if (BaseType->isObjCInterfaceType()) {
|
|
ObjCInterfaceDecl *IFace;
|
|
if (isa<ObjCInterfaceType>(BaseType.getCanonicalType()))
|
|
IFace = dyn_cast<ObjCInterfaceType>(BaseType)->getDecl();
|
|
else
|
|
IFace = dyn_cast<ObjCQualifiedInterfaceType>(BaseType)->getDecl();
|
|
ObjCInterfaceDecl *clsDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&Member, clsDeclared))
|
|
return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
|
|
OpKind==tok::arrow);
|
|
}
|
|
return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
|
|
SourceRange(MemberLoc));
|
|
}
|
|
|
|
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
Action::ExprResult Sema::
|
|
ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
|
|
ExprTy **args, unsigned NumArgs,
|
|
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
|
|
Expr *Fn = static_cast<Expr *>(fn);
|
|
Expr **Args = reinterpret_cast<Expr**>(args);
|
|
assert(Fn && "no function call expression");
|
|
|
|
// Make the call expr early, before semantic checks. This guarantees cleanup
|
|
// of arguments and function on error.
|
|
llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
|
|
Context.BoolTy, RParenLoc));
|
|
|
|
// Promote the function operand.
|
|
TheCall->setCallee(UsualUnaryConversions(Fn));
|
|
|
|
// C99 6.5.2.2p1 - "The expression that denotes the called function shall have
|
|
// type pointer to function".
|
|
const PointerType *PT = Fn->getType()->getAsPointerType();
|
|
if (PT == 0)
|
|
return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
|
|
SourceRange(Fn->getLocStart(), RParenLoc));
|
|
const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
|
|
if (FuncT == 0)
|
|
return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
|
|
SourceRange(Fn->getLocStart(), RParenLoc));
|
|
|
|
// We know the result type of the call, set it.
|
|
TheCall->setType(FuncT->getResultType());
|
|
|
|
if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
|
|
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
|
|
// assignment, to the types of the corresponding parameter, ...
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned NumArgsToCheck = NumArgs;
|
|
|
|
// If too few arguments are available, don't make the call.
|
|
if (NumArgs < NumArgsInProto)
|
|
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
|
|
Fn->getSourceRange());
|
|
|
|
// If too many are passed and not variadic, error on the extras and drop
|
|
// them.
|
|
if (NumArgs > NumArgsInProto) {
|
|
if (!Proto->isVariadic()) {
|
|
Diag(Args[NumArgsInProto]->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
|
|
SourceRange(Args[NumArgsInProto]->getLocStart(),
|
|
Args[NumArgs-1]->getLocEnd()));
|
|
// This deletes the extra arguments.
|
|
TheCall->setNumArgs(NumArgsInProto);
|
|
}
|
|
NumArgsToCheck = NumArgsInProto;
|
|
}
|
|
|
|
// Continue to check argument types (even if we have too few/many args).
|
|
for (unsigned i = 0; i != NumArgsToCheck; i++) {
|
|
Expr *Arg = Args[i];
|
|
QualType ProtoArgType = Proto->getArgType(i);
|
|
QualType ArgType = Arg->getType();
|
|
|
|
// Compute implicit casts from the operand to the formal argument type.
|
|
AssignConvertType ConvTy =
|
|
CheckSingleAssignmentConstraints(ProtoArgType, Arg);
|
|
TheCall->setArg(i, Arg);
|
|
|
|
if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
|
|
ArgType, Arg, "passing"))
|
|
return true;
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (Proto->isVariadic()) {
|
|
// Promote the arguments (C99 6.5.2.2p7).
|
|
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
DefaultArgumentPromotion(Arg);
|
|
TheCall->setArg(i, Arg);
|
|
}
|
|
}
|
|
} else {
|
|
assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
|
|
|
|
// Promote the arguments (C99 6.5.2.2p6).
|
|
for (unsigned i = 0; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
DefaultArgumentPromotion(Arg);
|
|
TheCall->setArg(i, Arg);
|
|
}
|
|
}
|
|
|
|
// Do special checking on direct calls to functions.
|
|
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
|
|
if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
|
|
if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()))
|
|
if (CheckFunctionCall(FDecl, TheCall.get()))
|
|
return true;
|
|
|
|
return TheCall.take();
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
|
|
SourceLocation RParenLoc, ExprTy *InitExpr) {
|
|
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
|
|
QualType literalType = QualType::getFromOpaquePtr(Ty);
|
|
// FIXME: put back this assert when initializers are worked out.
|
|
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
|
|
Expr *literalExpr = static_cast<Expr*>(InitExpr);
|
|
|
|
// FIXME: add more semantic analysis (C99 6.5.2.5).
|
|
if (CheckInitializerTypes(literalExpr, literalType))
|
|
return true;
|
|
|
|
bool isFileScope = !CurFunctionDecl && !CurMethodDecl;
|
|
if (isFileScope) { // 6.5.2.5p3
|
|
if (CheckForConstantInitializer(literalExpr, literalType))
|
|
return true;
|
|
}
|
|
return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
|
|
SourceLocation RBraceLoc) {
|
|
Expr **InitList = reinterpret_cast<Expr**>(initlist);
|
|
|
|
// Semantic analysis for initializers is done by ActOnDeclarator() and
|
|
// CheckInitializer() - it requires knowledge of the object being intialized.
|
|
|
|
InitListExpr *e = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
|
|
e->setType(Context.VoidTy); // FIXME: just a place holder for now.
|
|
return e;
|
|
}
|
|
|
|
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
|
|
assert(VectorTy->isVectorType() && "Not a vector type!");
|
|
|
|
if (Ty->isVectorType() || Ty->isIntegerType()) {
|
|
if (Context.getTypeSize(VectorTy, SourceLocation()) !=
|
|
Context.getTypeSize(Ty, SourceLocation()))
|
|
return Diag(R.getBegin(),
|
|
Ty->isVectorType() ?
|
|
diag::err_invalid_conversion_between_vectors :
|
|
diag::err_invalid_conversion_between_vector_and_integer,
|
|
VectorTy.getAsString().c_str(),
|
|
Ty.getAsString().c_str(), R);
|
|
} else
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar,
|
|
VectorTy.getAsString().c_str(),
|
|
Ty.getAsString().c_str(), R);
|
|
|
|
return false;
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
|
|
SourceLocation RParenLoc, ExprTy *Op) {
|
|
assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
|
|
|
|
Expr *castExpr = static_cast<Expr*>(Op);
|
|
QualType castType = QualType::getFromOpaquePtr(Ty);
|
|
|
|
UsualUnaryConversions(castExpr);
|
|
|
|
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
|
|
// type needs to be scalar.
|
|
if (!castType->isVoidType()) { // Cast to void allows any expr type.
|
|
if (!castType->isScalarType())
|
|
return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
|
|
castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
|
|
if (!castExpr->getType()->isScalarType())
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_typecheck_expect_scalar_operand,
|
|
castExpr->getType().getAsString(),castExpr->getSourceRange());
|
|
|
|
if (castExpr->getType()->isVectorType()) {
|
|
if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
|
|
castExpr->getType(), castType))
|
|
return true;
|
|
} else if (castType->isVectorType()) {
|
|
if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
|
|
castType, castExpr->getType()))
|
|
return true;
|
|
}
|
|
}
|
|
return new CastExpr(castType, castExpr, LParenLoc);
|
|
}
|
|
|
|
/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
|
|
/// In that case, lex = cond.
|
|
inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
|
|
Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
|
|
UsualUnaryConversions(cond);
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
QualType condT = cond->getType();
|
|
QualType lexT = lex->getType();
|
|
QualType rexT = rex->getType();
|
|
|
|
// first, check the condition.
|
|
if (!condT->isScalarType()) { // C99 6.5.15p2
|
|
Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
|
|
condT.getAsString());
|
|
return QualType();
|
|
}
|
|
|
|
// Now check the two expressions.
|
|
|
|
// If both operands have arithmetic type, do the usual arithmetic conversions
|
|
// to find a common type: C99 6.5.15p3,5.
|
|
if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
|
|
UsualArithmeticConversions(lex, rex);
|
|
return lex->getType();
|
|
}
|
|
|
|
// If both operands are the same structure or union type, the result is that
|
|
// type.
|
|
if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
|
|
if (const RecordType *RHSRT = rexT->getAsRecordType())
|
|
if (LHSRT->getDecl() == RHSRT->getDecl())
|
|
// "If both the operands have structure or union type, the result has
|
|
// that type." This implies that CV qualifiers are dropped.
|
|
return lexT.getUnqualifiedType();
|
|
}
|
|
|
|
// C99 6.5.15p5: "If both operands have void type, the result has void type."
|
|
if (lexT->isVoidType() && rexT->isVoidType())
|
|
return lexT.getUnqualifiedType();
|
|
|
|
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
|
|
// the type of the other operand."
|
|
if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(rex, lexT); // promote the null to a pointer.
|
|
return lexT;
|
|
}
|
|
if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(lex, rexT); // promote the null to a pointer.
|
|
return rexT;
|
|
}
|
|
// Handle the case where both operands are pointers before we handle null
|
|
// pointer constants in case both operands are null pointer constants.
|
|
if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
|
|
if (const PointerType *RHSPT = rexT->getAsPointerType()) {
|
|
// get the "pointed to" types
|
|
QualType lhptee = LHSPT->getPointeeType();
|
|
QualType rhptee = RHSPT->getPointeeType();
|
|
|
|
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
|
|
if (lhptee->isVoidType() &&
|
|
(rhptee->isObjectType() || rhptee->isIncompleteType()))
|
|
return lexT;
|
|
if (rhptee->isVoidType() &&
|
|
(lhptee->isObjectType() || lhptee->isIncompleteType()))
|
|
return rexT;
|
|
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType())) {
|
|
Diag(questionLoc, diag::ext_typecheck_cond_incompatible_pointers,
|
|
lexT.getAsString(), rexT.getAsString(),
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
return lexT; // FIXME: this is an _ext - is this return o.k?
|
|
}
|
|
// The pointer types are compatible.
|
|
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
|
|
// differently qualified versions of compatible types, the result type is
|
|
// a pointer to an appropriately qualified version of the *composite*
|
|
// type.
|
|
// FIXME: Need to return the composite type.
|
|
return lexT;
|
|
}
|
|
}
|
|
|
|
// Otherwise, the operands are not compatible.
|
|
Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
|
|
lexT.getAsString(), rexT.getAsString(),
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
return QualType();
|
|
}
|
|
|
|
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
|
/// in the case of a the GNU conditional expr extension.
|
|
Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
|
|
SourceLocation ColonLoc,
|
|
ExprTy *Cond, ExprTy *LHS,
|
|
ExprTy *RHS) {
|
|
Expr *CondExpr = (Expr *) Cond;
|
|
Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
|
|
|
|
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
|
|
// was the condition.
|
|
bool isLHSNull = LHSExpr == 0;
|
|
if (isLHSNull)
|
|
LHSExpr = CondExpr;
|
|
|
|
QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
|
|
RHSExpr, QuestionLoc);
|
|
if (result.isNull())
|
|
return true;
|
|
return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
|
|
RHSExpr, result);
|
|
}
|
|
|
|
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
|
/// do not have a prototype. Integer promotions are performed on each
|
|
/// argument, and arguments that have type float are promoted to double.
|
|
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
|
|
|
|
if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
|
|
ImpCastExprToType(Expr, Context.IntTy);
|
|
if (Ty == Context.FloatTy)
|
|
ImpCastExprToType(Expr, Context.DoubleTy);
|
|
}
|
|
|
|
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
|
|
void Sema::DefaultFunctionArrayConversion(Expr *&e) {
|
|
QualType t = e->getType();
|
|
assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
|
|
|
|
if (const ReferenceType *ref = t->getAsReferenceType()) {
|
|
ImpCastExprToType(e, ref->getReferenceeType()); // C++ [expr]
|
|
t = e->getType();
|
|
}
|
|
if (t->isFunctionType())
|
|
ImpCastExprToType(e, Context.getPointerType(t));
|
|
else if (const ArrayType *ary = t->getAsArrayType())
|
|
ImpCastExprToType(e, Context.getPointerType(ary->getElementType()));
|
|
}
|
|
|
|
/// UsualUnaryConversions - Performs various conversions that are common to most
|
|
/// operators (C99 6.3). The conversions of array and function types are
|
|
/// sometimes surpressed. For example, the array->pointer conversion doesn't
|
|
/// apply if the array is an argument to the sizeof or address (&) operators.
|
|
/// In these instances, this routine should *not* be called.
|
|
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
|
|
|
|
if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
|
|
ImpCastExprToType(Expr, Ref->getReferenceeType()); // C++ [expr]
|
|
Ty = Expr->getType();
|
|
}
|
|
if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
|
|
ImpCastExprToType(Expr, Context.IntTy);
|
|
else
|
|
DefaultFunctionArrayConversion(Expr);
|
|
|
|
return Expr;
|
|
}
|
|
|
|
/// UsualArithmeticConversions - Performs various conversions that are common to
|
|
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
|
/// routine returns the first non-arithmetic type found. The client is
|
|
/// responsible for emitting appropriate error diagnostics.
|
|
/// FIXME: verify the conversion rules for "complex int" are consistent with GCC.
|
|
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
|
|
bool isCompAssign) {
|
|
if (!isCompAssign) {
|
|
UsualUnaryConversions(lhsExpr);
|
|
UsualUnaryConversions(rhsExpr);
|
|
}
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
|
|
QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
|
|
return lhs;
|
|
|
|
// At this point, we have two different arithmetic types.
|
|
|
|
// Handle complex types first (C99 6.3.1.8p1).
|
|
if (lhs->isComplexType() || rhs->isComplexType()) {
|
|
// if we have an integer operand, the result is the complex type.
|
|
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
|
|
// convert the rhs to the lhs complex type.
|
|
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
|
|
return lhs;
|
|
}
|
|
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
|
|
// convert the lhs to the rhs complex type.
|
|
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
|
|
return rhs;
|
|
}
|
|
// This handles complex/complex, complex/float, or float/complex.
|
|
// When both operands are complex, the shorter operand is converted to the
|
|
// type of the longer, and that is the type of the result. This corresponds
|
|
// to what is done when combining two real floating-point operands.
|
|
// The fun begins when size promotion occur across type domains.
|
|
// From H&S 6.3.4: When one operand is complex and the other is a real
|
|
// floating-point type, the less precise type is converted, within it's
|
|
// real or complex domain, to the precision of the other type. For example,
|
|
// when combining a "long double" with a "double _Complex", the
|
|
// "double _Complex" is promoted to "long double _Complex".
|
|
int result = Context.compareFloatingType(lhs, rhs);
|
|
|
|
if (result > 0) { // The left side is bigger, convert rhs.
|
|
rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(rhsExpr, rhs);
|
|
} else if (result < 0) { // The right side is bigger, convert lhs.
|
|
lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, lhs);
|
|
}
|
|
// At this point, lhs and rhs have the same rank/size. Now, make sure the
|
|
// domains match. This is a requirement for our implementation, C99
|
|
// does not require this promotion.
|
|
if (lhs != rhs) { // Domains don't match, we have complex/float mix.
|
|
if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs);
|
|
return rhs;
|
|
} else { // handle "_Complex double, double".
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(rhsExpr, lhs);
|
|
return lhs;
|
|
}
|
|
}
|
|
return lhs; // The domain/size match exactly.
|
|
}
|
|
// Now handle "real" floating types (i.e. float, double, long double).
|
|
if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
|
|
// if we have an integer operand, the result is the real floating type.
|
|
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
|
|
// convert rhs to the lhs floating point type.
|
|
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
|
|
return lhs;
|
|
}
|
|
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
|
|
// convert lhs to the rhs floating point type.
|
|
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
|
|
return rhs;
|
|
}
|
|
// We have two real floating types, float/complex combos were handled above.
|
|
// Convert the smaller operand to the bigger result.
|
|
int result = Context.compareFloatingType(lhs, rhs);
|
|
|
|
if (result > 0) { // convert the rhs
|
|
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
|
|
return lhs;
|
|
}
|
|
if (result < 0) { // convert the lhs
|
|
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
|
|
return rhs;
|
|
}
|
|
assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
|
|
}
|
|
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
|
|
// Handle GCC complex int extension.
|
|
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
|
|
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
|
|
|
|
if (lhsComplexInt && rhsComplexInt) {
|
|
if (Context.maxIntegerType(lhsComplexInt->getElementType(),
|
|
rhsComplexInt->getElementType()) == lhs) {
|
|
// convert the rhs
|
|
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
|
|
return lhs;
|
|
}
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, rhs); // convert the lhs
|
|
return rhs;
|
|
} else if (lhsComplexInt && rhs->isIntegerType()) {
|
|
// convert the rhs to the lhs complex type.
|
|
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
|
|
return lhs;
|
|
} else if (rhsComplexInt && lhs->isIntegerType()) {
|
|
// convert the lhs to the rhs complex type.
|
|
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
|
|
return rhs;
|
|
}
|
|
}
|
|
// Finally, we have two differing integer types.
|
|
if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
|
|
if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
|
|
return lhs;
|
|
}
|
|
if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
|
|
return rhs;
|
|
}
|
|
|
|
// CheckPointerTypesForAssignment - This is a very tricky routine (despite
|
|
// being closely modeled after the C99 spec:-). The odd characteristic of this
|
|
// routine is it effectively iqnores the qualifiers on the top level pointee.
|
|
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
|
|
// FIXME: add a couple examples in this comment.
|
|
Sema::AssignConvertType
|
|
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
|
|
QualType lhptee, rhptee;
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = lhsType->getAsPointerType()->getPointeeType();
|
|
rhptee = rhsType->getAsPointerType()->getPointeeType();
|
|
|
|
// make sure we operate on the canonical type
|
|
lhptee = lhptee.getCanonicalType();
|
|
rhptee = rhptee.getCanonicalType();
|
|
|
|
AssignConvertType ConvTy = Compatible;
|
|
|
|
// C99 6.5.16.1p1: This following citation is common to constraints
|
|
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
|
|
// qualifiers of the type *pointed to* by the right;
|
|
if ((lhptee.getQualifiers() & rhptee.getQualifiers()) !=
|
|
rhptee.getQualifiers())
|
|
ConvTy = CompatiblePointerDiscardsQualifiers;
|
|
|
|
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
|
|
// incomplete type and the other is a pointer to a qualified or unqualified
|
|
// version of void...
|
|
if (lhptee->isVoidType()) {
|
|
if (rhptee->isObjectType() || rhptee->isIncompleteType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
if (rhptee->isFunctionType())
|
|
return FunctionVoidPointer;
|
|
}
|
|
|
|
if (rhptee->isVoidType()) {
|
|
if (lhptee->isObjectType() || lhptee->isIncompleteType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
if (lhptee->isFunctionType())
|
|
return FunctionVoidPointer;
|
|
}
|
|
|
|
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
|
|
// unqualified versions of compatible types, ...
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType()))
|
|
return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
|
|
return ConvTy;
|
|
}
|
|
|
|
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
|
|
/// has code to accommodate several GCC extensions when type checking
|
|
/// pointers. Here are some objectionable examples that GCC considers warnings:
|
|
///
|
|
/// int a, *pint;
|
|
/// short *pshort;
|
|
/// struct foo *pfoo;
|
|
///
|
|
/// pint = pshort; // warning: assignment from incompatible pointer type
|
|
/// a = pint; // warning: assignment makes integer from pointer without a cast
|
|
/// pint = a; // warning: assignment makes pointer from integer without a cast
|
|
/// pint = pfoo; // warning: assignment from incompatible pointer type
|
|
///
|
|
/// As a result, the code for dealing with pointers is more complex than the
|
|
/// C99 spec dictates.
|
|
/// Note: the warning above turn into errors when -pedantic-errors is enabled.
|
|
///
|
|
Sema::AssignConvertType
|
|
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
|
|
// Get canonical types. We're not formatting these types, just comparing
|
|
// them.
|
|
lhsType = lhsType.getCanonicalType();
|
|
rhsType = rhsType.getCanonicalType();
|
|
|
|
if (lhsType.getUnqualifiedType() == rhsType.getUnqualifiedType())
|
|
return Compatible; // Common case: fast path an exact match.
|
|
|
|
if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
|
|
if (Context.referenceTypesAreCompatible(lhsType, rhsType))
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
|
|
if (lhsType->isObjCQualifiedIdType()
|
|
|| rhsType->isObjCQualifiedIdType()) {
|
|
if (Context.ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType))
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
|
|
if (lhsType->isVectorType() || rhsType->isVectorType()) {
|
|
// For OCUVector, allow vector splats; float -> <n x float>
|
|
if (const OCUVectorType *LV = lhsType->getAsOCUVectorType()) {
|
|
if (LV->getElementType().getTypePtr() == rhsType.getTypePtr())
|
|
return Compatible;
|
|
}
|
|
|
|
// If LHS and RHS are both vectors of integer or both vectors of floating
|
|
// point types, and the total vector length is the same, allow the
|
|
// conversion. This is a bitcast; no bits are changed but the result type
|
|
// is different.
|
|
if (getLangOptions().LaxVectorConversions &&
|
|
lhsType->isVectorType() && rhsType->isVectorType()) {
|
|
if ((lhsType->isIntegerType() && rhsType->isIntegerType()) ||
|
|
(lhsType->isRealFloatingType() && rhsType->isRealFloatingType())) {
|
|
if (Context.getTypeSize(lhsType, SourceLocation()) ==
|
|
Context.getTypeSize(rhsType, SourceLocation()))
|
|
return Compatible;
|
|
}
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
|
|
return Compatible;
|
|
|
|
if (lhsType->isPointerType()) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToPointer;
|
|
|
|
if (rhsType->isPointerType())
|
|
return CheckPointerTypesForAssignment(lhsType, rhsType);
|
|
return Incompatible;
|
|
}
|
|
|
|
if (rhsType->isPointerType()) {
|
|
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
|
|
if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
|
|
return PointerToInt;
|
|
|
|
if (lhsType->isPointerType())
|
|
return CheckPointerTypesForAssignment(lhsType, rhsType);
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
|
|
if (Context.tagTypesAreCompatible(lhsType, rhsType))
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
|
|
// C99 6.5.16.1p1: the left operand is a pointer and the right is
|
|
// a null pointer constant.
|
|
if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
|
|
&& rExpr->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(rExpr, lhsType);
|
|
return Compatible;
|
|
}
|
|
// This check seems unnatural, however it is necessary to ensure the proper
|
|
// conversion of functions/arrays. If the conversion were done for all
|
|
// DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
|
|
// expressions that surpress this implicit conversion (&, sizeof).
|
|
//
|
|
// Suppress this for references: C99 8.5.3p5. FIXME: revisit when references
|
|
// are better understood.
|
|
if (!lhsType->isReferenceType())
|
|
DefaultFunctionArrayConversion(rExpr);
|
|
|
|
Sema::AssignConvertType result =
|
|
CheckAssignmentConstraints(lhsType, rExpr->getType());
|
|
|
|
// C99 6.5.16.1p2: The value of the right operand is converted to the
|
|
// type of the assignment expression.
|
|
if (rExpr->getType() != lhsType)
|
|
ImpCastExprToType(rExpr, lhsType);
|
|
return result;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
|
|
return CheckAssignmentConstraints(lhsType, rhsType);
|
|
}
|
|
|
|
QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
|
|
Diag(loc, diag::err_typecheck_invalid_operands,
|
|
lex->getType().getAsString(), rex->getType().getAsString(),
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
return QualType();
|
|
}
|
|
|
|
inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
|
|
Expr *&rex) {
|
|
QualType lhsType = lex->getType(), rhsType = rex->getType();
|
|
|
|
// make sure the vector types are identical.
|
|
if (lhsType == rhsType)
|
|
return lhsType;
|
|
|
|
// if the lhs is an ocu vector and the rhs is a scalar of the same type,
|
|
// promote the rhs to the vector type.
|
|
if (const OCUVectorType *V = lhsType->getAsOCUVectorType()) {
|
|
if (V->getElementType().getCanonicalType().getTypePtr()
|
|
== rhsType.getCanonicalType().getTypePtr()) {
|
|
ImpCastExprToType(rex, lhsType);
|
|
return lhsType;
|
|
}
|
|
}
|
|
|
|
// if the rhs is an ocu vector and the lhs is a scalar of the same type,
|
|
// promote the lhs to the vector type.
|
|
if (const OCUVectorType *V = rhsType->getAsOCUVectorType()) {
|
|
if (V->getElementType().getCanonicalType().getTypePtr()
|
|
== lhsType.getCanonicalType().getTypePtr()) {
|
|
ImpCastExprToType(lex, rhsType);
|
|
return rhsType;
|
|
}
|
|
}
|
|
|
|
// You cannot convert between vector values of different size.
|
|
Diag(loc, diag::err_typecheck_vector_not_convertable,
|
|
lex->getType().getAsString(), rex->getType().getAsString(),
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
return QualType();
|
|
}
|
|
|
|
inline QualType Sema::CheckMultiplyDivideOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
|
|
{
|
|
QualType lhsType = lex->getType(), rhsType = rex->getType();
|
|
|
|
if (lhsType->isVectorType() || rhsType->isVectorType())
|
|
return CheckVectorOperands(loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
return compType;
|
|
return InvalidOperands(loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckRemainderOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
|
|
{
|
|
QualType lhsType = lex->getType(), rhsType = rex->getType();
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return compType;
|
|
return InvalidOperands(loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
|
|
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
// handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
return compType;
|
|
|
|
if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
|
|
return lex->getType();
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
|
|
return rex->getType();
|
|
return InvalidOperands(loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
|
|
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
// Enforce type constraints: C99 6.5.6p3.
|
|
|
|
// Handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
return compType;
|
|
|
|
// Either ptr - int or ptr - ptr.
|
|
if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
|
|
// The LHS must be an object type, not incomplete, function, etc.
|
|
if (!LHSPTy->getPointeeType()->isObjectType()) {
|
|
// Handle the GNU void* extension.
|
|
if (LHSPTy->getPointeeType()->isVoidType()) {
|
|
Diag(loc, diag::ext_gnu_void_ptr,
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
} else {
|
|
Diag(loc, diag::err_typecheck_sub_ptr_object,
|
|
lex->getType().getAsString(), lex->getSourceRange());
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
// The result type of a pointer-int computation is the pointer type.
|
|
if (rex->getType()->isIntegerType())
|
|
return lex->getType();
|
|
|
|
// Handle pointer-pointer subtractions.
|
|
if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
|
|
// RHS must be an object type, unless void (GNU).
|
|
if (!RHSPTy->getPointeeType()->isObjectType()) {
|
|
// Handle the GNU void* extension.
|
|
if (RHSPTy->getPointeeType()->isVoidType()) {
|
|
if (!LHSPTy->getPointeeType()->isVoidType())
|
|
Diag(loc, diag::ext_gnu_void_ptr,
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
} else {
|
|
Diag(loc, diag::err_typecheck_sub_ptr_object,
|
|
rex->getType().getAsString(), rex->getSourceRange());
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
// Pointee types must be compatible.
|
|
if (!Context.typesAreCompatible(LHSPTy->getPointeeType(),
|
|
RHSPTy->getPointeeType())) {
|
|
Diag(loc, diag::err_typecheck_sub_ptr_compatible,
|
|
lex->getType().getAsString(), rex->getType().getAsString(),
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getPointerDiffType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckShiftOperands( // C99 6.5.7
|
|
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) {
|
|
// C99 6.5.7p2: Each of the operands shall have integer type.
|
|
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
|
|
return InvalidOperands(loc, lex, rex);
|
|
|
|
// Shifts don't perform usual arithmetic conversions, they just do integer
|
|
// promotions on each operand. C99 6.5.7p3
|
|
if (!isCompAssign)
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
|
|
// "The type of the result is that of the promoted left operand."
|
|
return lex->getType();
|
|
}
|
|
|
|
inline QualType Sema::CheckCompareOperands( // C99 6.5.8
|
|
Expr *&lex, Expr *&rex, SourceLocation loc, bool isRelational)
|
|
{
|
|
// C99 6.5.8p3 / C99 6.5.9p4
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
UsualArithmeticConversions(lex, rex);
|
|
else {
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
}
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
if (!lType->isFloatingType()) {
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
Diag(loc, diag::warn_selfcomparison);
|
|
}
|
|
|
|
if (isRelational) {
|
|
if (lType->isRealType() && rType->isRealType())
|
|
return Context.IntTy;
|
|
} else {
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (lType->isFloatingType()) {
|
|
assert (rType->isFloatingType());
|
|
CheckFloatComparison(loc,lex,rex);
|
|
}
|
|
|
|
if (lType->isArithmeticType() && rType->isArithmeticType())
|
|
return Context.IntTy;
|
|
}
|
|
|
|
bool LHSIsNull = lex->isNullPointerConstant(Context);
|
|
bool RHSIsNull = rex->isNullPointerConstant(Context);
|
|
|
|
// All of the following pointer related warnings are GCC extensions, except
|
|
// when handling null pointer constants. One day, we can consider making them
|
|
// errors (when -pedantic-errors is enabled).
|
|
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
|
|
|
|
if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
|
|
!lType->getAsPointerType()->getPointeeType()->isVoidType() &&
|
|
!rType->getAsPointerType()->getPointeeType()->isVoidType() &&
|
|
!Context.pointerTypesAreCompatible(lType.getUnqualifiedType(),
|
|
rType.getUnqualifiedType())) {
|
|
Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
|
|
lType.getAsString(), rType.getAsString(),
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
}
|
|
ImpCastExprToType(rex, lType); // promote the pointer to pointer
|
|
return Context.IntTy;
|
|
}
|
|
if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())
|
|
&& Context.ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
|
|
ImpCastExprToType(rex, lType);
|
|
return Context.IntTy;
|
|
}
|
|
if (lType->isPointerType() && rType->isIntegerType()) {
|
|
if (!RHSIsNull)
|
|
Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
|
|
lType.getAsString(), rType.getAsString(),
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
ImpCastExprToType(rex, lType); // promote the integer to pointer
|
|
return Context.IntTy;
|
|
}
|
|
if (lType->isIntegerType() && rType->isPointerType()) {
|
|
if (!LHSIsNull)
|
|
Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
|
|
lType.getAsString(), rType.getAsString(),
|
|
lex->getSourceRange(), rex->getSourceRange());
|
|
ImpCastExprToType(lex, rType); // promote the integer to pointer
|
|
return Context.IntTy;
|
|
}
|
|
return InvalidOperands(loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckBitwiseOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return compType;
|
|
return InvalidOperands(loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
|
|
Expr *&lex, Expr *&rex, SourceLocation loc)
|
|
{
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
|
|
if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
|
|
return Context.IntTy;
|
|
return InvalidOperands(loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
|
|
Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
|
|
{
|
|
QualType lhsType = lex->getType();
|
|
QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
|
|
Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
|
|
|
|
switch (mlval) { // C99 6.5.16p2
|
|
case Expr::MLV_Valid:
|
|
break;
|
|
case Expr::MLV_ConstQualified:
|
|
Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
|
|
return QualType();
|
|
case Expr::MLV_ArrayType:
|
|
Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
|
|
lhsType.getAsString(), lex->getSourceRange());
|
|
return QualType();
|
|
case Expr::MLV_NotObjectType:
|
|
Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
|
|
lhsType.getAsString(), lex->getSourceRange());
|
|
return QualType();
|
|
case Expr::MLV_InvalidExpression:
|
|
Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
|
|
lex->getSourceRange());
|
|
return QualType();
|
|
case Expr::MLV_IncompleteType:
|
|
case Expr::MLV_IncompleteVoidType:
|
|
Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
|
|
lhsType.getAsString(), lex->getSourceRange());
|
|
return QualType();
|
|
case Expr::MLV_DuplicateVectorComponents:
|
|
Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
|
|
lex->getSourceRange());
|
|
return QualType();
|
|
}
|
|
|
|
AssignConvertType ConvTy;
|
|
if (compoundType.isNull())
|
|
ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
|
|
else
|
|
ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
|
|
|
|
if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
|
|
rex, "assigning"))
|
|
return QualType();
|
|
|
|
// C99 6.5.16p3: The type of an assignment expression is the type of the
|
|
// left operand unless the left operand has qualified type, in which case
|
|
// it is the unqualified version of the type of the left operand.
|
|
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
|
|
// is converted to the type of the assignment expression (above).
|
|
// C++ 5.17p1: the type of the assignment expression is that of its left
|
|
// oprdu.
|
|
return lhsType.getUnqualifiedType();
|
|
}
|
|
|
|
inline QualType Sema::CheckCommaOperands( // C99 6.5.17
|
|
Expr *&lex, Expr *&rex, SourceLocation loc) {
|
|
UsualUnaryConversions(rex);
|
|
return rex->getType();
|
|
}
|
|
|
|
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
|
|
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
|
|
QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
|
|
QualType resType = op->getType();
|
|
assert(!resType.isNull() && "no type for increment/decrement expression");
|
|
|
|
// C99 6.5.2.4p1: We allow complex as a GCC extension.
|
|
if (const PointerType *pt = resType->getAsPointerType()) {
|
|
if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
|
|
Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
|
|
resType.getAsString(), op->getSourceRange());
|
|
return QualType();
|
|
}
|
|
} else if (!resType->isRealType()) {
|
|
if (resType->isComplexType())
|
|
// C99 does not support ++/-- on complex types.
|
|
Diag(OpLoc, diag::ext_integer_increment_complex,
|
|
resType.getAsString(), op->getSourceRange());
|
|
else {
|
|
Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
|
|
resType.getAsString(), op->getSourceRange());
|
|
return QualType();
|
|
}
|
|
}
|
|
// At this point, we know we have a real, complex or pointer type.
|
|
// Now make sure the operand is a modifiable lvalue.
|
|
Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
|
|
if (mlval != Expr::MLV_Valid) {
|
|
// FIXME: emit a more precise diagnostic...
|
|
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
|
|
op->getSourceRange());
|
|
return QualType();
|
|
}
|
|
return resType;
|
|
}
|
|
|
|
/// getPrimaryDeclaration - Helper function for CheckAddressOfOperand().
|
|
/// This routine allows us to typecheck complex/recursive expressions
|
|
/// where the declaration is needed for type checking. Here are some
|
|
/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
|
|
static Decl *getPrimaryDeclaration(Expr *e) {
|
|
switch (e->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass:
|
|
return cast<DeclRefExpr>(e)->getDecl();
|
|
case Stmt::MemberExprClass:
|
|
// Fields cannot be declared with a 'register' storage class.
|
|
// &X->f is always ok, even if X is declared register.
|
|
if (cast<MemberExpr>(e)->isArrow())
|
|
return 0;
|
|
return getPrimaryDeclaration(cast<MemberExpr>(e)->getBase());
|
|
case Stmt::ArraySubscriptExprClass:
|
|
// &X[4] and &4[X] is invalid if X is invalid.
|
|
return getPrimaryDeclaration(cast<ArraySubscriptExpr>(e)->getBase());
|
|
case Stmt::UnaryOperatorClass:
|
|
return getPrimaryDeclaration(cast<UnaryOperator>(e)->getSubExpr());
|
|
case Stmt::ParenExprClass:
|
|
return getPrimaryDeclaration(cast<ParenExpr>(e)->getSubExpr());
|
|
case Stmt::ImplicitCastExprClass:
|
|
// &X[4] when X is an array, has an implicit cast from array to pointer.
|
|
return getPrimaryDeclaration(cast<ImplicitCastExpr>(e)->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// CheckAddressOfOperand - The operand of & must be either a function
|
|
/// designator or an lvalue designating an object. If it is an lvalue, the
|
|
/// object cannot be declared with storage class register or be a bit field.
|
|
/// Note: The usual conversions are *not* applied to the operand of the &
|
|
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
|
|
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
|
|
if (getLangOptions().C99) {
|
|
// Implement C99-only parts of addressof rules.
|
|
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
|
|
if (uOp->getOpcode() == UnaryOperator::Deref)
|
|
// Per C99 6.5.3.2, the address of a deref always returns a valid result
|
|
// (assuming the deref expression is valid).
|
|
return uOp->getSubExpr()->getType();
|
|
}
|
|
// Technically, there should be a check for array subscript
|
|
// expressions here, but the result of one is always an lvalue anyway.
|
|
}
|
|
Decl *dcl = getPrimaryDeclaration(op);
|
|
Expr::isLvalueResult lval = op->isLvalue();
|
|
|
|
if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
|
|
if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
|
|
// FIXME: emit more specific diag...
|
|
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
|
|
op->getSourceRange());
|
|
return QualType();
|
|
}
|
|
} else if (dcl) {
|
|
// We have an lvalue with a decl. Make sure the decl is not declared
|
|
// with the register storage-class specifier.
|
|
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
|
|
if (vd->getStorageClass() == VarDecl::Register) {
|
|
Diag(OpLoc, diag::err_typecheck_address_of_register,
|
|
op->getSourceRange());
|
|
return QualType();
|
|
}
|
|
} else
|
|
assert(0 && "Unknown/unexpected decl type");
|
|
|
|
// FIXME: add check for bitfields!
|
|
}
|
|
// If the operand has type "type", the result has type "pointer to type".
|
|
return Context.getPointerType(op->getType());
|
|
}
|
|
|
|
QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
|
|
UsualUnaryConversions(op);
|
|
QualType qType = op->getType();
|
|
|
|
if (const PointerType *PT = qType->getAsPointerType()) {
|
|
// Note that per both C89 and C99, this is always legal, even
|
|
// if ptype is an incomplete type or void.
|
|
// It would be possible to warn about dereferencing a
|
|
// void pointer, but it's completely well-defined,
|
|
// and such a warning is unlikely to catch any mistakes.
|
|
return PT->getPointeeType();
|
|
}
|
|
Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
|
|
qType.getAsString(), op->getSourceRange());
|
|
return QualType();
|
|
}
|
|
|
|
static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
BinaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown binop!");
|
|
case tok::star: Opc = BinaryOperator::Mul; break;
|
|
case tok::slash: Opc = BinaryOperator::Div; break;
|
|
case tok::percent: Opc = BinaryOperator::Rem; break;
|
|
case tok::plus: Opc = BinaryOperator::Add; break;
|
|
case tok::minus: Opc = BinaryOperator::Sub; break;
|
|
case tok::lessless: Opc = BinaryOperator::Shl; break;
|
|
case tok::greatergreater: Opc = BinaryOperator::Shr; break;
|
|
case tok::lessequal: Opc = BinaryOperator::LE; break;
|
|
case tok::less: Opc = BinaryOperator::LT; break;
|
|
case tok::greaterequal: Opc = BinaryOperator::GE; break;
|
|
case tok::greater: Opc = BinaryOperator::GT; break;
|
|
case tok::exclaimequal: Opc = BinaryOperator::NE; break;
|
|
case tok::equalequal: Opc = BinaryOperator::EQ; break;
|
|
case tok::amp: Opc = BinaryOperator::And; break;
|
|
case tok::caret: Opc = BinaryOperator::Xor; break;
|
|
case tok::pipe: Opc = BinaryOperator::Or; break;
|
|
case tok::ampamp: Opc = BinaryOperator::LAnd; break;
|
|
case tok::pipepipe: Opc = BinaryOperator::LOr; break;
|
|
case tok::equal: Opc = BinaryOperator::Assign; break;
|
|
case tok::starequal: Opc = BinaryOperator::MulAssign; break;
|
|
case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
|
|
case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
|
|
case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
|
|
case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
|
|
case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
|
|
case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
|
|
case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
|
|
case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
|
|
case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
|
|
case tok::comma: Opc = BinaryOperator::Comma; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
UnaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UnaryOperator::PreInc; break;
|
|
case tok::minusminus: Opc = UnaryOperator::PreDec; break;
|
|
case tok::amp: Opc = UnaryOperator::AddrOf; break;
|
|
case tok::star: Opc = UnaryOperator::Deref; break;
|
|
case tok::plus: Opc = UnaryOperator::Plus; break;
|
|
case tok::minus: Opc = UnaryOperator::Minus; break;
|
|
case tok::tilde: Opc = UnaryOperator::Not; break;
|
|
case tok::exclaim: Opc = UnaryOperator::LNot; break;
|
|
case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break;
|
|
case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
|
|
case tok::kw___real: Opc = UnaryOperator::Real; break;
|
|
case tok::kw___imag: Opc = UnaryOperator::Imag; break;
|
|
case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
// Binary Operators. 'Tok' is the token for the operator.
|
|
Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
|
|
ExprTy *LHS, ExprTy *RHS) {
|
|
BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
|
|
Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
|
|
|
|
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
|
|
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
|
|
|
|
QualType ResultTy; // Result type of the binary operator.
|
|
QualType CompTy; // Computation type for compound assignments (e.g. '+=')
|
|
|
|
switch (Opc) {
|
|
default:
|
|
assert(0 && "Unknown binary expr!");
|
|
case BinaryOperator::Assign:
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
|
|
break;
|
|
case BinaryOperator::Mul:
|
|
case BinaryOperator::Div:
|
|
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
|
|
break;
|
|
case BinaryOperator::Rem:
|
|
ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
|
|
break;
|
|
case BinaryOperator::Add:
|
|
ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
|
|
break;
|
|
case BinaryOperator::Sub:
|
|
ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
|
|
break;
|
|
case BinaryOperator::Shl:
|
|
case BinaryOperator::Shr:
|
|
ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
|
|
break;
|
|
case BinaryOperator::LE:
|
|
case BinaryOperator::LT:
|
|
case BinaryOperator::GE:
|
|
case BinaryOperator::GT:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
|
|
break;
|
|
case BinaryOperator::EQ:
|
|
case BinaryOperator::NE:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
|
|
break;
|
|
case BinaryOperator::And:
|
|
case BinaryOperator::Xor:
|
|
case BinaryOperator::Or:
|
|
ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
|
|
break;
|
|
case BinaryOperator::LAnd:
|
|
case BinaryOperator::LOr:
|
|
ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
|
|
break;
|
|
case BinaryOperator::MulAssign:
|
|
case BinaryOperator::DivAssign:
|
|
CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::RemAssign:
|
|
CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::AddAssign:
|
|
CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::SubAssign:
|
|
CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::ShlAssign:
|
|
case BinaryOperator::ShrAssign:
|
|
CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::AndAssign:
|
|
case BinaryOperator::XorAssign:
|
|
case BinaryOperator::OrAssign:
|
|
CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::Comma:
|
|
ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
|
|
break;
|
|
}
|
|
if (ResultTy.isNull())
|
|
return true;
|
|
if (CompTy.isNull())
|
|
return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
|
|
else
|
|
return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
|
|
}
|
|
|
|
// Unary Operators. 'Tok' is the token for the operator.
|
|
Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
|
|
ExprTy *input) {
|
|
Expr *Input = (Expr*)input;
|
|
UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
|
|
QualType resultType;
|
|
switch (Opc) {
|
|
default:
|
|
assert(0 && "Unimplemented unary expr!");
|
|
case UnaryOperator::PreInc:
|
|
case UnaryOperator::PreDec:
|
|
resultType = CheckIncrementDecrementOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::AddrOf:
|
|
resultType = CheckAddressOfOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Deref:
|
|
DefaultFunctionArrayConversion(Input);
|
|
resultType = CheckIndirectionOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Plus:
|
|
case UnaryOperator::Minus:
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
if (!resultType->isArithmeticType()) // C99 6.5.3.3p1
|
|
return Diag(OpLoc, diag::err_typecheck_unary_expr,
|
|
resultType.getAsString());
|
|
break;
|
|
case UnaryOperator::Not: // bitwise complement
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
// C99 6.5.3.3p1. We allow complex as a GCC extension.
|
|
if (!resultType->isIntegerType()) {
|
|
if (resultType->isComplexType())
|
|
// C99 does not support '~' for complex conjugation.
|
|
Diag(OpLoc, diag::ext_integer_complement_complex,
|
|
resultType.getAsString());
|
|
else
|
|
return Diag(OpLoc, diag::err_typecheck_unary_expr,
|
|
resultType.getAsString());
|
|
}
|
|
break;
|
|
case UnaryOperator::LNot: // logical negation
|
|
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
|
|
DefaultFunctionArrayConversion(Input);
|
|
resultType = Input->getType();
|
|
if (!resultType->isScalarType()) // C99 6.5.3.3p1
|
|
return Diag(OpLoc, diag::err_typecheck_unary_expr,
|
|
resultType.getAsString());
|
|
// LNot always has type int. C99 6.5.3.3p5.
|
|
resultType = Context.IntTy;
|
|
break;
|
|
case UnaryOperator::SizeOf:
|
|
resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
|
|
break;
|
|
case UnaryOperator::AlignOf:
|
|
resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
|
|
break;
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
resultType = CheckRealImagOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Extension:
|
|
resultType = Input->getType();
|
|
break;
|
|
}
|
|
if (resultType.isNull())
|
|
return true;
|
|
return new UnaryOperator(Input, Opc, resultType, OpLoc);
|
|
}
|
|
|
|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
|
Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
|
|
SourceLocation LabLoc,
|
|
IdentifierInfo *LabelII) {
|
|
// Look up the record for this label identifier.
|
|
LabelStmt *&LabelDecl = LabelMap[LabelII];
|
|
|
|
// If we haven't seen this label yet, create a forward reference.
|
|
if (LabelDecl == 0)
|
|
LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
|
|
|
|
// Create the AST node. The address of a label always has type 'void*'.
|
|
return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
|
|
Context.getPointerType(Context.VoidTy));
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
|
|
SourceLocation RPLoc) { // "({..})"
|
|
Stmt *SubStmt = static_cast<Stmt*>(substmt);
|
|
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
|
|
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
|
|
|
|
// FIXME: there are a variety of strange constraints to enforce here, for
|
|
// example, it is not possible to goto into a stmt expression apparently.
|
|
// More semantic analysis is needed.
|
|
|
|
// FIXME: the last statement in the compount stmt has its value used. We
|
|
// should not warn about it being unused.
|
|
|
|
// If there are sub stmts in the compound stmt, take the type of the last one
|
|
// as the type of the stmtexpr.
|
|
QualType Ty = Context.VoidTy;
|
|
|
|
if (!Compound->body_empty())
|
|
if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
|
|
Ty = LastExpr->getType();
|
|
|
|
return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
|
|
SourceLocation TypeLoc,
|
|
TypeTy *argty,
|
|
OffsetOfComponent *CompPtr,
|
|
unsigned NumComponents,
|
|
SourceLocation RPLoc) {
|
|
QualType ArgTy = QualType::getFromOpaquePtr(argty);
|
|
assert(!ArgTy.isNull() && "Missing type argument!");
|
|
|
|
// We must have at least one component that refers to the type, and the first
|
|
// one is known to be a field designator. Verify that the ArgTy represents
|
|
// a struct/union/class.
|
|
if (!ArgTy->isRecordType())
|
|
return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
|
|
|
|
// Otherwise, create a compound literal expression as the base, and
|
|
// iteratively process the offsetof designators.
|
|
Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
|
|
|
|
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
|
|
// GCC extension, diagnose them.
|
|
if (NumComponents != 1)
|
|
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
|
|
SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
|
|
|
|
for (unsigned i = 0; i != NumComponents; ++i) {
|
|
const OffsetOfComponent &OC = CompPtr[i];
|
|
if (OC.isBrackets) {
|
|
// Offset of an array sub-field. TODO: Should we allow vector elements?
|
|
const ArrayType *AT = Res->getType()->getAsArrayType();
|
|
if (!AT) {
|
|
delete Res;
|
|
return Diag(OC.LocEnd, diag::err_offsetof_array_type,
|
|
Res->getType().getAsString());
|
|
}
|
|
|
|
// FIXME: C++: Verify that operator[] isn't overloaded.
|
|
|
|
// C99 6.5.2.1p1
|
|
Expr *Idx = static_cast<Expr*>(OC.U.E);
|
|
if (!Idx->getType()->isIntegerType())
|
|
return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
|
|
Idx->getSourceRange());
|
|
|
|
Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
|
|
continue;
|
|
}
|
|
|
|
const RecordType *RC = Res->getType()->getAsRecordType();
|
|
if (!RC) {
|
|
delete Res;
|
|
return Diag(OC.LocEnd, diag::err_offsetof_record_type,
|
|
Res->getType().getAsString());
|
|
}
|
|
|
|
// Get the decl corresponding to this.
|
|
RecordDecl *RD = RC->getDecl();
|
|
FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
|
|
if (!MemberDecl)
|
|
return Diag(BuiltinLoc, diag::err_typecheck_no_member,
|
|
OC.U.IdentInfo->getName(),
|
|
SourceRange(OC.LocStart, OC.LocEnd));
|
|
|
|
// FIXME: C++: Verify that MemberDecl isn't a static field.
|
|
// FIXME: Verify that MemberDecl isn't a bitfield.
|
|
|
|
Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd);
|
|
}
|
|
|
|
return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
|
|
BuiltinLoc);
|
|
}
|
|
|
|
|
|
Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
|
|
TypeTy *arg1, TypeTy *arg2,
|
|
SourceLocation RPLoc) {
|
|
QualType argT1 = QualType::getFromOpaquePtr(arg1);
|
|
QualType argT2 = QualType::getFromOpaquePtr(arg2);
|
|
|
|
assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
|
|
|
|
return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
|
|
ExprTy *expr1, ExprTy *expr2,
|
|
SourceLocation RPLoc) {
|
|
Expr *CondExpr = static_cast<Expr*>(cond);
|
|
Expr *LHSExpr = static_cast<Expr*>(expr1);
|
|
Expr *RHSExpr = static_cast<Expr*>(expr2);
|
|
|
|
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
|
|
|
|
// The conditional expression is required to be a constant expression.
|
|
llvm::APSInt condEval(32);
|
|
SourceLocation ExpLoc;
|
|
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
|
|
return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
|
|
CondExpr->getSourceRange());
|
|
|
|
// If the condition is > zero, then the AST type is the same as the LSHExpr.
|
|
QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
|
|
RHSExpr->getType();
|
|
return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
|
|
}
|
|
|
|
/// ExprsCompatibleWithFnType - return true if the Exprs in array Args have
|
|
/// QualTypes that match the QualTypes of the arguments of the FnType.
|
|
static bool ExprsCompatibleWithFnType(Expr **Args, FunctionTypeProto *FnType) {
|
|
unsigned NumParams = FnType->getNumArgs();
|
|
for (unsigned i = 0; i != NumParams; ++i)
|
|
if (Args[i]->getType() != FnType->getArgType(i))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
|
|
SourceLocation *CommaLocs,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc) {
|
|
assert((NumArgs > 1) && "Too few arguments for OverloadExpr!");
|
|
|
|
Expr **Args = reinterpret_cast<Expr**>(args);
|
|
// The first argument is required to be a constant expression. It tells us
|
|
// the number of arguments to pass to each of the functions to be overloaded.
|
|
Expr *NParamsExpr = Args[0];
|
|
llvm::APSInt constEval(32);
|
|
SourceLocation ExpLoc;
|
|
if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
|
|
return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
|
|
NParamsExpr->getSourceRange());
|
|
|
|
// Verify that the number of parameters is > 0
|
|
unsigned NumParams = constEval.getZExtValue();
|
|
if (NumParams == 0)
|
|
return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
|
|
NParamsExpr->getSourceRange());
|
|
// Verify that we have at least 1 + NumParams arguments to the builtin.
|
|
if ((NumParams + 1) > NumArgs)
|
|
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
|
|
SourceRange(BuiltinLoc, RParenLoc));
|
|
|
|
// Figure out the return type, by matching the args to one of the functions
|
|
// listed after the paramters.
|
|
for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
|
|
// UsualUnaryConversions will convert the function DeclRefExpr into a
|
|
// pointer to function.
|
|
Expr *Fn = UsualUnaryConversions(Args[i]);
|
|
FunctionTypeProto *FnType = 0;
|
|
if (const PointerType *PT = Fn->getType()->getAsPointerType())
|
|
FnType = dyn_cast<FunctionTypeProto>(PT->getPointeeType());
|
|
|
|
// The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
|
|
// parameters, and the number of parameters must match the value passed to
|
|
// the builtin.
|
|
if (!FnType || (FnType->getNumArgs() != NumParams))
|
|
continue;
|
|
|
|
// Scan the parameter list for the FunctionType, checking the QualType of
|
|
// each paramter against the QualTypes of the arguments to the builtin.
|
|
// If they match, return a new OverloadExpr.
|
|
if (ExprsCompatibleWithFnType(Args+1, FnType))
|
|
return new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
|
|
BuiltinLoc, RParenLoc);
|
|
}
|
|
|
|
// If we didn't find a matching function Expr in the __builtin_overload list
|
|
// the return an error.
|
|
std::string typeNames;
|
|
for (unsigned i = 0; i != NumParams; ++i)
|
|
typeNames += Args[i+1]->getType().getAsString() + " ";
|
|
|
|
return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
|
|
SourceRange(BuiltinLoc, RParenLoc));
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
|
|
ExprTy *expr, TypeTy *type,
|
|
SourceLocation RPLoc) {
|
|
Expr *E = static_cast<Expr*>(expr);
|
|
QualType T = QualType::getFromOpaquePtr(type);
|
|
|
|
InitBuiltinVaListType();
|
|
|
|
if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
|
|
!= Compatible)
|
|
return Diag(E->getLocStart(),
|
|
diag::err_first_argument_to_va_arg_not_of_type_va_list,
|
|
E->getType().getAsString(),
|
|
E->getSourceRange());
|
|
|
|
// FIXME: Warn if a non-POD type is passed in.
|
|
|
|
return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
|
|
}
|
|
|
|
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
|
|
SourceLocation Loc,
|
|
QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr, const char *Flavor) {
|
|
// Decode the result (notice that AST's are still created for extensions).
|
|
bool isInvalid = false;
|
|
unsigned DiagKind;
|
|
switch (ConvTy) {
|
|
default: assert(0 && "Unknown conversion type");
|
|
case Compatible: return false;
|
|
case PointerToInt:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_int;
|
|
break;
|
|
case IntToPointer:
|
|
DiagKind = diag::ext_typecheck_convert_int_pointer;
|
|
break;
|
|
case IncompatiblePointer:
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
|
|
break;
|
|
case FunctionVoidPointer:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
|
|
break;
|
|
case CompatiblePointerDiscardsQualifiers:
|
|
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
|
|
break;
|
|
case Incompatible:
|
|
DiagKind = diag::err_typecheck_convert_incompatible;
|
|
isInvalid = true;
|
|
break;
|
|
}
|
|
|
|
Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
|
|
SrcExpr->getSourceRange());
|
|
return isInvalid;
|
|
}
|
|
|