forked from OSchip/llvm-project
3483 lines
115 KiB
C++
3483 lines
115 KiB
C++
//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements the parser for the MLIR textual form.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Parser.h"
|
|
#include "Lexer.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/InstVisitor.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/Support/STLExtras.h"
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/PrettyStackTrace.h"
|
|
#include "llvm/Support/SMLoc.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include <algorithm>
|
|
using namespace mlir;
|
|
using llvm::MemoryBuffer;
|
|
using llvm::SMLoc;
|
|
using llvm::SourceMgr;
|
|
|
|
/// Simple enum to make code read better in cases that would otherwise return a
|
|
/// bool value. Failure is "true" in a boolean context.
|
|
enum ParseResult { ParseSuccess, ParseFailure };
|
|
|
|
namespace {
|
|
class Parser;
|
|
|
|
/// This class refers to all of the state maintained globally by the parser,
|
|
/// such as the current lexer position etc. The Parser base class provides
|
|
/// methods to access this.
|
|
class ParserState {
|
|
public:
|
|
ParserState(const llvm::SourceMgr &sourceMgr, Module *module)
|
|
: context(module->getContext()), module(module), lex(sourceMgr, context),
|
|
curToken(lex.lexToken()) {}
|
|
|
|
~ParserState() {
|
|
// Destroy the forward references upon error.
|
|
for (auto forwardRef : functionForwardRefs)
|
|
delete forwardRef.second;
|
|
functionForwardRefs.clear();
|
|
}
|
|
|
|
// A map from affine map identifier to AffineMap.
|
|
llvm::StringMap<AffineMap> affineMapDefinitions;
|
|
|
|
// A map from integer set identifier to IntegerSet.
|
|
llvm::StringMap<IntegerSet> integerSetDefinitions;
|
|
|
|
// This keeps track of all forward references to functions along with the
|
|
// temporary function used to represent them.
|
|
llvm::DenseMap<Identifier, Function *> functionForwardRefs;
|
|
|
|
private:
|
|
ParserState(const ParserState &) = delete;
|
|
void operator=(const ParserState &) = delete;
|
|
|
|
friend class Parser;
|
|
|
|
// The context we're parsing into.
|
|
MLIRContext *const context;
|
|
|
|
// This is the module we are parsing into.
|
|
Module *const module;
|
|
|
|
// The lexer for the source file we're parsing.
|
|
Lexer lex;
|
|
|
|
// This is the next token that hasn't been consumed yet.
|
|
Token curToken;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
|
|
/// This class implement support for parsing global entities like types and
|
|
/// shared entities like SSA names. It is intended to be subclassed by
|
|
/// specialized subparsers that include state, e.g. when a local symbol table.
|
|
class Parser {
|
|
public:
|
|
Builder builder;
|
|
|
|
Parser(ParserState &state) : builder(state.context), state(state) {}
|
|
|
|
// Helper methods to get stuff from the parser-global state.
|
|
ParserState &getState() const { return state; }
|
|
MLIRContext *getContext() const { return state.context; }
|
|
Module *getModule() { return state.module; }
|
|
const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); }
|
|
|
|
/// Return the current token the parser is inspecting.
|
|
const Token &getToken() const { return state.curToken; }
|
|
StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }
|
|
|
|
/// Encode the specified source location information into an attribute for
|
|
/// attachment to the IR.
|
|
Location getEncodedSourceLocation(llvm::SMLoc loc) {
|
|
return state.lex.getEncodedSourceLocation(loc);
|
|
}
|
|
|
|
/// Emit an error and return failure.
|
|
ParseResult emitError(const Twine &message) {
|
|
return emitError(state.curToken.getLoc(), message);
|
|
}
|
|
ParseResult emitError(SMLoc loc, const Twine &message);
|
|
|
|
/// Advance the current lexer onto the next token.
|
|
void consumeToken() {
|
|
assert(state.curToken.isNot(Token::eof, Token::error) &&
|
|
"shouldn't advance past EOF or errors");
|
|
state.curToken = state.lex.lexToken();
|
|
}
|
|
|
|
/// Advance the current lexer onto the next token, asserting what the expected
|
|
/// current token is. This is preferred to the above method because it leads
|
|
/// to more self-documenting code with better checking.
|
|
void consumeToken(Token::Kind kind) {
|
|
assert(state.curToken.is(kind) && "consumed an unexpected token");
|
|
consumeToken();
|
|
}
|
|
|
|
/// If the current token has the specified kind, consume it and return true.
|
|
/// If not, return false.
|
|
bool consumeIf(Token::Kind kind) {
|
|
if (state.curToken.isNot(kind))
|
|
return false;
|
|
consumeToken(kind);
|
|
return true;
|
|
}
|
|
|
|
/// Consume the specified token if present and return success. On failure,
|
|
/// output a diagnostic and return failure.
|
|
ParseResult parseToken(Token::Kind expectedToken, const Twine &message);
|
|
|
|
/// Parse a comma-separated list of elements up until the specified end token.
|
|
ParseResult
|
|
parseCommaSeparatedListUntil(Token::Kind rightToken,
|
|
const std::function<ParseResult()> &parseElement,
|
|
bool allowEmptyList = true);
|
|
|
|
/// Parse a comma separated list of elements that must have at least one entry
|
|
/// in it.
|
|
ParseResult
|
|
parseCommaSeparatedList(const std::function<ParseResult()> &parseElement);
|
|
|
|
// We have two forms of parsing methods - those that return a non-null
|
|
// pointer on success, and those that return a ParseResult to indicate whether
|
|
// they returned a failure. The second class fills in by-reference arguments
|
|
// as the results of their action.
|
|
|
|
// Type parsing.
|
|
VectorType parseVectorType();
|
|
ParseResult parseXInDimensionList();
|
|
ParseResult parseDimensionListRanked(SmallVectorImpl<int> &dimensions);
|
|
Type parseDialectType();
|
|
Type parseTensorType();
|
|
Type parseMemRefType();
|
|
Type parseFunctionType();
|
|
Type parseType();
|
|
ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements);
|
|
ParseResult parseTypeList(SmallVectorImpl<Type> &elements);
|
|
|
|
// Attribute parsing.
|
|
Function *resolveFunctionReference(StringRef nameStr, SMLoc nameLoc,
|
|
FunctionType type);
|
|
Attribute parseAttribute(Type type = {});
|
|
|
|
ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes);
|
|
|
|
// Polyhedral structures.
|
|
void parseAffineStructureInline(AffineMap *map, IntegerSet *set);
|
|
void parseAffineStructureReference(AffineMap *map, IntegerSet *set);
|
|
AffineMap parseAffineMapInline();
|
|
AffineMap parseAffineMapReference();
|
|
IntegerSet parseIntegerSetInline();
|
|
IntegerSet parseIntegerSetReference();
|
|
DenseElementsAttr parseDenseElementsAttr(VectorOrTensorType type);
|
|
DenseElementsAttr parseDenseElementsAttr(Type eltType, bool isVector);
|
|
VectorOrTensorType parseVectorOrTensorType();
|
|
|
|
private:
|
|
// The Parser is subclassed and reinstantiated. Do not add additional
|
|
// non-trivial state here, add it to the ParserState class.
|
|
ParserState &state;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParseResult Parser::emitError(SMLoc loc, const Twine &message) {
|
|
// If we hit a parse error in response to a lexer error, then the lexer
|
|
// already reported the error.
|
|
if (getToken().is(Token::error))
|
|
return ParseFailure;
|
|
|
|
getContext()->emitError(getEncodedSourceLocation(loc), message);
|
|
return ParseFailure;
|
|
}
|
|
|
|
/// Consume the specified token if present and return success. On failure,
|
|
/// output a diagnostic and return failure.
|
|
ParseResult Parser::parseToken(Token::Kind expectedToken,
|
|
const Twine &message) {
|
|
if (consumeIf(expectedToken))
|
|
return ParseSuccess;
|
|
return emitError(message);
|
|
}
|
|
|
|
/// Parse a comma separated list of elements that must have at least one entry
|
|
/// in it.
|
|
ParseResult Parser::parseCommaSeparatedList(
|
|
const std::function<ParseResult()> &parseElement) {
|
|
// Non-empty case starts with an element.
|
|
if (parseElement())
|
|
return ParseFailure;
|
|
|
|
// Otherwise we have a list of comma separated elements.
|
|
while (consumeIf(Token::comma)) {
|
|
if (parseElement())
|
|
return ParseFailure;
|
|
}
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse a comma-separated list of elements, terminated with an arbitrary
|
|
/// token. This allows empty lists if allowEmptyList is true.
|
|
///
|
|
/// abstract-list ::= rightToken // if allowEmptyList == true
|
|
/// abstract-list ::= element (',' element)* rightToken
|
|
///
|
|
ParseResult Parser::parseCommaSeparatedListUntil(
|
|
Token::Kind rightToken, const std::function<ParseResult()> &parseElement,
|
|
bool allowEmptyList) {
|
|
// Handle the empty case.
|
|
if (getToken().is(rightToken)) {
|
|
if (!allowEmptyList)
|
|
return emitError("expected list element");
|
|
consumeToken(rightToken);
|
|
return ParseSuccess;
|
|
}
|
|
|
|
if (parseCommaSeparatedList(parseElement) ||
|
|
parseToken(rightToken, "expected ',' or '" +
|
|
Token::getTokenSpelling(rightToken) + "'"))
|
|
return ParseFailure;
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Parsing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Parse an arbitrary type.
|
|
///
|
|
/// type ::= integer-type
|
|
/// | index-type
|
|
/// | float-type
|
|
/// | dialect-type
|
|
/// | vector-type
|
|
/// | tensor-type
|
|
/// | memref-type
|
|
/// | function-type
|
|
///
|
|
/// index-type ::= `index`
|
|
/// float-type ::= `f16` | `bf16` | `f32` | `f64`
|
|
///
|
|
Type Parser::parseType() {
|
|
switch (getToken().getKind()) {
|
|
default:
|
|
return (emitError("expected type"), nullptr);
|
|
case Token::kw_memref:
|
|
return parseMemRefType();
|
|
case Token::kw_tensor:
|
|
return parseTensorType();
|
|
case Token::kw_vector:
|
|
return parseVectorType();
|
|
case Token::l_paren:
|
|
return parseFunctionType();
|
|
// integer-type
|
|
case Token::inttype: {
|
|
auto width = getToken().getIntTypeBitwidth();
|
|
if (!width.hasValue())
|
|
return (emitError("invalid integer width"), nullptr);
|
|
auto loc = getEncodedSourceLocation(getToken().getLoc());
|
|
consumeToken(Token::inttype);
|
|
return IntegerType::getChecked(width.getValue(), builder.getContext(), loc);
|
|
}
|
|
|
|
// float-type
|
|
case Token::kw_bf16:
|
|
consumeToken(Token::kw_bf16);
|
|
return builder.getBF16Type();
|
|
case Token::kw_f16:
|
|
consumeToken(Token::kw_f16);
|
|
return builder.getF16Type();
|
|
case Token::kw_f32:
|
|
consumeToken(Token::kw_f32);
|
|
return builder.getF32Type();
|
|
case Token::kw_f64:
|
|
consumeToken(Token::kw_f64);
|
|
return builder.getF64Type();
|
|
|
|
// index-type
|
|
case Token::kw_index:
|
|
consumeToken(Token::kw_index);
|
|
return builder.getIndexType();
|
|
|
|
// dialect-specific type
|
|
case Token::exclamation_identifier:
|
|
return parseDialectType();
|
|
}
|
|
}
|
|
|
|
/// Parse a vector type.
|
|
///
|
|
/// vector-type ::= `vector` `<` const-dimension-list primitive-type `>`
|
|
/// const-dimension-list ::= (integer-literal `x`)+
|
|
///
|
|
VectorType Parser::parseVectorType() {
|
|
consumeToken(Token::kw_vector);
|
|
|
|
if (parseToken(Token::less, "expected '<' in vector type"))
|
|
return nullptr;
|
|
|
|
if (getToken().isNot(Token::integer))
|
|
return (emitError("expected dimension size in vector type"), nullptr);
|
|
|
|
SmallVector<int, 4> dimensions;
|
|
while (getToken().is(Token::integer)) {
|
|
// Make sure this integer value is in bound and valid.
|
|
auto dimension = getToken().getUnsignedIntegerValue();
|
|
if (!dimension.hasValue())
|
|
return (emitError("invalid dimension in vector type"), nullptr);
|
|
dimensions.push_back((int)dimension.getValue());
|
|
|
|
consumeToken(Token::integer);
|
|
|
|
// Make sure we have an 'x' or something like 'xbf32'.
|
|
if (getToken().isNot(Token::bare_identifier) ||
|
|
getTokenSpelling()[0] != 'x')
|
|
return (emitError("expected 'x' in vector dimension list"), nullptr);
|
|
|
|
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
|
|
if (getTokenSpelling().size() != 1)
|
|
state.lex.resetPointer(getTokenSpelling().data() + 1);
|
|
|
|
// Consume the 'x'.
|
|
consumeToken(Token::bare_identifier);
|
|
}
|
|
|
|
// Parse the element type.
|
|
auto typeLoc = getToken().getLoc();
|
|
auto elementType = parseType();
|
|
if (!elementType || parseToken(Token::greater, "expected '>' in vector type"))
|
|
return nullptr;
|
|
|
|
return VectorType::getChecked(dimensions, elementType,
|
|
getEncodedSourceLocation(typeLoc));
|
|
}
|
|
|
|
/// Parse an 'x' token in a dimension list, handling the case where the x is
|
|
/// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next
|
|
/// token.
|
|
ParseResult Parser::parseXInDimensionList() {
|
|
if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x')
|
|
return emitError("expected 'x' in dimension list");
|
|
|
|
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
|
|
if (getTokenSpelling().size() != 1)
|
|
state.lex.resetPointer(getTokenSpelling().data() + 1);
|
|
|
|
// Consume the 'x'.
|
|
consumeToken(Token::bare_identifier);
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse a dimension list of a tensor or memref type. This populates the
|
|
/// dimension list, returning -1 for the '?' dimensions.
|
|
///
|
|
/// dimension-list-ranked ::= (dimension `x`)*
|
|
/// dimension ::= `?` | integer-literal
|
|
///
|
|
ParseResult Parser::parseDimensionListRanked(SmallVectorImpl<int> &dimensions) {
|
|
while (getToken().isAny(Token::integer, Token::question)) {
|
|
if (consumeIf(Token::question)) {
|
|
dimensions.push_back(-1);
|
|
} else {
|
|
// Make sure this integer value is in bound and valid.
|
|
auto dimension = getToken().getUnsignedIntegerValue();
|
|
if (!dimension.hasValue() || (int)dimension.getValue() < 0)
|
|
return emitError("invalid dimension");
|
|
dimensions.push_back((int)dimension.getValue());
|
|
consumeToken(Token::integer);
|
|
}
|
|
|
|
// Make sure we have an 'x' or something like 'xbf32'.
|
|
if (parseXInDimensionList())
|
|
return ParseFailure;
|
|
}
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse a dialect-specific type.
|
|
///
|
|
/// dialect-type ::= `!` dialect-namespace `<` '"' type-data '"' `>`
|
|
///
|
|
Type Parser::parseDialectType() {
|
|
assert(getToken().is(Token::exclamation_identifier));
|
|
|
|
// Parse the dialect namespace.
|
|
StringRef dialectName = getTokenSpelling().drop_front();
|
|
consumeToken(Token::exclamation_identifier);
|
|
|
|
// Check for a registered dialect with this name.
|
|
auto *dialect = state.context->getRegisteredDialect(dialectName);
|
|
if (dialect) {
|
|
// Make sure that the dialect provides a parsing hook.
|
|
if (!dialect->typeParseHook)
|
|
return (emitError("dialect '" + dialect->getNamespace() +
|
|
"' provides no type parsing hook"),
|
|
nullptr);
|
|
}
|
|
|
|
// Consume the '<'.
|
|
if (parseToken(Token::less, "expected '<' in dialect type"))
|
|
return nullptr;
|
|
|
|
// Parse the type specific data.
|
|
if (getToken().isNot(Token::string))
|
|
return (emitError("expected string literal type data in dialect type"),
|
|
nullptr);
|
|
|
|
auto typeData = getToken().getStringValue();
|
|
auto loc = getEncodedSourceLocation(getToken().getLoc());
|
|
consumeToken(Token::string);
|
|
|
|
Type result;
|
|
|
|
// If we found a registered dialect, then ask it to parse the type.
|
|
if (dialect) {
|
|
result = dialect->typeParseHook(typeData, loc, state.context);
|
|
if (!result)
|
|
return nullptr;
|
|
} else {
|
|
// Otherwise, form a new unknown type.
|
|
result = UnknownType::get(Identifier::get(dialectName, state.context),
|
|
typeData, state.context);
|
|
}
|
|
|
|
// Consume the '>'.
|
|
if (parseToken(Token::greater, "expected '>' in dialect type"))
|
|
return nullptr;
|
|
return result;
|
|
}
|
|
|
|
/// Parse a tensor type.
|
|
///
|
|
/// tensor-type ::= `tensor` `<` dimension-list element-type `>`
|
|
/// dimension-list ::= dimension-list-ranked | `*x`
|
|
///
|
|
Type Parser::parseTensorType() {
|
|
consumeToken(Token::kw_tensor);
|
|
|
|
if (parseToken(Token::less, "expected '<' in tensor type"))
|
|
return nullptr;
|
|
|
|
bool isUnranked;
|
|
SmallVector<int, 4> dimensions;
|
|
|
|
if (consumeIf(Token::star)) {
|
|
// This is an unranked tensor type.
|
|
isUnranked = true;
|
|
|
|
if (parseXInDimensionList())
|
|
return nullptr;
|
|
|
|
} else {
|
|
isUnranked = false;
|
|
if (parseDimensionListRanked(dimensions))
|
|
return nullptr;
|
|
}
|
|
|
|
// Parse the element type.
|
|
auto typeLocation = getEncodedSourceLocation(getToken().getLoc());
|
|
auto elementType = parseType();
|
|
if (!elementType || parseToken(Token::greater, "expected '>' in tensor type"))
|
|
return nullptr;
|
|
|
|
if (isUnranked)
|
|
return UnrankedTensorType::getChecked(elementType, typeLocation);
|
|
return RankedTensorType::getChecked(dimensions, elementType, typeLocation);
|
|
}
|
|
|
|
/// Parse a memref type.
|
|
///
|
|
/// memref-type ::= `memref` `<` dimension-list-ranked element-type
|
|
/// (`,` semi-affine-map-composition)? (`,` memory-space)? `>`
|
|
///
|
|
/// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
|
|
/// memory-space ::= integer-literal /* | TODO: address-space-id */
|
|
///
|
|
Type Parser::parseMemRefType() {
|
|
consumeToken(Token::kw_memref);
|
|
|
|
if (parseToken(Token::less, "expected '<' in memref type"))
|
|
return nullptr;
|
|
|
|
SmallVector<int, 4> dimensions;
|
|
if (parseDimensionListRanked(dimensions))
|
|
return nullptr;
|
|
|
|
// Parse the element type.
|
|
auto typeLoc = getToken().getLoc();
|
|
auto elementType = parseType();
|
|
if (!elementType)
|
|
return nullptr;
|
|
|
|
// Parse semi-affine-map-composition.
|
|
SmallVector<AffineMap, 2> affineMapComposition;
|
|
unsigned memorySpace = 0;
|
|
bool parsedMemorySpace = false;
|
|
|
|
auto parseElt = [&]() -> ParseResult {
|
|
if (getToken().is(Token::integer)) {
|
|
// Parse memory space.
|
|
if (parsedMemorySpace)
|
|
return emitError("multiple memory spaces specified in memref type");
|
|
auto v = getToken().getUnsignedIntegerValue();
|
|
if (!v.hasValue())
|
|
return emitError("invalid memory space in memref type");
|
|
memorySpace = v.getValue();
|
|
consumeToken(Token::integer);
|
|
parsedMemorySpace = true;
|
|
} else {
|
|
// Parse affine map.
|
|
if (parsedMemorySpace)
|
|
return emitError("affine map after memory space in memref type");
|
|
auto affineMap = parseAffineMapReference();
|
|
if (!affineMap)
|
|
return ParseFailure;
|
|
affineMapComposition.push_back(affineMap);
|
|
}
|
|
return ParseSuccess;
|
|
};
|
|
|
|
// Parse a list of mappings and address space if present.
|
|
if (consumeIf(Token::comma)) {
|
|
// Parse comma separated list of affine maps, followed by memory space.
|
|
if (parseCommaSeparatedListUntil(Token::greater, parseElt,
|
|
/*allowEmptyList=*/false)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
if (parseToken(Token::greater, "expected ',' or '>' in memref type"))
|
|
return nullptr;
|
|
}
|
|
|
|
return MemRefType::getChecked(dimensions, elementType, affineMapComposition,
|
|
memorySpace, getEncodedSourceLocation(typeLoc));
|
|
}
|
|
|
|
/// Parse a function type.
|
|
///
|
|
/// function-type ::= type-list-parens `->` type-list
|
|
///
|
|
Type Parser::parseFunctionType() {
|
|
assert(getToken().is(Token::l_paren));
|
|
|
|
SmallVector<Type, 4> arguments, results;
|
|
if (parseTypeList(arguments) ||
|
|
parseToken(Token::arrow, "expected '->' in function type") ||
|
|
parseTypeList(results))
|
|
return nullptr;
|
|
|
|
return builder.getFunctionType(arguments, results);
|
|
}
|
|
|
|
/// Parse a list of types without an enclosing parenthesis. The list must have
|
|
/// at least one member.
|
|
///
|
|
/// type-list-no-parens ::= type (`,` type)*
|
|
///
|
|
ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) {
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto elt = parseType();
|
|
elements.push_back(elt);
|
|
return elt ? ParseSuccess : ParseFailure;
|
|
};
|
|
|
|
return parseCommaSeparatedList(parseElt);
|
|
}
|
|
|
|
/// Parse a "type list", which is a singular type, or a parenthesized list of
|
|
/// types.
|
|
///
|
|
/// type-list ::= type-list-parens | type
|
|
/// type-list-parens ::= `(` `)`
|
|
/// | `(` type-list-no-parens `)`
|
|
///
|
|
ParseResult Parser::parseTypeList(SmallVectorImpl<Type> &elements) {
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto elt = parseType();
|
|
elements.push_back(elt);
|
|
return elt ? ParseSuccess : ParseFailure;
|
|
};
|
|
|
|
// If there is no parens, then it must be a singular type.
|
|
if (!consumeIf(Token::l_paren))
|
|
return parseElt();
|
|
|
|
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt))
|
|
return ParseFailure;
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute parsing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class TensorLiteralParser {
|
|
public:
|
|
TensorLiteralParser(Parser &p, Type eltTy)
|
|
: p(p), eltTy(eltTy), currBitPos(0) {}
|
|
|
|
ParseResult parse() { return parseList(shape); }
|
|
|
|
ArrayRef<char> getValues() const {
|
|
return {reinterpret_cast<const char *>(storage.data()), storage.size() * 8};
|
|
}
|
|
|
|
ArrayRef<int> getShape() const { return shape; }
|
|
|
|
private:
|
|
/// Parse either a single element or a list of elements. Return the dimensions
|
|
/// of the parsed sub-tensor in dims.
|
|
ParseResult parseElementOrList(llvm::SmallVectorImpl<int> &dims);
|
|
|
|
/// Parse a list of either lists or elements, returning the dimensions of the
|
|
/// parsed sub-tensors in dims. For example:
|
|
/// parseList([1, 2, 3]) -> Success, [3]
|
|
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
|
|
/// parseList([[1, 2], 3]) -> Failure
|
|
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
|
|
ParseResult parseList(llvm::SmallVectorImpl<int> &dims);
|
|
|
|
void addToStorage(uint64_t value) {
|
|
// Only tensors of integers or floats are supported.
|
|
// FIXME: use full word to store BF16 as double because APFloat, which we
|
|
// use to work with floats, does not have support for BF16 yet.
|
|
size_t bitWidth = eltTy.isBF16() ? 64 : eltTy.getIntOrFloatBitWidth();
|
|
|
|
if (bitWidth == 64)
|
|
storage.push_back(value);
|
|
|
|
if (currBitPos + bitWidth > storage.size() * 64)
|
|
storage.push_back(0L);
|
|
|
|
auto *rawData = reinterpret_cast<char *>(storage.data());
|
|
DenseElementsAttr::writeBits(rawData, currBitPos, bitWidth, value);
|
|
currBitPos += bitWidth;
|
|
}
|
|
|
|
Parser &p;
|
|
Type eltTy;
|
|
size_t currBitPos;
|
|
SmallVector<int, 4> shape;
|
|
std::vector<uint64_t> storage;
|
|
};
|
|
} // namespace
|
|
|
|
/// Parse either a single element or a list of elements. Return the dimensions
|
|
/// of the parsed sub-tensor in dims.
|
|
ParseResult
|
|
TensorLiteralParser::parseElementOrList(llvm::SmallVectorImpl<int> &dims) {
|
|
switch (p.getToken().getKind()) {
|
|
case Token::l_square:
|
|
return parseList(dims);
|
|
case Token::floatliteral:
|
|
case Token::integer:
|
|
case Token::minus: {
|
|
auto result = p.parseAttribute(eltTy);
|
|
if (!result)
|
|
return ParseResult::ParseFailure;
|
|
// check result matches the element type.
|
|
switch (eltTy.getKind()) {
|
|
case StandardTypes::BF16:
|
|
case StandardTypes::F16:
|
|
case StandardTypes::F32:
|
|
case StandardTypes::F64: {
|
|
// Bitcast the APFloat value to APInt and store the bit representation.
|
|
auto fpAttrResult = result.dyn_cast<FloatAttr>();
|
|
if (!fpAttrResult)
|
|
return p.emitError(
|
|
"expected tensor literal element with floating point type");
|
|
auto apInt = fpAttrResult.getValue().bitcastToAPInt();
|
|
|
|
// FIXME: using 64 bits and double semantics for BF16 because APFloat does
|
|
// not support BF16 directly.
|
|
size_t bitWidth = eltTy.isBF16() ? 64 : eltTy.getIntOrFloatBitWidth();
|
|
assert(apInt.getBitWidth() == bitWidth);
|
|
(void)bitWidth;
|
|
|
|
addToStorage(apInt.getRawData()[0]);
|
|
break;
|
|
}
|
|
case StandardTypes::Integer: {
|
|
if (!result.isa<IntegerAttr>())
|
|
return p.emitError("expected tensor literal element has integer type");
|
|
auto value = result.cast<IntegerAttr>().getValue();
|
|
auto bitWidth = eltTy.getIntOrFloatBitWidth();
|
|
if (value.getMinSignedBits() > bitWidth)
|
|
return p.emitError("tensor literal element has more bits than that "
|
|
"specified in the type");
|
|
addToStorage(value.getSExtValue());
|
|
break;
|
|
}
|
|
default:
|
|
return p.emitError("expected integer or float tensor element");
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
return p.emitError("expected '[' or scalar constant inside tensor literal");
|
|
}
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse a list of either lists or elements, returning the dimensions of the
|
|
/// parsed sub-tensors in dims. For example:
|
|
/// parseList([1, 2, 3]) -> Success, [3]
|
|
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
|
|
/// parseList([[1, 2], 3]) -> Failure
|
|
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
|
|
ParseResult TensorLiteralParser::parseList(llvm::SmallVectorImpl<int> &dims) {
|
|
p.consumeToken(Token::l_square);
|
|
|
|
auto checkDims = [&](const llvm::SmallVectorImpl<int> &prevDims,
|
|
const llvm::SmallVectorImpl<int> &newDims) {
|
|
if (prevDims == newDims)
|
|
return ParseSuccess;
|
|
return p.emitError("tensor literal is invalid; ranks are not consistent "
|
|
"between elements");
|
|
};
|
|
|
|
bool first = true;
|
|
llvm::SmallVector<int, 4> newDims;
|
|
unsigned size = 0;
|
|
auto parseCommaSeparatedList = [&]() {
|
|
llvm::SmallVector<int, 4> thisDims;
|
|
if (parseElementOrList(thisDims))
|
|
return ParseFailure;
|
|
++size;
|
|
if (!first)
|
|
return checkDims(newDims, thisDims);
|
|
newDims = thisDims;
|
|
first = false;
|
|
return ParseSuccess;
|
|
};
|
|
if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList))
|
|
return ParseFailure;
|
|
|
|
// Return the sublists' dimensions with 'size' prepended.
|
|
dims.clear();
|
|
dims.push_back(size);
|
|
dims.append(newDims.begin(), newDims.end());
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Given a parsed reference to a function name like @foo and a type that it
|
|
/// corresponds to, resolve it to a concrete function object (possibly
|
|
/// synthesizing a forward reference) or emit an error and return null on
|
|
/// failure.
|
|
Function *Parser::resolveFunctionReference(StringRef nameStr, SMLoc nameLoc,
|
|
FunctionType type) {
|
|
Identifier name = builder.getIdentifier(nameStr.drop_front());
|
|
|
|
// See if the function has already been defined in the module.
|
|
Function *function = getModule()->getNamedFunction(name);
|
|
|
|
// If not, get or create a forward reference to one.
|
|
if (!function) {
|
|
auto &entry = state.functionForwardRefs[name];
|
|
if (!entry)
|
|
entry = new Function(getEncodedSourceLocation(nameLoc), name, type,
|
|
/*attrs=*/{});
|
|
function = entry;
|
|
}
|
|
|
|
if (function->getType() != type)
|
|
return (emitError(nameLoc, "reference to function with mismatched type"),
|
|
nullptr);
|
|
return function;
|
|
}
|
|
|
|
/// Attribute parsing.
|
|
///
|
|
/// attribute-value ::= bool-literal
|
|
/// | integer-literal (`:` integer-type)
|
|
/// | float-literal (`:` float-type)
|
|
/// | string-literal
|
|
/// | type
|
|
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
|
|
/// | function-id `:` function-type
|
|
/// | (`splat<` | `dense<`) (tensor-type | vector-type)`,`
|
|
/// attribute-value `>`
|
|
/// | `sparse<` (tensor-type | vector-type)`,`
|
|
/// attribute-value`, ` attribute-value `>`
|
|
///
|
|
Attribute Parser::parseAttribute(Type type) {
|
|
switch (getToken().getKind()) {
|
|
case Token::kw_true:
|
|
consumeToken(Token::kw_true);
|
|
return builder.getBoolAttr(true);
|
|
case Token::kw_false:
|
|
consumeToken(Token::kw_false);
|
|
return builder.getBoolAttr(false);
|
|
|
|
case Token::floatliteral: {
|
|
auto val = getToken().getFloatingPointValue();
|
|
if (!val.hasValue())
|
|
return (emitError("floating point value too large for attribute"),
|
|
nullptr);
|
|
consumeToken(Token::floatliteral);
|
|
if (!type) {
|
|
if (consumeIf(Token::colon)) {
|
|
if (!(type = parseType()))
|
|
return nullptr;
|
|
} else {
|
|
// Default to F64 when no type is specified.
|
|
type = builder.getF64Type();
|
|
}
|
|
}
|
|
if (!type.isa<FloatType>())
|
|
return (emitError("floating point value not valid for specified type"),
|
|
nullptr);
|
|
return builder.getFloatAttr(type, val.getValue());
|
|
}
|
|
case Token::integer: {
|
|
auto val = getToken().getUInt64IntegerValue();
|
|
if (!val.hasValue() || (int64_t)val.getValue() < 0)
|
|
return (emitError("integer constant out of range for attribute"),
|
|
nullptr);
|
|
consumeToken(Token::integer);
|
|
if (!type) {
|
|
if (consumeIf(Token::colon)) {
|
|
if (!(type = parseType()))
|
|
return nullptr;
|
|
} else {
|
|
// Default to i64 if not type is specified.
|
|
type = builder.getIntegerType(64);
|
|
}
|
|
}
|
|
if (!type.isIntOrIndex())
|
|
return (emitError("integer value not valid for specified type"), nullptr);
|
|
int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth();
|
|
APInt apInt(width, val.getValue());
|
|
if (apInt != *val)
|
|
return emitError("integer constant out of range for attribute"), nullptr;
|
|
return builder.getIntegerAttr(type, apInt);
|
|
}
|
|
|
|
case Token::minus: {
|
|
consumeToken(Token::minus);
|
|
if (getToken().is(Token::integer)) {
|
|
auto val = getToken().getUInt64IntegerValue();
|
|
if (!val.hasValue() || (int64_t)-val.getValue() >= 0)
|
|
return (emitError("integer constant out of range for attribute"),
|
|
nullptr);
|
|
consumeToken(Token::integer);
|
|
if (!type) {
|
|
if (consumeIf(Token::colon)) {
|
|
if (!(type = parseType()))
|
|
return nullptr;
|
|
} else {
|
|
// Default to i64 if not type is specified.
|
|
type = builder.getIntegerType(64);
|
|
}
|
|
}
|
|
if (!type.isIntOrIndex())
|
|
return (emitError("integer value not valid for type"), nullptr);
|
|
int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth();
|
|
APInt apInt(width, *val, /*isSigned=*/true);
|
|
if (apInt != *val)
|
|
return (emitError("integer constant out of range for attribute"),
|
|
nullptr);
|
|
return builder.getIntegerAttr(type, -apInt);
|
|
}
|
|
if (getToken().is(Token::floatliteral)) {
|
|
auto val = getToken().getFloatingPointValue();
|
|
if (!val.hasValue())
|
|
return (emitError("floating point value too large for attribute"),
|
|
nullptr);
|
|
consumeToken(Token::floatliteral);
|
|
if (!type) {
|
|
if (consumeIf(Token::colon)) {
|
|
if (!(type = parseType()))
|
|
return nullptr;
|
|
} else {
|
|
// Default to F64 when no type is specified.
|
|
type = builder.getF64Type();
|
|
}
|
|
}
|
|
if (!type.isa<FloatType>())
|
|
return (emitError("floating point value not valid for type"), nullptr);
|
|
return builder.getFloatAttr(type, -val.getValue());
|
|
}
|
|
|
|
return (emitError("expected constant integer or floating point value"),
|
|
nullptr);
|
|
}
|
|
|
|
case Token::string: {
|
|
auto val = getToken().getStringValue();
|
|
consumeToken(Token::string);
|
|
return builder.getStringAttr(val);
|
|
}
|
|
|
|
case Token::l_square: {
|
|
consumeToken(Token::l_square);
|
|
SmallVector<Attribute, 4> elements;
|
|
|
|
auto parseElt = [&]() -> ParseResult {
|
|
elements.push_back(parseAttribute());
|
|
return elements.back() ? ParseSuccess : ParseFailure;
|
|
};
|
|
|
|
if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
|
|
return nullptr;
|
|
return builder.getArrayAttr(elements);
|
|
}
|
|
case Token::hash_identifier:
|
|
case Token::l_paren: {
|
|
// Try to parse an affine map or an integer set reference.
|
|
AffineMap map;
|
|
IntegerSet set;
|
|
parseAffineStructureReference(&map, &set);
|
|
if (map)
|
|
return builder.getAffineMapAttr(map);
|
|
if (set)
|
|
return builder.getIntegerSetAttr(set);
|
|
return (emitError("expected affine map or integer set attribute value"),
|
|
nullptr);
|
|
}
|
|
|
|
case Token::at_identifier: {
|
|
auto nameLoc = getToken().getLoc();
|
|
auto nameStr = getTokenSpelling();
|
|
consumeToken(Token::at_identifier);
|
|
|
|
if (parseToken(Token::colon, "expected ':' and function type"))
|
|
return nullptr;
|
|
auto typeLoc = getToken().getLoc();
|
|
Type type = parseType();
|
|
if (!type)
|
|
return nullptr;
|
|
auto fnType = type.dyn_cast<FunctionType>();
|
|
if (!fnType)
|
|
return (emitError(typeLoc, "expected function type"), nullptr);
|
|
|
|
auto *function = resolveFunctionReference(nameStr, nameLoc, fnType);
|
|
return function ? builder.getFunctionAttr(function) : nullptr;
|
|
}
|
|
case Token::kw_opaque: {
|
|
consumeToken(Token::kw_opaque);
|
|
if (parseToken(Token::less, "expected '<' after 'opaque'"))
|
|
return nullptr;
|
|
auto type = parseVectorOrTensorType();
|
|
if (!type)
|
|
return nullptr;
|
|
auto val = getToken().getStringValue();
|
|
if (val.size() < 2 || val[0] != '0' || val[1] != 'x')
|
|
return (emitError("opaque string should start with '0x'"), nullptr);
|
|
val = val.substr(2);
|
|
if (!std::all_of(val.begin(), val.end(),
|
|
[](char c) { return llvm::isHexDigit(c); })) {
|
|
return (emitError("opaque string only contains hex digits"), nullptr);
|
|
}
|
|
consumeToken(Token::string);
|
|
if (parseToken(Token::greater, "expected '>'"))
|
|
return nullptr;
|
|
return builder.getOpaqueElementsAttr(type, llvm::fromHex(val));
|
|
}
|
|
case Token::kw_splat: {
|
|
consumeToken(Token::kw_splat);
|
|
if (parseToken(Token::less, "expected '<' after 'splat'"))
|
|
return nullptr;
|
|
|
|
auto type = parseVectorOrTensorType();
|
|
if (!type)
|
|
return nullptr;
|
|
switch (getToken().getKind()) {
|
|
case Token::floatliteral:
|
|
case Token::integer:
|
|
case Token::minus: {
|
|
auto scalar = parseAttribute(type.getElementType());
|
|
if (!scalar)
|
|
return nullptr;
|
|
if (parseToken(Token::greater, "expected '>'"))
|
|
return nullptr;
|
|
return builder.getSplatElementsAttr(type, scalar);
|
|
}
|
|
default:
|
|
return (emitError("expected scalar constant inside tensor literal"),
|
|
nullptr);
|
|
}
|
|
}
|
|
case Token::kw_dense: {
|
|
consumeToken(Token::kw_dense);
|
|
if (parseToken(Token::less, "expected '<' after 'dense'"))
|
|
return nullptr;
|
|
|
|
auto type = parseVectorOrTensorType();
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
switch (getToken().getKind()) {
|
|
case Token::l_square: {
|
|
auto attr = parseDenseElementsAttr(type);
|
|
if (!attr)
|
|
return nullptr;
|
|
if (parseToken(Token::greater, "expected '>'"))
|
|
return nullptr;
|
|
return attr;
|
|
}
|
|
default:
|
|
return (emitError("expected '[' to start dense tensor literal"), nullptr);
|
|
}
|
|
}
|
|
case Token::kw_sparse: {
|
|
consumeToken(Token::kw_sparse);
|
|
if (parseToken(Token::less, "Expected '<' after 'sparse'"))
|
|
return nullptr;
|
|
|
|
auto type = parseVectorOrTensorType();
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
switch (getToken().getKind()) {
|
|
case Token::l_square: {
|
|
/// Parse indices
|
|
auto indicesEltType = builder.getIntegerType(32);
|
|
auto indices =
|
|
parseDenseElementsAttr(indicesEltType, type.isa<VectorType>());
|
|
|
|
if (parseToken(Token::comma, "expected ','"))
|
|
return nullptr;
|
|
|
|
/// Parse values.
|
|
auto valuesEltType = type.getElementType();
|
|
auto values =
|
|
parseDenseElementsAttr(valuesEltType, type.isa<VectorType>());
|
|
|
|
/// Sanity check.
|
|
auto indicesType = indices.getType();
|
|
auto valuesType = values.getType();
|
|
auto sameShape = (indicesType.getRank() == 1) ||
|
|
(type.getRank() == indicesType.getDimSize(1));
|
|
auto sameElementNum =
|
|
indicesType.getDimSize(0) == valuesType.getDimSize(0);
|
|
if (!sameShape || !sameElementNum) {
|
|
std::string str;
|
|
llvm::raw_string_ostream s(str);
|
|
s << "expected shape ([";
|
|
interleaveComma(type.getShape(), s);
|
|
s << "]); inferred shape of indices literal ([";
|
|
interleaveComma(indicesType.getShape(), s);
|
|
s << "]); inferred shape of values literal ([";
|
|
interleaveComma(valuesType.getShape(), s);
|
|
s << "])";
|
|
return (emitError(s.str()), nullptr);
|
|
}
|
|
|
|
if (parseToken(Token::greater, "expected '>'"))
|
|
return nullptr;
|
|
|
|
// Build the sparse elements attribute by the indices and values.
|
|
return builder.getSparseElementsAttr(
|
|
type, indices.cast<DenseIntElementsAttr>(), values);
|
|
}
|
|
default:
|
|
return (emitError("expected '[' to start sparse tensor literal"),
|
|
nullptr);
|
|
}
|
|
return (emitError("expected elements literal has a tensor or vector type"),
|
|
nullptr);
|
|
}
|
|
default: {
|
|
if (Type type = parseType())
|
|
return builder.getTypeAttr(type);
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Dense elements attribute.
|
|
///
|
|
/// dense-attr-list ::= `[` attribute-value `]`
|
|
/// attribute-value ::= integer-literal
|
|
/// | float-literal
|
|
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
|
|
///
|
|
/// This method returns a constructed dense elements attribute with the shape
|
|
/// from the parsing result.
|
|
DenseElementsAttr Parser::parseDenseElementsAttr(Type eltType, bool isVector) {
|
|
TensorLiteralParser literalParser(*this, eltType);
|
|
if (literalParser.parse())
|
|
return nullptr;
|
|
|
|
VectorOrTensorType type;
|
|
if (isVector) {
|
|
type = builder.getVectorType(literalParser.getShape(), eltType);
|
|
} else {
|
|
type = builder.getTensorType(literalParser.getShape(), eltType);
|
|
}
|
|
return builder.getDenseElementsAttr(type, literalParser.getValues())
|
|
.cast<DenseElementsAttr>();
|
|
}
|
|
|
|
/// Dense elements attribute.
|
|
///
|
|
/// dense-attr-list ::= `[` attribute-value `]`
|
|
/// attribute-value ::= integer-literal
|
|
/// | float-literal
|
|
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
|
|
///
|
|
/// This method compares the shapes from the parsing result and that from the
|
|
/// input argument. It returns a constructed dense elements attribute if both
|
|
/// match.
|
|
DenseElementsAttr Parser::parseDenseElementsAttr(VectorOrTensorType type) {
|
|
auto eltTy = type.getElementType();
|
|
TensorLiteralParser literalParser(*this, eltTy);
|
|
if (literalParser.parse())
|
|
return nullptr;
|
|
if (literalParser.getShape() != type.getShape()) {
|
|
std::string str;
|
|
llvm::raw_string_ostream s(str);
|
|
s << "inferred shape of elements literal ([";
|
|
interleaveComma(literalParser.getShape(), s);
|
|
s << "]) does not match type ([";
|
|
interleaveComma(type.getShape(), s);
|
|
s << "])";
|
|
return (emitError(s.str()), nullptr);
|
|
}
|
|
return builder.getDenseElementsAttr(type, literalParser.getValues())
|
|
.cast<DenseElementsAttr>();
|
|
}
|
|
|
|
/// Vector or tensor type for elements attribute.
|
|
///
|
|
/// vector-or-tensor-type ::= vector-type | tensor-type
|
|
///
|
|
/// This method also checks the type has static shape and ranked.
|
|
VectorOrTensorType Parser::parseVectorOrTensorType() {
|
|
auto elementType = parseType();
|
|
if (!elementType)
|
|
return nullptr;
|
|
|
|
auto type = elementType.dyn_cast<VectorOrTensorType>();
|
|
if (!type) {
|
|
return (emitError("expected elements literal has a tensor or vector type"),
|
|
nullptr);
|
|
}
|
|
|
|
if (parseToken(Token::comma, "expected ','"))
|
|
return nullptr;
|
|
|
|
if (!type.hasStaticShape() || type.getRank() == -1) {
|
|
return (emitError("tensor literals must be ranked and have static shape"),
|
|
nullptr);
|
|
}
|
|
return type;
|
|
}
|
|
|
|
/// Attribute dictionary.
|
|
///
|
|
/// attribute-dict ::= `{` `}`
|
|
/// | `{` attribute-entry (`,` attribute-entry)* `}`
|
|
/// attribute-entry ::= bare-id `:` attribute-value
|
|
///
|
|
ParseResult
|
|
Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) {
|
|
if (!consumeIf(Token::l_brace))
|
|
return ParseFailure;
|
|
|
|
auto parseElt = [&]() -> ParseResult {
|
|
// We allow keywords as attribute names.
|
|
if (getToken().isNot(Token::bare_identifier, Token::inttype) &&
|
|
!getToken().isKeyword())
|
|
return emitError("expected attribute name");
|
|
auto nameId = builder.getIdentifier(getTokenSpelling());
|
|
consumeToken();
|
|
|
|
if (parseToken(Token::colon, "expected ':' in attribute list"))
|
|
return ParseFailure;
|
|
|
|
auto attr = parseAttribute();
|
|
if (!attr)
|
|
return ParseFailure;
|
|
|
|
attributes.push_back({nameId, attr});
|
|
return ParseSuccess;
|
|
};
|
|
|
|
if (parseCommaSeparatedListUntil(Token::r_brace, parseElt))
|
|
return ParseFailure;
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Polyhedral structures.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
|
|
/// the boolean sense.
|
|
enum AffineLowPrecOp {
|
|
/// Null value.
|
|
LNoOp,
|
|
Add,
|
|
Sub
|
|
};
|
|
|
|
/// Higher precedence ops - all at the same precedence level. HNoOp is false
|
|
/// in the boolean sense.
|
|
enum AffineHighPrecOp {
|
|
/// Null value.
|
|
HNoOp,
|
|
Mul,
|
|
FloorDiv,
|
|
CeilDiv,
|
|
Mod
|
|
};
|
|
|
|
namespace {
|
|
/// This is a specialized parser for affine structures (affine maps, affine
|
|
/// expressions, and integer sets), maintaining the state transient to their
|
|
/// bodies.
|
|
class AffineParser : public Parser {
|
|
public:
|
|
explicit AffineParser(ParserState &state) : Parser(state) {}
|
|
|
|
void parseAffineStructureInline(AffineMap *map, IntegerSet *set);
|
|
AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
|
|
IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
|
|
|
|
private:
|
|
// Binary affine op parsing.
|
|
AffineLowPrecOp consumeIfLowPrecOp();
|
|
AffineHighPrecOp consumeIfHighPrecOp();
|
|
|
|
// Identifier lists for polyhedral structures.
|
|
ParseResult parseDimIdList(unsigned &numDims);
|
|
ParseResult parseSymbolIdList(unsigned &numSymbols);
|
|
ParseResult parseIdentifierDefinition(AffineExpr idExpr);
|
|
|
|
AffineExpr parseAffineExpr();
|
|
AffineExpr parseParentheticalExpr();
|
|
AffineExpr parseNegateExpression(AffineExpr lhs);
|
|
AffineExpr parseIntegerExpr();
|
|
AffineExpr parseBareIdExpr();
|
|
|
|
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
|
|
AffineExpr rhs, SMLoc opLoc);
|
|
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
|
|
AffineExpr rhs);
|
|
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
|
|
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
|
|
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
|
|
SMLoc llhsOpLoc);
|
|
AffineExpr parseAffineConstraint(bool *isEq);
|
|
|
|
private:
|
|
SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Create an affine binary high precedence op expression (mul's, div's, mod).
|
|
/// opLoc is the location of the op token to be used to report errors
|
|
/// for non-conforming expressions.
|
|
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
|
|
AffineExpr lhs, AffineExpr rhs,
|
|
SMLoc opLoc) {
|
|
// TODO: make the error location info accurate.
|
|
switch (op) {
|
|
case Mul:
|
|
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
|
|
emitError(opLoc, "non-affine expression: at least one of the multiply "
|
|
"operands has to be either a constant or symbolic");
|
|
return nullptr;
|
|
}
|
|
return lhs * rhs;
|
|
case FloorDiv:
|
|
if (!rhs.isSymbolicOrConstant()) {
|
|
emitError(opLoc, "non-affine expression: right operand of floordiv "
|
|
"has to be either a constant or symbolic");
|
|
return nullptr;
|
|
}
|
|
return lhs.floorDiv(rhs);
|
|
case CeilDiv:
|
|
if (!rhs.isSymbolicOrConstant()) {
|
|
emitError(opLoc, "non-affine expression: right operand of ceildiv "
|
|
"has to be either a constant or symbolic");
|
|
return nullptr;
|
|
}
|
|
return lhs.ceilDiv(rhs);
|
|
case Mod:
|
|
if (!rhs.isSymbolicOrConstant()) {
|
|
emitError(opLoc, "non-affine expression: right operand of mod "
|
|
"has to be either a constant or symbolic");
|
|
return nullptr;
|
|
}
|
|
return lhs % rhs;
|
|
case HNoOp:
|
|
llvm_unreachable("can't create affine expression for null high prec op");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// Create an affine binary low precedence op expression (add, sub).
|
|
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
|
|
AffineExpr lhs, AffineExpr rhs) {
|
|
switch (op) {
|
|
case AffineLowPrecOp::Add:
|
|
return lhs + rhs;
|
|
case AffineLowPrecOp::Sub:
|
|
return lhs - rhs;
|
|
case AffineLowPrecOp::LNoOp:
|
|
llvm_unreachable("can't create affine expression for null low prec op");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// Consume this token if it is a lower precedence affine op (there are only
|
|
/// two precedence levels).
|
|
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
|
|
switch (getToken().getKind()) {
|
|
case Token::plus:
|
|
consumeToken(Token::plus);
|
|
return AffineLowPrecOp::Add;
|
|
case Token::minus:
|
|
consumeToken(Token::minus);
|
|
return AffineLowPrecOp::Sub;
|
|
default:
|
|
return AffineLowPrecOp::LNoOp;
|
|
}
|
|
}
|
|
|
|
/// Consume this token if it is a higher precedence affine op (there are only
|
|
/// two precedence levels)
|
|
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
|
|
switch (getToken().getKind()) {
|
|
case Token::star:
|
|
consumeToken(Token::star);
|
|
return Mul;
|
|
case Token::kw_floordiv:
|
|
consumeToken(Token::kw_floordiv);
|
|
return FloorDiv;
|
|
case Token::kw_ceildiv:
|
|
consumeToken(Token::kw_ceildiv);
|
|
return CeilDiv;
|
|
case Token::kw_mod:
|
|
consumeToken(Token::kw_mod);
|
|
return Mod;
|
|
default:
|
|
return HNoOp;
|
|
}
|
|
}
|
|
|
|
/// Parse a high precedence op expression list: mul, div, and mod are high
|
|
/// precedence binary ops, i.e., parse a
|
|
/// expr_1 op_1 expr_2 op_2 ... expr_n
|
|
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
|
|
/// All affine binary ops are left associative.
|
|
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
|
|
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
|
|
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
|
|
/// report an error for non-conforming expressions.
|
|
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
|
|
AffineHighPrecOp llhsOp,
|
|
SMLoc llhsOpLoc) {
|
|
AffineExpr lhs = parseAffineOperandExpr(llhs);
|
|
if (!lhs)
|
|
return nullptr;
|
|
|
|
// Found an LHS. Parse the remaining expression.
|
|
auto opLoc = getToken().getLoc();
|
|
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
|
|
if (llhs) {
|
|
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
|
|
if (!expr)
|
|
return nullptr;
|
|
return parseAffineHighPrecOpExpr(expr, op, opLoc);
|
|
}
|
|
// No LLHS, get RHS
|
|
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
|
|
}
|
|
|
|
// This is the last operand in this expression.
|
|
if (llhs)
|
|
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
|
|
|
|
// No llhs, 'lhs' itself is the expression.
|
|
return lhs;
|
|
}
|
|
|
|
/// Parse an affine expression inside parentheses.
|
|
///
|
|
/// affine-expr ::= `(` affine-expr `)`
|
|
AffineExpr AffineParser::parseParentheticalExpr() {
|
|
if (parseToken(Token::l_paren, "expected '('"))
|
|
return nullptr;
|
|
if (getToken().is(Token::r_paren))
|
|
return (emitError("no expression inside parentheses"), nullptr);
|
|
|
|
auto expr = parseAffineExpr();
|
|
if (!expr)
|
|
return nullptr;
|
|
if (parseToken(Token::r_paren, "expected ')'"))
|
|
return nullptr;
|
|
|
|
return expr;
|
|
}
|
|
|
|
/// Parse the negation expression.
|
|
///
|
|
/// affine-expr ::= `-` affine-expr
|
|
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
|
|
if (parseToken(Token::minus, "expected '-'"))
|
|
return nullptr;
|
|
|
|
AffineExpr operand = parseAffineOperandExpr(lhs);
|
|
// Since negation has the highest precedence of all ops (including high
|
|
// precedence ops) but lower than parentheses, we are only going to use
|
|
// parseAffineOperandExpr instead of parseAffineExpr here.
|
|
if (!operand)
|
|
// Extra error message although parseAffineOperandExpr would have
|
|
// complained. Leads to a better diagnostic.
|
|
return (emitError("missing operand of negation"), nullptr);
|
|
return (-1) * operand;
|
|
}
|
|
|
|
/// Parse a bare id that may appear in an affine expression.
|
|
///
|
|
/// affine-expr ::= bare-id
|
|
AffineExpr AffineParser::parseBareIdExpr() {
|
|
if (getToken().isNot(Token::bare_identifier))
|
|
return (emitError("expected bare identifier"), nullptr);
|
|
|
|
StringRef sRef = getTokenSpelling();
|
|
for (auto entry : dimsAndSymbols) {
|
|
if (entry.first == sRef) {
|
|
consumeToken(Token::bare_identifier);
|
|
return entry.second;
|
|
}
|
|
}
|
|
|
|
return (emitError("use of undeclared identifier"), nullptr);
|
|
}
|
|
|
|
/// Parse a positive integral constant appearing in an affine expression.
|
|
///
|
|
/// affine-expr ::= integer-literal
|
|
AffineExpr AffineParser::parseIntegerExpr() {
|
|
auto val = getToken().getUInt64IntegerValue();
|
|
if (!val.hasValue() || (int64_t)val.getValue() < 0)
|
|
return (emitError("constant too large for index"), nullptr);
|
|
|
|
consumeToken(Token::integer);
|
|
return builder.getAffineConstantExpr((int64_t)val.getValue());
|
|
}
|
|
|
|
/// Parses an expression that can be a valid operand of an affine expression.
|
|
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
|
|
/// operator, the rhs of which is being parsed. This is used to determine
|
|
/// whether an error should be emitted for a missing right operand.
|
|
// Eg: for an expression without parentheses (like i + j + k + l), each
|
|
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
|
|
// operand expression, it's an op expression and will be parsed via
|
|
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
|
|
// -l are valid operands that will be parsed by this function.
|
|
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
|
|
switch (getToken().getKind()) {
|
|
case Token::bare_identifier:
|
|
return parseBareIdExpr();
|
|
case Token::integer:
|
|
return parseIntegerExpr();
|
|
case Token::l_paren:
|
|
return parseParentheticalExpr();
|
|
case Token::minus:
|
|
return parseNegateExpression(lhs);
|
|
case Token::kw_ceildiv:
|
|
case Token::kw_floordiv:
|
|
case Token::kw_mod:
|
|
case Token::plus:
|
|
case Token::star:
|
|
if (lhs)
|
|
emitError("missing right operand of binary operator");
|
|
else
|
|
emitError("missing left operand of binary operator");
|
|
return nullptr;
|
|
default:
|
|
if (lhs)
|
|
emitError("missing right operand of binary operator");
|
|
else
|
|
emitError("expected affine expression");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// Parse affine expressions that are bare-id's, integer constants,
|
|
/// parenthetical affine expressions, and affine op expressions that are a
|
|
/// composition of those.
|
|
///
|
|
/// All binary op's associate from left to right.
|
|
///
|
|
/// {add, sub} have lower precedence than {mul, div, and mod}.
|
|
///
|
|
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
|
|
/// ceildiv, and mod are at the same higher precedence level. Negation has
|
|
/// higher precedence than any binary op.
|
|
///
|
|
/// llhs: the affine expression appearing on the left of the one being parsed.
|
|
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
|
|
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
|
|
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
|
|
/// associativity.
|
|
///
|
|
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
|
|
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
|
|
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
|
|
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
|
|
AffineLowPrecOp llhsOp) {
|
|
AffineExpr lhs;
|
|
if (!(lhs = parseAffineOperandExpr(llhs)))
|
|
return nullptr;
|
|
|
|
// Found an LHS. Deal with the ops.
|
|
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
|
|
if (llhs) {
|
|
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
|
|
return parseAffineLowPrecOpExpr(sum, lOp);
|
|
}
|
|
// No LLHS, get RHS and form the expression.
|
|
return parseAffineLowPrecOpExpr(lhs, lOp);
|
|
}
|
|
auto opLoc = getToken().getLoc();
|
|
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
|
|
// We have a higher precedence op here. Get the rhs operand for the llhs
|
|
// through parseAffineHighPrecOpExpr.
|
|
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
|
|
if (!highRes)
|
|
return nullptr;
|
|
|
|
// If llhs is null, the product forms the first operand of the yet to be
|
|
// found expression. If non-null, the op to associate with llhs is llhsOp.
|
|
AffineExpr expr =
|
|
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
|
|
|
|
// Recurse for subsequent low prec op's after the affine high prec op
|
|
// expression.
|
|
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
|
|
return parseAffineLowPrecOpExpr(expr, nextOp);
|
|
return expr;
|
|
}
|
|
// Last operand in the expression list.
|
|
if (llhs)
|
|
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
|
|
// No llhs, 'lhs' itself is the expression.
|
|
return lhs;
|
|
}
|
|
|
|
/// Parse an affine expression.
|
|
/// affine-expr ::= `(` affine-expr `)`
|
|
/// | `-` affine-expr
|
|
/// | affine-expr `+` affine-expr
|
|
/// | affine-expr `-` affine-expr
|
|
/// | affine-expr `*` affine-expr
|
|
/// | affine-expr `floordiv` affine-expr
|
|
/// | affine-expr `ceildiv` affine-expr
|
|
/// | affine-expr `mod` affine-expr
|
|
/// | bare-id
|
|
/// | integer-literal
|
|
///
|
|
/// Additional conditions are checked depending on the production. For eg.,
|
|
/// one of the operands for `*` has to be either constant/symbolic; the second
|
|
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
|
|
AffineExpr AffineParser::parseAffineExpr() {
|
|
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
|
|
}
|
|
|
|
/// Parse a dim or symbol from the lists appearing before the actual
|
|
/// expressions of the affine map. Update our state to store the
|
|
/// dimensional/symbolic identifier.
|
|
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
|
|
if (getToken().isNot(Token::bare_identifier))
|
|
return emitError("expected bare identifier");
|
|
|
|
auto name = getTokenSpelling();
|
|
for (auto entry : dimsAndSymbols) {
|
|
if (entry.first == name)
|
|
return emitError("redefinition of identifier '" + Twine(name) + "'");
|
|
}
|
|
consumeToken(Token::bare_identifier);
|
|
|
|
dimsAndSymbols.push_back({name, idExpr});
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse the list of symbolic identifiers to an affine map.
|
|
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
|
|
consumeToken(Token::l_square);
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
|
|
return parseIdentifierDefinition(symbol);
|
|
};
|
|
return parseCommaSeparatedListUntil(Token::r_square, parseElt);
|
|
}
|
|
|
|
/// Parse the list of dimensional identifiers to an affine map.
|
|
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
|
|
if (parseToken(Token::l_paren,
|
|
"expected '(' at start of dimensional identifiers list"))
|
|
return ParseFailure;
|
|
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto dimension = getAffineDimExpr(numDims++, getContext());
|
|
return parseIdentifierDefinition(dimension);
|
|
};
|
|
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
|
|
}
|
|
|
|
/// Parses either an affine map or an integer set definition inline. If both
|
|
/// 'map' and 'set' are non-null, parses either an affine map or an integer set.
|
|
/// If 'map' is set to nullptr, parses an integer set. If 'set' is set to
|
|
/// nullptr, parses an affine map. 'map'/'set' are set to the parsed structure.
|
|
///
|
|
/// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
|
|
/// (`size` `(` dim-size (`,` dim-size)* `)`)?
|
|
/// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)`
|
|
///
|
|
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
|
|
///
|
|
///
|
|
/// integer-set-inline
|
|
/// ::= dim-and-symbol-id-lists `:`
|
|
/// affine-constraint-conjunction
|
|
/// affine-constraint-conjunction ::= /*empty*/
|
|
/// | affine-constraint (`,`
|
|
/// affine-constraint)*
|
|
///
|
|
void AffineParser::parseAffineStructureInline(AffineMap *map, IntegerSet *set) {
|
|
assert((map || set) && "one of map or set expected to be non-null");
|
|
|
|
unsigned numDims = 0, numSymbols = 0;
|
|
|
|
// List of dimensional identifiers.
|
|
if (parseDimIdList(numDims)) {
|
|
if (map)
|
|
*map = AffineMap::Null();
|
|
if (set)
|
|
*set = IntegerSet::Null();
|
|
return;
|
|
}
|
|
|
|
// Symbols are optional.
|
|
if (getToken().is(Token::l_square)) {
|
|
if (parseSymbolIdList(numSymbols)) {
|
|
if (map)
|
|
*map = AffineMap::Null();
|
|
if (set)
|
|
*set = IntegerSet::Null();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// This is needed for parsing attributes as we wouldn't know whether we would
|
|
// be parsing an integer set attribute or an affine map attribute.
|
|
if (map && set && getToken().isNot(Token::arrow) &&
|
|
getToken().isNot(Token::colon)) {
|
|
emitError("expected '->' or ':' or '['");
|
|
*map = AffineMap::Null();
|
|
*set = IntegerSet::Null();
|
|
return;
|
|
}
|
|
|
|
if (map && (!set || getToken().is(Token::arrow))) {
|
|
// Parse an affine map.
|
|
if (parseToken(Token::arrow, "expected '->' or '['")) {
|
|
*map = AffineMap::Null();
|
|
if (set)
|
|
*set = IntegerSet::Null();
|
|
return;
|
|
}
|
|
*map = parseAffineMapRange(numDims, numSymbols);
|
|
if (set)
|
|
*set = IntegerSet::Null();
|
|
return;
|
|
}
|
|
|
|
if (set && (!map || getToken().is(Token::colon))) {
|
|
// Parse an integer set.
|
|
if (parseToken(Token::colon, "expected ':' or '['")) {
|
|
*set = IntegerSet::Null();
|
|
if (map)
|
|
*map = AffineMap::Null();
|
|
return;
|
|
}
|
|
*set = parseIntegerSetConstraints(numDims, numSymbols);
|
|
if (map)
|
|
*map = AffineMap::Null();
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Parse the range and sizes affine map definition inline.
|
|
///
|
|
/// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
|
|
/// (`size` `(` dim-size (`,` dim-size)* `)`)?
|
|
/// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)`
|
|
///
|
|
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
|
|
AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
|
|
unsigned numSymbols) {
|
|
parseToken(Token::l_paren, "expected '(' at start of affine map range");
|
|
|
|
SmallVector<AffineExpr, 4> exprs;
|
|
auto parseElt = [&]() -> ParseResult {
|
|
auto elt = parseAffineExpr();
|
|
ParseResult res = elt ? ParseSuccess : ParseFailure;
|
|
exprs.push_back(elt);
|
|
return res;
|
|
};
|
|
|
|
// Parse a multi-dimensional affine expression (a comma-separated list of
|
|
// 1-d affine expressions); the list cannot be empty. Grammar:
|
|
// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
|
|
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, false))
|
|
return AffineMap::Null();
|
|
|
|
// Parse optional range sizes.
|
|
// range-sizes ::= (`size` `(` dim-size (`,` dim-size)* `)`)?
|
|
// dim-size ::= affine-expr | `min` `(` affine-expr (`,` affine-expr)+ `)`
|
|
// TODO(bondhugula): support for min of several affine expressions.
|
|
// TODO: check if sizes are non-negative whenever they are constant.
|
|
SmallVector<AffineExpr, 4> rangeSizes;
|
|
if (consumeIf(Token::kw_size)) {
|
|
// Location of the l_paren token (if it exists) for error reporting later.
|
|
auto loc = getToken().getLoc();
|
|
if (parseToken(Token::l_paren, "expected '(' at start of affine map range"))
|
|
return AffineMap::Null();
|
|
|
|
auto parseRangeSize = [&]() -> ParseResult {
|
|
auto loc = getToken().getLoc();
|
|
auto elt = parseAffineExpr();
|
|
if (!elt)
|
|
return ParseFailure;
|
|
|
|
if (!elt.isSymbolicOrConstant())
|
|
return emitError(loc,
|
|
"size expressions cannot refer to dimension values");
|
|
|
|
rangeSizes.push_back(elt);
|
|
return ParseSuccess;
|
|
};
|
|
|
|
if (parseCommaSeparatedListUntil(Token::r_paren, parseRangeSize, false))
|
|
return AffineMap::Null();
|
|
if (exprs.size() > rangeSizes.size())
|
|
return (emitError(loc, "fewer range sizes than range expressions"),
|
|
AffineMap::Null());
|
|
if (exprs.size() < rangeSizes.size())
|
|
return (emitError(loc, "more range sizes than range expressions"),
|
|
AffineMap::Null());
|
|
}
|
|
|
|
// Parsed a valid affine map.
|
|
return builder.getAffineMap(numDims, numSymbols, exprs, rangeSizes);
|
|
}
|
|
|
|
void Parser::parseAffineStructureInline(AffineMap *map, IntegerSet *set) {
|
|
AffineParser(state).parseAffineStructureInline(map, set);
|
|
}
|
|
|
|
AffineMap Parser::parseAffineMapInline() {
|
|
AffineMap map;
|
|
AffineParser(state).parseAffineStructureInline(&map, nullptr);
|
|
return map;
|
|
}
|
|
|
|
/// Parse either an affine map reference or integer set reference.
|
|
///
|
|
/// affine-structure ::= affine-structure-id | affine-structure-inline
|
|
/// affine-structure-id ::= `#` suffix-id
|
|
///
|
|
/// affine-structure ::= affine-map | integer-set
|
|
///
|
|
void Parser::parseAffineStructureReference(AffineMap *map, IntegerSet *set) {
|
|
assert((map || set) && "both map and set are non-null");
|
|
if (getToken().isNot(Token::hash_identifier)) {
|
|
// Try to parse inline affine map or integer set.
|
|
return parseAffineStructureInline(map, set);
|
|
}
|
|
|
|
// Parse affine map / integer set identifier and verify that it exists.
|
|
// Note that an id can't be in both affineMapDefinitions and
|
|
// integerSetDefinitions since they use the same sigil '#'.
|
|
StringRef affineStructId = getTokenSpelling().drop_front();
|
|
if (getState().affineMapDefinitions.count(affineStructId) > 0) {
|
|
consumeToken(Token::hash_identifier);
|
|
if (map)
|
|
*map = getState().affineMapDefinitions[affineStructId];
|
|
if (set)
|
|
*set = IntegerSet::Null();
|
|
return;
|
|
}
|
|
|
|
if (getState().integerSetDefinitions.count(affineStructId) > 0) {
|
|
consumeToken(Token::hash_identifier);
|
|
if (set)
|
|
*set = getState().integerSetDefinitions[affineStructId];
|
|
if (map)
|
|
*map = AffineMap::Null();
|
|
return;
|
|
}
|
|
|
|
// The id isn't among any of the recorded definitions.
|
|
// Emit the right message depending on what the caller expected.
|
|
if (map && !set)
|
|
emitError("undefined affine map id '" + affineStructId + "'");
|
|
else if (set && !map)
|
|
emitError("undefined integer set id '" + affineStructId + "'");
|
|
else if (set && map)
|
|
emitError("undefined affine map or integer set id '" + affineStructId +
|
|
"'");
|
|
|
|
if (map)
|
|
*map = AffineMap::Null();
|
|
if (set)
|
|
*set = IntegerSet::Null();
|
|
}
|
|
|
|
/// Parse a reference to an integer set.
|
|
/// affine-map ::= affine-map-id | affine-map-inline
|
|
/// affine-map-id ::= `#` suffix-id
|
|
///
|
|
AffineMap Parser::parseAffineMapReference() {
|
|
AffineMap map;
|
|
parseAffineStructureReference(&map, nullptr);
|
|
return map;
|
|
}
|
|
|
|
/// Parse a reference to an integer set.
|
|
/// integer-set ::= integer-set-id | integer-set-inline
|
|
/// integer-set-id ::= `#` suffix-id
|
|
///
|
|
IntegerSet Parser::parseIntegerSetReference() {
|
|
IntegerSet set;
|
|
parseAffineStructureReference(nullptr, &set);
|
|
return set;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionParser
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class contains parser state that is common across CFG and ML
|
|
/// functions, notably for dealing with operations and SSA values.
|
|
class FunctionParser : public Parser {
|
|
public:
|
|
/// This builder intentionally shadows the builder in the base class, with a
|
|
/// more specific builder type.
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wshadow-field"
|
|
FuncBuilder builder;
|
|
#pragma clang diagnostic pop
|
|
|
|
FunctionParser(ParserState &state, Function *function)
|
|
: Parser(state), builder(function), function(function) {}
|
|
|
|
~FunctionParser();
|
|
|
|
ParseResult parseFunctionBody(bool hadNamedArguments);
|
|
|
|
/// Parse a single operation successor and it's operand list.
|
|
bool parseSuccessorAndUseList(Block *&dest,
|
|
SmallVectorImpl<Value *> &operands);
|
|
|
|
ParseResult
|
|
parseOptionalBlockArgList(SmallVectorImpl<BlockArgument *> &results,
|
|
Block *owner);
|
|
|
|
ParseResult parseBlock(Block *blockToUse);
|
|
ParseResult parseBlockBody(Block *block);
|
|
|
|
/// After the function is finished parsing, this function checks to see if
|
|
/// there are any remaining issues.
|
|
ParseResult finalizeFunction(SMLoc loc);
|
|
|
|
/// This represents a use of an SSA value in the program. The first two
|
|
/// entries in the tuple are the name and result number of a reference. The
|
|
/// third is the location of the reference, which is used in case this ends
|
|
/// up being a use of an undefined value.
|
|
struct SSAUseInfo {
|
|
StringRef name; // Value name, e.g. %42 or %abc
|
|
unsigned number; // Number, specified with #12
|
|
SMLoc loc; // Location of first definition or use.
|
|
};
|
|
|
|
/// Given a reference to an SSA value and its type, return a reference. This
|
|
/// returns null on failure.
|
|
Value *resolveSSAUse(SSAUseInfo useInfo, Type type);
|
|
|
|
/// Register a definition of a value with the symbol table.
|
|
ParseResult addDefinition(SSAUseInfo useInfo, Value *value);
|
|
|
|
// SSA parsing productions.
|
|
ParseResult parseSSAUse(SSAUseInfo &result);
|
|
ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
|
|
|
|
template <typename ResultType>
|
|
ResultType parseSSADefOrUseAndType(
|
|
const std::function<ResultType(SSAUseInfo, Type)> &action);
|
|
|
|
Value *parseSSAUseAndType() {
|
|
return parseSSADefOrUseAndType<Value *>(
|
|
[&](SSAUseInfo useInfo, Type type) -> Value * {
|
|
return resolveSSAUse(useInfo, type);
|
|
});
|
|
}
|
|
|
|
template <typename ValueTy>
|
|
ParseResult
|
|
parseOptionalSSAUseAndTypeList(SmallVectorImpl<ValueTy *> &results);
|
|
|
|
// Block references.
|
|
|
|
/// Get the block with the specified name, creating it if it doesn't
|
|
/// already exist. The location specified is the point of use, which allows
|
|
/// us to diagnose references to blocks that are not defined precisely.
|
|
Block *getBlockNamed(StringRef name, SMLoc loc);
|
|
|
|
// Define the block with the specified name. Returns the Block* or
|
|
// nullptr in the case of redefinition.
|
|
Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);
|
|
|
|
// Operations
|
|
ParseResult parseOperation();
|
|
OperationInst *parseVerboseOperation();
|
|
OperationInst *parseCustomOperation();
|
|
|
|
ParseResult parseForInst();
|
|
ParseResult parseIntConstant(int64_t &val);
|
|
ParseResult parseDimAndSymbolList(SmallVectorImpl<Value *> &operands,
|
|
unsigned numDims, unsigned numOperands,
|
|
const char *affineStructName);
|
|
ParseResult parseBound(SmallVectorImpl<Value *> &operands, AffineMap &map,
|
|
bool isLower);
|
|
ParseResult parseIfInst();
|
|
ParseResult parseElseClause(Block *elseClause);
|
|
ParseResult parseInstructions(Block *block);
|
|
|
|
private:
|
|
Function *function;
|
|
|
|
// This keeps track of the block names as well as the location of the first
|
|
// reference, used to diagnose invalid block references and memoize them.
|
|
llvm::StringMap<std::pair<Block *, SMLoc>> blocksByName;
|
|
DenseMap<Block *, SMLoc> forwardRef;
|
|
|
|
/// This keeps track of all of the SSA values we are tracking, indexed by
|
|
/// their name. This has one entry per result number.
|
|
llvm::StringMap<SmallVector<std::pair<Value *, SMLoc>, 1>> values;
|
|
|
|
/// These are all of the placeholders we've made along with the location of
|
|
/// their first reference, to allow checking for use of undefined values.
|
|
DenseMap<Value *, SMLoc> forwardReferencePlaceholders;
|
|
|
|
Value *createForwardReferencePlaceholder(SMLoc loc, Type type);
|
|
|
|
/// Return true if this is a forward reference.
|
|
bool isForwardReferencePlaceholder(Value *value) {
|
|
return forwardReferencePlaceholders.count(value);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ParseResult FunctionParser::parseFunctionBody(bool hadNamedArguments) {
|
|
auto braceLoc = getToken().getLoc();
|
|
if (parseToken(Token::l_brace, "expected '{' in function"))
|
|
return ParseFailure;
|
|
|
|
// Make sure we have at least one block.
|
|
if (getToken().is(Token::r_brace))
|
|
return emitError("function must have a body");
|
|
|
|
// If we had named arguments, then we don't allow a block name.
|
|
if (hadNamedArguments) {
|
|
if (getToken().is(Token::caret_identifier))
|
|
return emitError("invalid block name in function with named arguments");
|
|
}
|
|
|
|
// The first block is already created and should be filled in.
|
|
auto firstBlock = &function->front();
|
|
|
|
// Parse the remaining list of blocks.
|
|
while (!consumeIf(Token::r_brace)) {
|
|
if (parseBlock(firstBlock))
|
|
return ParseFailure;
|
|
|
|
// Create the second and subsequent block.
|
|
firstBlock = nullptr;
|
|
}
|
|
|
|
// Verify that all referenced blocks were defined.
|
|
if (!forwardRef.empty()) {
|
|
SmallVector<std::pair<const char *, Block *>, 4> errors;
|
|
// Iteration over the map isn't deterministic, so sort by source location.
|
|
for (auto entry : forwardRef)
|
|
errors.push_back({entry.second.getPointer(), entry.first});
|
|
llvm::array_pod_sort(errors.begin(), errors.end());
|
|
|
|
for (auto entry : errors) {
|
|
auto loc = SMLoc::getFromPointer(entry.first);
|
|
emitError(loc, "reference to an undefined block");
|
|
}
|
|
return ParseFailure;
|
|
}
|
|
|
|
return finalizeFunction(braceLoc);
|
|
}
|
|
|
|
/// Block declaration.
|
|
///
|
|
/// block ::= block-label? instruction* terminator-inst
|
|
/// block-label ::= block-id block-arg-list? `:`
|
|
/// block-id ::= caret-id
|
|
/// block-arg-list ::= `(` ssa-id-and-type-list? `)`
|
|
///
|
|
ParseResult FunctionParser::parseBlock(Block *blockToUse) {
|
|
Block *block = blockToUse;
|
|
|
|
// The first block for a function is already created.
|
|
if (block) {
|
|
// The name for a first block is optional.
|
|
if (getToken().isNot(Token::caret_identifier))
|
|
return parseBlockBody(block);
|
|
}
|
|
|
|
SMLoc nameLoc = getToken().getLoc();
|
|
auto name = getTokenSpelling();
|
|
if (parseToken(Token::caret_identifier, "expected block name"))
|
|
return ParseFailure;
|
|
|
|
block = defineBlockNamed(name, nameLoc, block);
|
|
|
|
// Fail if redefinition.
|
|
if (!block)
|
|
return emitError(nameLoc, "redefinition of block '" + name.str() + "'");
|
|
|
|
// If an argument list is present, parse it.
|
|
if (consumeIf(Token::l_paren)) {
|
|
SmallVector<BlockArgument *, 8> bbArgs;
|
|
if (parseOptionalBlockArgList(bbArgs, block) ||
|
|
parseToken(Token::r_paren, "expected ')' to end argument list"))
|
|
return ParseFailure;
|
|
}
|
|
|
|
if (parseToken(Token::colon, "expected ':' after block name"))
|
|
return ParseFailure;
|
|
|
|
return parseBlockBody(block);
|
|
}
|
|
|
|
ParseResult FunctionParser::parseBlockBody(Block *block) {
|
|
|
|
// Set the insertion point to the block we want to insert new operations
|
|
// into.
|
|
builder.setInsertionPointToEnd(block);
|
|
|
|
// Parse the list of operations that make up the body of the block.
|
|
while (getToken().isNot(Token::caret_identifier, Token::r_brace)) {
|
|
switch (getToken().getKind()) {
|
|
default:
|
|
if (parseOperation())
|
|
return ParseFailure;
|
|
break;
|
|
case Token::kw_for:
|
|
if (parseForInst())
|
|
return ParseFailure;
|
|
break;
|
|
case Token::kw_if:
|
|
if (parseIfInst())
|
|
return ParseFailure;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Create and remember a new placeholder for a forward reference.
|
|
Value *FunctionParser::createForwardReferencePlaceholder(SMLoc loc, Type type) {
|
|
// Forward references are always created as instructions, even in ML
|
|
// functions, because we just need something with a def/use chain.
|
|
//
|
|
// We create these placeholders as having an empty name, which we know
|
|
// cannot be created through normal user input, allowing us to distinguish
|
|
// them.
|
|
auto name = OperationName("placeholder", getContext());
|
|
auto *inst = OperationInst::create(getEncodedSourceLocation(loc), name,
|
|
/*operands=*/{}, type,
|
|
/*attributes=*/{},
|
|
/*successors=*/{}, getContext());
|
|
forwardReferencePlaceholders[inst->getResult(0)] = loc;
|
|
return inst->getResult(0);
|
|
}
|
|
|
|
/// Given an unbound reference to an SSA value and its type, return the value
|
|
/// it specifies. This returns null on failure.
|
|
Value *FunctionParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
|
|
auto &entries = values[useInfo.name];
|
|
|
|
// If we have already seen a value of this name, return it.
|
|
if (useInfo.number < entries.size() && entries[useInfo.number].first) {
|
|
auto *result = entries[useInfo.number].first;
|
|
// Check that the type matches the other uses.
|
|
if (result->getType() == type)
|
|
return result;
|
|
|
|
emitError(useInfo.loc, "use of value '" + useInfo.name.str() +
|
|
"' expects different type than prior uses");
|
|
emitError(entries[useInfo.number].second, "prior use here");
|
|
return nullptr;
|
|
}
|
|
|
|
// Make sure we have enough slots for this.
|
|
if (entries.size() <= useInfo.number)
|
|
entries.resize(useInfo.number + 1);
|
|
|
|
// If the value has already been defined and this is an overly large result
|
|
// number, diagnose that.
|
|
if (entries[0].first && !isForwardReferencePlaceholder(entries[0].first))
|
|
return (emitError(useInfo.loc, "reference to invalid result number"),
|
|
nullptr);
|
|
|
|
// Otherwise, this is a forward reference. Create a placeholder and remember
|
|
// that we did so.
|
|
auto *result = createForwardReferencePlaceholder(useInfo.loc, type);
|
|
entries[useInfo.number].first = result;
|
|
entries[useInfo.number].second = useInfo.loc;
|
|
return result;
|
|
}
|
|
|
|
/// After the function is finished parsing, this function checks to see if
|
|
/// there are any remaining issues.
|
|
ParseResult FunctionParser::finalizeFunction(SMLoc loc) {
|
|
// Check for any forward references that are left. If we find any, error
|
|
// out.
|
|
if (!forwardReferencePlaceholders.empty()) {
|
|
SmallVector<std::pair<const char *, Value *>, 4> errors;
|
|
// Iteration over the map isn't deterministic, so sort by source location.
|
|
for (auto entry : forwardReferencePlaceholders)
|
|
errors.push_back({entry.second.getPointer(), entry.first});
|
|
llvm::array_pod_sort(errors.begin(), errors.end());
|
|
|
|
for (auto entry : errors) {
|
|
auto loc = SMLoc::getFromPointer(entry.first);
|
|
emitError(loc, "use of undeclared SSA value name");
|
|
}
|
|
return ParseFailure;
|
|
}
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
FunctionParser::~FunctionParser() {
|
|
for (auto &fwd : forwardReferencePlaceholders) {
|
|
// Drop all uses of undefined forward declared reference and destroy
|
|
// defining instruction.
|
|
fwd.first->dropAllUses();
|
|
fwd.first->getDefiningInst()->destroy();
|
|
}
|
|
}
|
|
|
|
/// Register a definition of a value with the symbol table.
|
|
ParseResult FunctionParser::addDefinition(SSAUseInfo useInfo, Value *value) {
|
|
auto &entries = values[useInfo.name];
|
|
|
|
// Make sure there is a slot for this value.
|
|
if (entries.size() <= useInfo.number)
|
|
entries.resize(useInfo.number + 1);
|
|
|
|
// If we already have an entry for this, check to see if it was a definition
|
|
// or a forward reference.
|
|
if (auto *existing = entries[useInfo.number].first) {
|
|
if (!isForwardReferencePlaceholder(existing)) {
|
|
emitError(useInfo.loc,
|
|
"redefinition of SSA value '" + useInfo.name + "'");
|
|
return emitError(entries[useInfo.number].second,
|
|
"previously defined here");
|
|
}
|
|
|
|
// If it was a forward reference, update everything that used it to use
|
|
// the actual definition instead, delete the forward ref, and remove it
|
|
// from our set of forward references we track.
|
|
existing->replaceAllUsesWith(value);
|
|
existing->getDefiningInst()->destroy();
|
|
forwardReferencePlaceholders.erase(existing);
|
|
}
|
|
|
|
entries[useInfo.number].first = value;
|
|
entries[useInfo.number].second = useInfo.loc;
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse a SSA operand for an instruction or instruction.
|
|
///
|
|
/// ssa-use ::= ssa-id
|
|
///
|
|
ParseResult FunctionParser::parseSSAUse(SSAUseInfo &result) {
|
|
result.name = getTokenSpelling();
|
|
result.number = 0;
|
|
result.loc = getToken().getLoc();
|
|
if (parseToken(Token::percent_identifier, "expected SSA operand"))
|
|
return ParseFailure;
|
|
|
|
// If we have an affine map ID, it is a result number.
|
|
if (getToken().is(Token::hash_identifier)) {
|
|
if (auto value = getToken().getHashIdentifierNumber())
|
|
result.number = value.getValue();
|
|
else
|
|
return emitError("invalid SSA value result number");
|
|
consumeToken(Token::hash_identifier);
|
|
}
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse a (possibly empty) list of SSA operands.
|
|
///
|
|
/// ssa-use-list ::= ssa-use (`,` ssa-use)*
|
|
/// ssa-use-list-opt ::= ssa-use-list?
|
|
///
|
|
ParseResult
|
|
FunctionParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
|
|
if (getToken().isNot(Token::percent_identifier))
|
|
return ParseSuccess;
|
|
return parseCommaSeparatedList([&]() -> ParseResult {
|
|
SSAUseInfo result;
|
|
if (parseSSAUse(result))
|
|
return ParseFailure;
|
|
results.push_back(result);
|
|
return ParseSuccess;
|
|
});
|
|
}
|
|
|
|
/// Parse an SSA use with an associated type.
|
|
///
|
|
/// ssa-use-and-type ::= ssa-use `:` type
|
|
template <typename ResultType>
|
|
ResultType FunctionParser::parseSSADefOrUseAndType(
|
|
const std::function<ResultType(SSAUseInfo, Type)> &action) {
|
|
|
|
SSAUseInfo useInfo;
|
|
if (parseSSAUse(useInfo) ||
|
|
parseToken(Token::colon, "expected ':' and type for SSA operand"))
|
|
return nullptr;
|
|
|
|
auto type = parseType();
|
|
if (!type)
|
|
return nullptr;
|
|
|
|
return action(useInfo, type);
|
|
}
|
|
|
|
/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
|
|
/// followed by a type list.
|
|
///
|
|
/// ssa-use-and-type-list
|
|
/// ::= ssa-use-list ':' type-list-no-parens
|
|
///
|
|
template <typename ValueTy>
|
|
ParseResult FunctionParser::parseOptionalSSAUseAndTypeList(
|
|
SmallVectorImpl<ValueTy *> &results) {
|
|
SmallVector<SSAUseInfo, 4> valueIDs;
|
|
if (parseOptionalSSAUseList(valueIDs))
|
|
return ParseFailure;
|
|
|
|
// If there were no operands, then there is no colon or type lists.
|
|
if (valueIDs.empty())
|
|
return ParseSuccess;
|
|
|
|
SmallVector<Type, 4> types;
|
|
if (parseToken(Token::colon, "expected ':' in operand list") ||
|
|
parseTypeListNoParens(types))
|
|
return ParseFailure;
|
|
|
|
if (valueIDs.size() != types.size())
|
|
return emitError("expected " + Twine(valueIDs.size()) +
|
|
" types to match operand list");
|
|
|
|
results.reserve(valueIDs.size());
|
|
for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
|
|
if (auto *value = resolveSSAUse(valueIDs[i], types[i]))
|
|
results.push_back(cast<ValueTy>(value));
|
|
else
|
|
return ParseFailure;
|
|
}
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Get the block with the specified name, creating it if it doesn't already
|
|
/// exist. The location specified is the point of use, which allows
|
|
/// us to diagnose references to blocks that are not defined precisely.
|
|
Block *FunctionParser::getBlockNamed(StringRef name, SMLoc loc) {
|
|
auto &blockAndLoc = blocksByName[name];
|
|
if (!blockAndLoc.first) {
|
|
blockAndLoc.first = new Block();
|
|
forwardRef[blockAndLoc.first] = loc;
|
|
function->push_back(blockAndLoc.first);
|
|
blockAndLoc.second = loc;
|
|
}
|
|
|
|
return blockAndLoc.first;
|
|
}
|
|
|
|
/// Define the block with the specified name. Returns the Block* or nullptr in
|
|
/// the case of redefinition.
|
|
Block *FunctionParser::defineBlockNamed(StringRef name, SMLoc loc,
|
|
Block *existing) {
|
|
auto &blockAndLoc = blocksByName[name];
|
|
if (!blockAndLoc.first) {
|
|
// If the caller provided a block, use it. Otherwise create a new one.
|
|
if (!existing)
|
|
existing = builder.createBlock();
|
|
blockAndLoc.first = existing;
|
|
blockAndLoc.second = loc;
|
|
return blockAndLoc.first;
|
|
}
|
|
|
|
// Forward declarations are removed once defined, so if we are defining a
|
|
// existing block and it is not a forward declaration, then it is a
|
|
// redeclaration.
|
|
if (!forwardRef.erase(blockAndLoc.first))
|
|
return nullptr;
|
|
|
|
// Move the block to the end of the function. Forward ref'd blocks are
|
|
// inserted wherever they happen to be referenced.
|
|
function->getBlocks().splice(function->end(), function->getBlocks(),
|
|
blockAndLoc.first);
|
|
return blockAndLoc.first;
|
|
}
|
|
|
|
/// Parse a single operation successor and it's operand list.
|
|
///
|
|
/// successor ::= block-id branch-use-list?
|
|
/// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)`
|
|
///
|
|
bool FunctionParser::parseSuccessorAndUseList(
|
|
Block *&dest, SmallVectorImpl<Value *> &operands) {
|
|
// Verify branch is identifier and get the matching block.
|
|
if (!getToken().is(Token::caret_identifier))
|
|
return emitError("expected block name");
|
|
dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
|
|
consumeToken();
|
|
|
|
// Handle optional arguments.
|
|
if (consumeIf(Token::l_paren) &&
|
|
(parseOptionalSSAUseAndTypeList(operands) ||
|
|
parseToken(Token::r_paren, "expected ')' to close argument list"))) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Parse a (possibly empty) list of SSA operands with types as block arguments.
|
|
///
|
|
/// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
|
|
///
|
|
ParseResult FunctionParser::parseOptionalBlockArgList(
|
|
SmallVectorImpl<BlockArgument *> &results, Block *owner) {
|
|
if (getToken().is(Token::r_brace))
|
|
return ParseSuccess;
|
|
|
|
// If the block already has arguments, then we're handling the entry block.
|
|
// Parse and register the names for the arguments, but do not add them.
|
|
bool definingExistingArgs = owner->getNumArguments() != 0;
|
|
unsigned nextArgument = 0;
|
|
|
|
return parseCommaSeparatedList([&]() -> ParseResult {
|
|
auto type = parseSSADefOrUseAndType<Type>(
|
|
[&](SSAUseInfo useInfo, Type type) -> Type {
|
|
BlockArgument *arg;
|
|
if (!definingExistingArgs) {
|
|
arg = owner->addArgument(type);
|
|
} else if (nextArgument >= owner->getNumArguments()) {
|
|
emitError("too many arguments specified in argument list");
|
|
return {};
|
|
} else {
|
|
arg = owner->getArgument(nextArgument++);
|
|
if (arg->getType() != type) {
|
|
emitError("argument and block argument type mismatch");
|
|
return {};
|
|
}
|
|
}
|
|
|
|
if (addDefinition(useInfo, arg))
|
|
return {};
|
|
return type;
|
|
});
|
|
return type ? ParseSuccess : ParseFailure;
|
|
});
|
|
}
|
|
|
|
/// Parse an operation.
|
|
///
|
|
/// operation ::=
|
|
/// (ssa-id `=`)? string '(' ssa-use-list? ')' attribute-dict?
|
|
/// `:` function-type
|
|
///
|
|
ParseResult FunctionParser::parseOperation() {
|
|
auto loc = getToken().getLoc();
|
|
|
|
StringRef resultID;
|
|
if (getToken().is(Token::percent_identifier)) {
|
|
resultID = getTokenSpelling();
|
|
consumeToken(Token::percent_identifier);
|
|
if (parseToken(Token::equal, "expected '=' after SSA name"))
|
|
return ParseFailure;
|
|
}
|
|
|
|
OperationInst *op;
|
|
if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
|
|
op = parseCustomOperation();
|
|
else if (getToken().is(Token::string))
|
|
op = parseVerboseOperation();
|
|
else
|
|
return emitError("expected operation name in quotes");
|
|
|
|
// If parsing of the basic operation failed, then this whole thing fails.
|
|
if (!op)
|
|
return ParseFailure;
|
|
|
|
// We just parsed an operation. If it is a recognized one, verify that it
|
|
// is structurally as we expect. If not, produce an error with a reasonable
|
|
// source location.
|
|
if (auto *opInfo = op->getAbstractOperation()) {
|
|
// We don't wan't to verify branching terminators at this time because
|
|
// the successors may not have been fully parsed yet.
|
|
if (!(op->isTerminator() && op->getNumSuccessors() != 0) &&
|
|
opInfo->verifyInvariants(op))
|
|
return ParseFailure;
|
|
}
|
|
|
|
// If the instruction had a name, register it.
|
|
if (!resultID.empty()) {
|
|
if (op->getNumResults() == 0)
|
|
return emitError(loc, "cannot name an operation with no results");
|
|
|
|
for (unsigned i = 0, e = op->getNumResults(); i != e; ++i)
|
|
if (addDefinition({resultID, i, loc}, op->getResult(i)))
|
|
return ParseFailure;
|
|
}
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
OperationInst *FunctionParser::parseVerboseOperation() {
|
|
|
|
// Get location information for the operation.
|
|
auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
|
|
|
|
auto name = getToken().getStringValue();
|
|
if (name.empty())
|
|
return (emitError("empty operation name is invalid"), nullptr);
|
|
if (name.find('\0') != StringRef::npos)
|
|
return (emitError("null character not allowed in operation name"), nullptr);
|
|
|
|
consumeToken(Token::string);
|
|
|
|
OperationState result(builder.getContext(), srcLocation, name);
|
|
|
|
// Parse the operand list.
|
|
SmallVector<SSAUseInfo, 8> operandInfos;
|
|
|
|
if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
|
|
parseOptionalSSAUseList(operandInfos) ||
|
|
parseToken(Token::r_paren, "expected ')' to end operand list")) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (getToken().is(Token::l_brace)) {
|
|
if (parseAttributeDict(result.attributes))
|
|
return nullptr;
|
|
}
|
|
|
|
if (parseToken(Token::colon, "expected ':' followed by instruction type"))
|
|
return nullptr;
|
|
|
|
auto typeLoc = getToken().getLoc();
|
|
auto type = parseType();
|
|
if (!type)
|
|
return nullptr;
|
|
auto fnType = type.dyn_cast<FunctionType>();
|
|
if (!fnType)
|
|
return (emitError(typeLoc, "expected function type"), nullptr);
|
|
|
|
result.addTypes(fnType.getResults());
|
|
|
|
// Check that we have the right number of types for the operands.
|
|
auto operandTypes = fnType.getInputs();
|
|
if (operandTypes.size() != operandInfos.size()) {
|
|
auto plural = "s"[operandInfos.size() == 1];
|
|
return (emitError(typeLoc, "expected " + llvm::utostr(operandInfos.size()) +
|
|
" operand type" + plural + " but had " +
|
|
llvm::utostr(operandTypes.size())),
|
|
nullptr);
|
|
}
|
|
|
|
// Resolve all of the operands.
|
|
for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
|
|
result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
|
|
if (!result.operands.back())
|
|
return nullptr;
|
|
}
|
|
|
|
return builder.createOperation(result);
|
|
}
|
|
|
|
namespace {
|
|
class CustomOpAsmParser : public OpAsmParser {
|
|
public:
|
|
CustomOpAsmParser(SMLoc nameLoc, StringRef opName, FunctionParser &parser)
|
|
: nameLoc(nameLoc), opName(opName), parser(parser) {}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// High level parsing methods.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
bool getCurrentLocation(llvm::SMLoc *loc) override {
|
|
*loc = parser.getToken().getLoc();
|
|
return false;
|
|
}
|
|
bool parseComma() override {
|
|
return parser.parseToken(Token::comma, "expected ','");
|
|
}
|
|
|
|
bool parseType(Type &result) override {
|
|
return !(result = parser.parseType());
|
|
}
|
|
|
|
bool parseColonType(Type &result) override {
|
|
return parser.parseToken(Token::colon, "expected ':'") ||
|
|
!(result = parser.parseType());
|
|
}
|
|
|
|
bool parseColonTypeList(SmallVectorImpl<Type> &result) override {
|
|
if (parser.parseToken(Token::colon, "expected ':'"))
|
|
return true;
|
|
|
|
do {
|
|
if (auto type = parser.parseType())
|
|
result.push_back(type);
|
|
else
|
|
return true;
|
|
|
|
} while (parser.consumeIf(Token::comma));
|
|
return false;
|
|
}
|
|
|
|
bool parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
|
|
int requiredOperandCount,
|
|
Delimiter delimiter) override {
|
|
if (parser.getToken().is(Token::comma)) {
|
|
parseComma();
|
|
return parseOperandList(result, requiredOperandCount, delimiter);
|
|
}
|
|
if (requiredOperandCount != -1)
|
|
return emitError(parser.getToken().getLoc(),
|
|
"expected " + Twine(requiredOperandCount) + " operands");
|
|
return false;
|
|
}
|
|
|
|
/// Parse a keyword followed by a type.
|
|
bool parseKeywordType(const char *keyword, Type &result) override {
|
|
if (parser.getTokenSpelling() != keyword)
|
|
return parser.emitError("expected '" + Twine(keyword) + "'");
|
|
parser.consumeToken();
|
|
return !(result = parser.parseType());
|
|
}
|
|
|
|
/// Parse an arbitrary attribute of a given type and return it in result. This
|
|
/// also adds the attribute to the specified attribute list with the specified
|
|
/// name.
|
|
bool parseAttribute(Attribute &result, Type type, const char *attrName,
|
|
SmallVectorImpl<NamedAttribute> &attrs) override {
|
|
result = parser.parseAttribute(type);
|
|
if (!result)
|
|
return true;
|
|
|
|
attrs.push_back(
|
|
NamedAttribute(parser.builder.getIdentifier(attrName), result));
|
|
return false;
|
|
}
|
|
|
|
/// Parse an arbitrary attribute and return it in result. This also adds
|
|
/// the attribute to the specified attribute list with the specified name.
|
|
bool parseAttribute(Attribute &result, const char *attrName,
|
|
SmallVectorImpl<NamedAttribute> &attrs) override {
|
|
return parseAttribute(result, Type(), attrName, attrs);
|
|
}
|
|
|
|
/// If a named attribute list is present, parse is into result.
|
|
bool
|
|
parseOptionalAttributeDict(SmallVectorImpl<NamedAttribute> &result) override {
|
|
if (parser.getToken().isNot(Token::l_brace))
|
|
return false;
|
|
return parser.parseAttributeDict(result) == ParseFailure;
|
|
}
|
|
|
|
/// Parse a function name like '@foo' and return the name in a form that can
|
|
/// be passed to resolveFunctionName when a function type is available.
|
|
virtual bool parseFunctionName(StringRef &result, llvm::SMLoc &loc) {
|
|
loc = parser.getToken().getLoc();
|
|
|
|
if (parser.getToken().isNot(Token::at_identifier))
|
|
return emitError(loc, "expected function name");
|
|
|
|
result = parser.getTokenSpelling();
|
|
parser.consumeToken(Token::at_identifier);
|
|
return false;
|
|
}
|
|
|
|
bool parseOperand(OperandType &result) override {
|
|
FunctionParser::SSAUseInfo useInfo;
|
|
if (parser.parseSSAUse(useInfo))
|
|
return true;
|
|
|
|
result = {useInfo.loc, useInfo.name, useInfo.number};
|
|
return false;
|
|
}
|
|
|
|
bool parseSuccessorAndUseList(Block *&dest,
|
|
SmallVectorImpl<Value *> &operands) override {
|
|
// Defer successor parsing to the function parsers.
|
|
return parser.parseSuccessorAndUseList(dest, operands);
|
|
}
|
|
|
|
bool parseOperandList(SmallVectorImpl<OperandType> &result,
|
|
int requiredOperandCount = -1,
|
|
Delimiter delimiter = Delimiter::None) override {
|
|
auto startLoc = parser.getToken().getLoc();
|
|
|
|
// Handle delimiters.
|
|
switch (delimiter) {
|
|
case Delimiter::None:
|
|
// Don't check for the absence of a delimiter if the number of operands
|
|
// is unknown (and hence the operand list could be empty).
|
|
if (requiredOperandCount == -1)
|
|
break;
|
|
// Token already matches an identifier and so can't be a delimiter.
|
|
if (parser.getToken().is(Token::percent_identifier))
|
|
break;
|
|
// Test against known delimiters.
|
|
if (parser.getToken().is(Token::l_paren) ||
|
|
parser.getToken().is(Token::l_square))
|
|
return emitError(startLoc, "unexpected delimiter");
|
|
return emitError(startLoc, "invalid operand");
|
|
case Delimiter::OptionalParen:
|
|
if (parser.getToken().isNot(Token::l_paren))
|
|
return false;
|
|
LLVM_FALLTHROUGH;
|
|
case Delimiter::Paren:
|
|
if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
|
|
return true;
|
|
break;
|
|
case Delimiter::OptionalSquare:
|
|
if (parser.getToken().isNot(Token::l_square))
|
|
return false;
|
|
LLVM_FALLTHROUGH;
|
|
case Delimiter::Square:
|
|
if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
// Check for zero operands.
|
|
if (parser.getToken().is(Token::percent_identifier)) {
|
|
do {
|
|
OperandType operand;
|
|
if (parseOperand(operand))
|
|
return true;
|
|
result.push_back(operand);
|
|
} while (parser.consumeIf(Token::comma));
|
|
}
|
|
|
|
// Handle delimiters. If we reach here, the optional delimiters were
|
|
// present, so we need to parse their closing one.
|
|
switch (delimiter) {
|
|
case Delimiter::None:
|
|
break;
|
|
case Delimiter::OptionalParen:
|
|
case Delimiter::Paren:
|
|
if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
|
|
return true;
|
|
break;
|
|
case Delimiter::OptionalSquare:
|
|
case Delimiter::Square:
|
|
if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
if (requiredOperandCount != -1 && result.size() != requiredOperandCount)
|
|
return emitError(startLoc,
|
|
"expected " + Twine(requiredOperandCount) + " operands");
|
|
return false;
|
|
}
|
|
|
|
/// Resolve a parse function name and a type into a function reference.
|
|
virtual bool resolveFunctionName(StringRef name, FunctionType type,
|
|
llvm::SMLoc loc, Function *&result) {
|
|
result = parser.resolveFunctionReference(name, loc, type);
|
|
return result == nullptr;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Methods for interacting with the parser
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
Builder &getBuilder() const override { return parser.builder; }
|
|
|
|
llvm::SMLoc getNameLoc() const override { return nameLoc; }
|
|
|
|
bool resolveOperand(const OperandType &operand, Type type,
|
|
SmallVectorImpl<Value *> &result) override {
|
|
FunctionParser::SSAUseInfo operandInfo = {operand.name, operand.number,
|
|
operand.location};
|
|
if (auto *value = parser.resolveSSAUse(operandInfo, type)) {
|
|
result.push_back(value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Emit a diagnostic at the specified location and return true.
|
|
bool emitError(llvm::SMLoc loc, const Twine &message) override {
|
|
parser.emitError(loc, "custom op '" + Twine(opName) + "' " + message);
|
|
emittedError = true;
|
|
return true;
|
|
}
|
|
|
|
bool didEmitError() const { return emittedError; }
|
|
|
|
private:
|
|
SMLoc nameLoc;
|
|
StringRef opName;
|
|
FunctionParser &parser;
|
|
bool emittedError = false;
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
OperationInst *FunctionParser::parseCustomOperation() {
|
|
auto opLoc = getToken().getLoc();
|
|
auto opName = getTokenSpelling();
|
|
CustomOpAsmParser opAsmParser(opLoc, opName, *this);
|
|
|
|
auto *opDefinition = AbstractOperation::lookup(opName, getContext());
|
|
if (!opDefinition) {
|
|
opAsmParser.emitError(opLoc, "is unknown");
|
|
return nullptr;
|
|
}
|
|
|
|
consumeToken();
|
|
|
|
// If the custom op parser crashes, produce some indication to help
|
|
// debugging.
|
|
std::string opNameStr = opName.str();
|
|
llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
|
|
opNameStr.c_str());
|
|
|
|
// Get location information for the operation.
|
|
auto srcLocation = getEncodedSourceLocation(opLoc);
|
|
|
|
// Have the op implementation take a crack and parsing this.
|
|
OperationState opState(builder.getContext(), srcLocation, opName);
|
|
if (opDefinition->parseAssembly(&opAsmParser, &opState))
|
|
return nullptr;
|
|
|
|
// If it emitted an error, we failed.
|
|
if (opAsmParser.didEmitError())
|
|
return nullptr;
|
|
|
|
// Otherwise, we succeeded. Use the state it parsed as our op information.
|
|
return builder.createOperation(opState);
|
|
}
|
|
|
|
/// For instruction.
|
|
///
|
|
/// ml-for-inst ::= `for` ssa-id `=` lower-bound `to` upper-bound
|
|
/// (`step` integer-literal)? `{` inst* `}`
|
|
///
|
|
ParseResult FunctionParser::parseForInst() {
|
|
consumeToken(Token::kw_for);
|
|
|
|
// Parse induction variable.
|
|
if (getToken().isNot(Token::percent_identifier))
|
|
return emitError("expected SSA identifier for the loop variable");
|
|
|
|
auto loc = getToken().getLoc();
|
|
StringRef inductionVariableName = getTokenSpelling();
|
|
consumeToken(Token::percent_identifier);
|
|
|
|
if (parseToken(Token::equal, "expected '='"))
|
|
return ParseFailure;
|
|
|
|
// Parse lower bound.
|
|
SmallVector<Value *, 4> lbOperands;
|
|
AffineMap lbMap;
|
|
if (parseBound(lbOperands, lbMap, /*isLower*/ true))
|
|
return ParseFailure;
|
|
|
|
if (parseToken(Token::kw_to, "expected 'to' between bounds"))
|
|
return ParseFailure;
|
|
|
|
// Parse upper bound.
|
|
SmallVector<Value *, 4> ubOperands;
|
|
AffineMap ubMap;
|
|
if (parseBound(ubOperands, ubMap, /*isLower*/ false))
|
|
return ParseFailure;
|
|
|
|
// Parse step.
|
|
int64_t step = 1;
|
|
if (consumeIf(Token::kw_step) && parseIntConstant(step))
|
|
return ParseFailure;
|
|
|
|
// The loop step is a positive integer constant. Since index is stored as an
|
|
// int64_t type, we restrict step to be in the set of positive integers that
|
|
// int64_t can represent.
|
|
if (step < 1) {
|
|
return emitError("step has to be a positive integer");
|
|
}
|
|
|
|
// Create for instruction.
|
|
ForInst *forInst =
|
|
builder.createFor(getEncodedSourceLocation(loc), lbOperands, lbMap,
|
|
ubOperands, ubMap, step);
|
|
|
|
// Create SSA value definition for the induction variable.
|
|
if (addDefinition({inductionVariableName, 0, loc}, forInst))
|
|
return ParseFailure;
|
|
|
|
// If parsing of the for instruction body fails,
|
|
// MLIR contains for instruction with those nested instructions that have been
|
|
// successfully parsed.
|
|
if (parseToken(Token::l_brace, "expected '{' before instruction list") ||
|
|
parseBlock(forInst->getBody()) ||
|
|
parseToken(Token::r_brace, "expected '}' after instruction list"))
|
|
return ParseFailure;
|
|
|
|
// Reset insertion point to the current block.
|
|
builder.setInsertionPointToEnd(forInst->getBlock());
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse integer constant as affine constant expression.
|
|
ParseResult FunctionParser::parseIntConstant(int64_t &val) {
|
|
bool negate = consumeIf(Token::minus);
|
|
|
|
if (getToken().isNot(Token::integer))
|
|
return emitError("expected integer");
|
|
|
|
auto uval = getToken().getUInt64IntegerValue();
|
|
|
|
if (!uval.hasValue() || (int64_t)uval.getValue() < 0) {
|
|
return emitError("bound or step is too large for index");
|
|
}
|
|
|
|
val = (int64_t)uval.getValue();
|
|
if (negate)
|
|
val = -val;
|
|
consumeToken();
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Dimensions and symbol use list.
|
|
///
|
|
/// dim-use-list ::= `(` ssa-use-list? `)`
|
|
/// symbol-use-list ::= `[` ssa-use-list? `]`
|
|
/// dim-and-symbol-use-list ::= dim-use-list symbol-use-list?
|
|
///
|
|
ParseResult
|
|
FunctionParser::parseDimAndSymbolList(SmallVectorImpl<Value *> &operands,
|
|
unsigned numDims, unsigned numOperands,
|
|
const char *affineStructName) {
|
|
if (parseToken(Token::l_paren, "expected '('"))
|
|
return ParseFailure;
|
|
|
|
SmallVector<SSAUseInfo, 4> opInfo;
|
|
parseOptionalSSAUseList(opInfo);
|
|
|
|
if (parseToken(Token::r_paren, "expected ')'"))
|
|
return ParseFailure;
|
|
|
|
if (numDims != opInfo.size())
|
|
return emitError("dim operand count and " + Twine(affineStructName) +
|
|
" dim count must match");
|
|
|
|
if (consumeIf(Token::l_square)) {
|
|
parseOptionalSSAUseList(opInfo);
|
|
if (parseToken(Token::r_square, "expected ']'"))
|
|
return ParseFailure;
|
|
}
|
|
|
|
if (numOperands != opInfo.size())
|
|
return emitError("symbol operand count and " + Twine(affineStructName) +
|
|
" symbol count must match");
|
|
|
|
// Resolve SSA uses.
|
|
Type indexType = builder.getIndexType();
|
|
for (unsigned i = 0, e = opInfo.size(); i != e; ++i) {
|
|
Value *sval = resolveSSAUse(opInfo[i], indexType);
|
|
if (!sval)
|
|
return ParseFailure;
|
|
|
|
if (i < numDims && !sval->isValidDim())
|
|
return emitError(opInfo[i].loc, "value '" + opInfo[i].name.str() +
|
|
"' cannot be used as a dimension id");
|
|
if (i >= numDims && !sval->isValidSymbol())
|
|
return emitError(opInfo[i].loc, "value '" + opInfo[i].name.str() +
|
|
"' cannot be used as a symbol");
|
|
operands.push_back(sval);
|
|
}
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
// Loop bound.
|
|
///
|
|
/// lower-bound ::= `max`? affine-map dim-and-symbol-use-list |
|
|
/// shorthand-bound upper-bound ::= `min`? affine-map dim-and-symbol-use-list
|
|
/// | shorthand-bound shorthand-bound ::= ssa-id | `-`? integer-literal
|
|
///
|
|
ParseResult FunctionParser::parseBound(SmallVectorImpl<Value *> &operands,
|
|
AffineMap &map, bool isLower) {
|
|
// 'min' / 'max' prefixes are syntactic sugar. Ignore them.
|
|
if (isLower)
|
|
consumeIf(Token::kw_max);
|
|
else
|
|
consumeIf(Token::kw_min);
|
|
|
|
// Parse full form - affine map followed by dim and symbol list.
|
|
if (getToken().isAny(Token::hash_identifier, Token::l_paren)) {
|
|
map = parseAffineMapReference();
|
|
if (!map)
|
|
return ParseFailure;
|
|
|
|
if (parseDimAndSymbolList(operands, map.getNumDims(), map.getNumInputs(),
|
|
"affine map"))
|
|
return ParseFailure;
|
|
return ParseSuccess;
|
|
}
|
|
|
|
// Parse shorthand form.
|
|
if (getToken().isAny(Token::minus, Token::integer)) {
|
|
int64_t val;
|
|
if (!parseIntConstant(val)) {
|
|
map = builder.getConstantAffineMap(val);
|
|
return ParseSuccess;
|
|
}
|
|
return ParseFailure;
|
|
}
|
|
|
|
// Parse ssa-id as identity map.
|
|
SSAUseInfo opInfo;
|
|
if (parseSSAUse(opInfo))
|
|
return ParseFailure;
|
|
|
|
// TODO: improve error message when SSA value is not an affine integer.
|
|
// Currently it is 'use of value ... expects different type than prior uses'
|
|
if (auto *value = resolveSSAUse(opInfo, builder.getIndexType()))
|
|
operands.push_back(value);
|
|
else
|
|
return ParseFailure;
|
|
|
|
// Create an identity map using dim id for an induction variable and
|
|
// symbol otherwise. This representation is optimized for storage.
|
|
// Analysis passes may expand it into a multi-dimensional map if desired.
|
|
if (isa<ForInst>(operands[0]))
|
|
map = builder.getDimIdentityMap();
|
|
else
|
|
map = builder.getSymbolIdentityMap();
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse an affine constraint.
|
|
/// affine-constraint ::= affine-expr `>=` `0`
|
|
/// | affine-expr `==` `0`
|
|
///
|
|
/// isEq is set to true if the parsed constraint is an equality, false if it
|
|
/// is an inequality (greater than or equal).
|
|
///
|
|
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
|
|
AffineExpr expr = parseAffineExpr();
|
|
if (!expr)
|
|
return nullptr;
|
|
|
|
if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
|
|
getToken().is(Token::integer)) {
|
|
auto dim = getToken().getUnsignedIntegerValue();
|
|
if (dim.hasValue() && dim.getValue() == 0) {
|
|
consumeToken(Token::integer);
|
|
*isEq = false;
|
|
return expr;
|
|
}
|
|
return (emitError("expected '0' after '>='"), nullptr);
|
|
}
|
|
|
|
if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
|
|
getToken().is(Token::integer)) {
|
|
auto dim = getToken().getUnsignedIntegerValue();
|
|
if (dim.hasValue() && dim.getValue() == 0) {
|
|
consumeToken(Token::integer);
|
|
*isEq = true;
|
|
return expr;
|
|
}
|
|
return (emitError("expected '0' after '=='"), nullptr);
|
|
}
|
|
|
|
return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
|
|
nullptr);
|
|
}
|
|
|
|
/// Parse the constraints that are part of an integer set definition.
|
|
/// integer-set-inline
|
|
/// ::= dim-and-symbol-id-lists `:`
|
|
/// affine-constraint-conjunction
|
|
/// affine-constraint-conjunction ::= /*empty*/
|
|
/// | affine-constraint (`,`
|
|
/// affine-constraint)*
|
|
///
|
|
IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
|
|
unsigned numSymbols) {
|
|
|
|
parseToken(Token::l_paren,
|
|
"expected '(' at start of integer set constraint list");
|
|
SmallVector<AffineExpr, 4> constraints;
|
|
SmallVector<bool, 4> isEqs;
|
|
auto parseElt = [&]() -> ParseResult {
|
|
bool isEq;
|
|
auto elt = parseAffineConstraint(&isEq);
|
|
ParseResult res = elt ? ParseSuccess : ParseFailure;
|
|
if (elt) {
|
|
constraints.push_back(elt);
|
|
isEqs.push_back(isEq);
|
|
}
|
|
return res;
|
|
};
|
|
|
|
// Parse a list of affine constraints (comma-separated) .
|
|
// Grammar: affine-constraint-conjunct ::= `(` affine-constraint (`,`
|
|
// affine-constraint)* `)
|
|
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
|
|
return IntegerSet();
|
|
|
|
// Parsed a valid integer set.
|
|
return builder.getIntegerSet(numDims, numSymbols, constraints, isEqs);
|
|
}
|
|
|
|
IntegerSet Parser::parseIntegerSetInline() {
|
|
IntegerSet set;
|
|
AffineParser(state).parseAffineStructureInline(nullptr, &set);
|
|
return set;
|
|
}
|
|
|
|
/// If instruction.
|
|
///
|
|
/// ml-if-head ::= `if` ml-if-cond `{` inst* `}`
|
|
/// | ml-if-head `else` `if` ml-if-cond `{` inst* `}`
|
|
/// ml-if-inst ::= ml-if-head
|
|
/// | ml-if-head `else` `{` inst* `}`
|
|
///
|
|
ParseResult FunctionParser::parseIfInst() {
|
|
auto loc = getToken().getLoc();
|
|
consumeToken(Token::kw_if);
|
|
|
|
IntegerSet set = parseIntegerSetReference();
|
|
if (!set)
|
|
return ParseFailure;
|
|
|
|
SmallVector<Value *, 4> operands;
|
|
if (parseDimAndSymbolList(operands, set.getNumDims(), set.getNumOperands(),
|
|
"integer set"))
|
|
return ParseFailure;
|
|
|
|
IfInst *ifInst =
|
|
builder.createIf(getEncodedSourceLocation(loc), operands, set);
|
|
|
|
Block *thenClause = ifInst->getThen();
|
|
|
|
// When parsing of an if instruction body fails, the IR contains
|
|
// the if instruction with the portion of the body that has been
|
|
// successfully parsed.
|
|
if (parseToken(Token::l_brace, "expected '{' before instruction list") ||
|
|
parseBlock(thenClause) ||
|
|
parseToken(Token::r_brace, "expected '}' after instruction list"))
|
|
return ParseFailure;
|
|
|
|
if (consumeIf(Token::kw_else)) {
|
|
auto *elseClause = ifInst->createElse();
|
|
if (parseElseClause(elseClause))
|
|
return ParseFailure;
|
|
}
|
|
|
|
// Reset insertion point to the current block.
|
|
builder.setInsertionPointToEnd(ifInst->getBlock());
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
ParseResult FunctionParser::parseElseClause(Block *elseClause) {
|
|
if (getToken().is(Token::kw_if)) {
|
|
builder.setInsertionPointToEnd(elseClause);
|
|
return parseIfInst();
|
|
}
|
|
|
|
if (parseToken(Token::l_brace, "expected '{' before instruction list") ||
|
|
parseBlock(elseClause) ||
|
|
parseToken(Token::r_brace, "expected '}' after instruction list"))
|
|
return ParseFailure;
|
|
return ParseSuccess;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-level entity parsing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This parser handles entities that are only valid at the top level of the
|
|
/// file.
|
|
class ModuleParser : public Parser {
|
|
public:
|
|
explicit ModuleParser(ParserState &state) : Parser(state) {}
|
|
|
|
ParseResult parseModule();
|
|
|
|
private:
|
|
ParseResult finalizeModule();
|
|
|
|
ParseResult parseAffineStructureDef();
|
|
|
|
// Functions.
|
|
ParseResult parseArgumentList(SmallVectorImpl<Type> &argTypes,
|
|
SmallVectorImpl<StringRef> &argNames);
|
|
ParseResult parseFunctionSignature(StringRef &name, FunctionType &type,
|
|
SmallVectorImpl<StringRef> &argNames);
|
|
ParseResult parseFunc();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Parses either an affine map declaration or an integer set declaration.
|
|
///
|
|
/// Affine map declaration.
|
|
///
|
|
/// affine-map-def ::= affine-map-id `=` affine-map-inline
|
|
///
|
|
/// Integer set declaration.
|
|
///
|
|
/// integer-set-decl ::= integer-set-id `=` integer-set-inline
|
|
///
|
|
ParseResult ModuleParser::parseAffineStructureDef() {
|
|
assert(getToken().is(Token::hash_identifier));
|
|
|
|
StringRef affineStructureId = getTokenSpelling().drop_front();
|
|
|
|
// Check for redefinitions.
|
|
if (getState().affineMapDefinitions.count(affineStructureId) > 0)
|
|
return emitError("redefinition of affine map id '" + affineStructureId +
|
|
"'");
|
|
if (getState().integerSetDefinitions.count(affineStructureId) > 0)
|
|
return emitError("redefinition of integer set id '" + affineStructureId +
|
|
"'");
|
|
|
|
consumeToken(Token::hash_identifier);
|
|
|
|
// Parse the '='
|
|
if (parseToken(Token::equal,
|
|
"expected '=' in affine map outlined definition"))
|
|
return ParseFailure;
|
|
|
|
AffineMap map;
|
|
IntegerSet set;
|
|
parseAffineStructureInline(&map, &set);
|
|
if (!map && !set)
|
|
return ParseFailure;
|
|
|
|
if (map)
|
|
getState().affineMapDefinitions[affineStructureId] = map;
|
|
else
|
|
getState().integerSetDefinitions[affineStructureId] = set;
|
|
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Parse a (possibly empty) list of Function arguments with types.
|
|
///
|
|
/// named-argument ::= ssa-id `:` type
|
|
/// argument-list ::= named-argument (`,` named-argument)* | /*empty*/
|
|
/// argument-list ::= type (`,` type)* | /*empty*/
|
|
///
|
|
ParseResult
|
|
ModuleParser::parseArgumentList(SmallVectorImpl<Type> &argTypes,
|
|
SmallVectorImpl<StringRef> &argNames) {
|
|
consumeToken(Token::l_paren);
|
|
|
|
// The argument list either has to consistently have ssa-id's followed by
|
|
// types, or just be a type list. It isn't ok to sometimes have SSA ID's and
|
|
// sometimes not.
|
|
auto parseElt = [&]() -> ParseResult {
|
|
// Parse argument name if present.
|
|
auto loc = getToken().getLoc();
|
|
StringRef name = getTokenSpelling();
|
|
if (consumeIf(Token::percent_identifier)) {
|
|
// Reject this if the preceding argument was missing a name.
|
|
if (argNames.empty() && !argTypes.empty())
|
|
return emitError(loc, "expected type instead of SSA identifier");
|
|
|
|
argNames.push_back(name);
|
|
|
|
if (parseToken(Token::colon, "expected ':'"))
|
|
return ParseFailure;
|
|
} else {
|
|
// Reject this if the preceding argument had a name.
|
|
if (!argNames.empty())
|
|
return emitError("expected SSA identifier");
|
|
}
|
|
|
|
// Parse argument type
|
|
auto elt = parseType();
|
|
if (!elt)
|
|
return ParseFailure;
|
|
argTypes.push_back(elt);
|
|
return ParseSuccess;
|
|
};
|
|
|
|
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
|
|
}
|
|
|
|
/// Parse a function signature, starting with a name and including the
|
|
/// parameter list.
|
|
///
|
|
/// function-signature ::=
|
|
/// function-id `(` argument-list `)` (`->` type-list)?
|
|
///
|
|
ParseResult
|
|
ModuleParser::parseFunctionSignature(StringRef &name, FunctionType &type,
|
|
SmallVectorImpl<StringRef> &argNames) {
|
|
if (getToken().isNot(Token::at_identifier))
|
|
return emitError("expected a function identifier like '@foo'");
|
|
|
|
name = getTokenSpelling().drop_front();
|
|
consumeToken(Token::at_identifier);
|
|
|
|
if (getToken().isNot(Token::l_paren))
|
|
return emitError("expected '(' in function signature");
|
|
|
|
SmallVector<Type, 4> argTypes;
|
|
if (parseArgumentList(argTypes, argNames))
|
|
return ParseFailure;
|
|
|
|
// Parse the return type if present.
|
|
SmallVector<Type, 4> results;
|
|
if (consumeIf(Token::arrow)) {
|
|
if (parseTypeList(results))
|
|
return ParseFailure;
|
|
}
|
|
type = builder.getFunctionType(argTypes, results);
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// Function declarations.
|
|
///
|
|
/// function ::= `func` function-signature function-attributes? function-body?
|
|
/// function-body ::= `{` block+ `}`
|
|
/// function-attributes ::= `attributes` attribute-dict
|
|
///
|
|
ParseResult ModuleParser::parseFunc() {
|
|
consumeToken();
|
|
|
|
StringRef name;
|
|
FunctionType type;
|
|
SmallVector<StringRef, 4> argNames;
|
|
|
|
auto loc = getToken().getLoc();
|
|
if (parseFunctionSignature(name, type, argNames))
|
|
return ParseFailure;
|
|
|
|
// If function attributes are present, parse them.
|
|
SmallVector<NamedAttribute, 8> attrs;
|
|
if (consumeIf(Token::kw_attributes)) {
|
|
if (parseAttributeDict(attrs))
|
|
return ParseFailure;
|
|
}
|
|
|
|
// Okay, the function signature was parsed correctly, create the function now.
|
|
auto *function =
|
|
new Function(getEncodedSourceLocation(loc), name, type, attrs);
|
|
getModule()->getFunctions().push_back(function);
|
|
|
|
// Verify no name collision / redefinition.
|
|
if (function->getName() != name)
|
|
return emitError(loc,
|
|
"redefinition of function named '" + name.str() + "'");
|
|
|
|
// External functions have no body.
|
|
if (getToken().isNot(Token::l_brace))
|
|
return ParseSuccess;
|
|
|
|
// Create the parser.
|
|
auto parser = FunctionParser(getState(), function);
|
|
|
|
bool hadNamedArguments = !argNames.empty();
|
|
|
|
// Add the entry block and argument list.
|
|
function->addEntryBlock();
|
|
|
|
// Add definitions of the function arguments.
|
|
if (hadNamedArguments) {
|
|
for (unsigned i = 0, e = function->getNumArguments(); i != e; ++i) {
|
|
if (parser.addDefinition({argNames[i], 0, loc}, function->getArgument(i)))
|
|
return ParseFailure;
|
|
}
|
|
}
|
|
|
|
return parser.parseFunctionBody(hadNamedArguments);
|
|
}
|
|
|
|
/// Finish the end of module parsing - when the result is valid, do final
|
|
/// checking.
|
|
ParseResult ModuleParser::finalizeModule() {
|
|
|
|
// Resolve all forward references, building a remapping table of attributes.
|
|
DenseMap<Attribute, FunctionAttr> remappingTable;
|
|
for (auto forwardRef : getState().functionForwardRefs) {
|
|
auto name = forwardRef.first;
|
|
|
|
// Resolve the reference.
|
|
auto *resolvedFunction = getModule()->getNamedFunction(name);
|
|
if (!resolvedFunction) {
|
|
forwardRef.second->emitError("reference to undefined function '" +
|
|
name.str() + "'");
|
|
return ParseFailure;
|
|
}
|
|
|
|
remappingTable[builder.getFunctionAttr(forwardRef.second)] =
|
|
builder.getFunctionAttr(resolvedFunction);
|
|
}
|
|
|
|
// If there was nothing to remap, then we're done.
|
|
if (remappingTable.empty())
|
|
return ParseSuccess;
|
|
|
|
// Otherwise, walk the entire module replacing uses of one attribute set
|
|
// with the correct ones.
|
|
remapFunctionAttrs(*getModule(), remappingTable);
|
|
|
|
// Now that all references to the forward definition placeholders are
|
|
// resolved, we can deallocate the placeholders.
|
|
for (auto forwardRef : getState().functionForwardRefs)
|
|
delete forwardRef.second;
|
|
getState().functionForwardRefs.clear();
|
|
return ParseSuccess;
|
|
}
|
|
|
|
/// This is the top-level module parser.
|
|
ParseResult ModuleParser::parseModule() {
|
|
while (1) {
|
|
switch (getToken().getKind()) {
|
|
default:
|
|
emitError("expected a top level entity");
|
|
return ParseFailure;
|
|
|
|
// If we got to the end of the file, then we're done.
|
|
case Token::eof:
|
|
return finalizeModule();
|
|
|
|
// If we got an error token, then the lexer already emitted an error, just
|
|
// stop. Someday we could introduce error recovery if there was demand
|
|
// for it.
|
|
case Token::error:
|
|
return ParseFailure;
|
|
|
|
case Token::hash_identifier:
|
|
if (parseAffineStructureDef())
|
|
return ParseFailure;
|
|
break;
|
|
|
|
case Token::kw_func:
|
|
if (parseFunc())
|
|
return ParseFailure;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This parses the file specified by the indicated SourceMgr and returns an
|
|
/// MLIR module if it was valid. If not, it emits diagnostics and returns
|
|
/// null.
|
|
Module *mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
|
|
MLIRContext *context) {
|
|
|
|
// This is the result module we are parsing into.
|
|
std::unique_ptr<Module> module(new Module(context));
|
|
|
|
ParserState state(sourceMgr, module.get());
|
|
if (ModuleParser(state).parseModule()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Make sure the parse module has no other structural problems detected by
|
|
// the verifier.
|
|
if (module->verify())
|
|
return nullptr;
|
|
|
|
return module.release();
|
|
}
|
|
|
|
/// This parses the program string to a MLIR module if it was valid. If not,
|
|
/// it emits diagnostics and returns null.
|
|
Module *mlir::parseSourceString(StringRef moduleStr, MLIRContext *context) {
|
|
auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr);
|
|
if (!memBuffer)
|
|
return nullptr;
|
|
|
|
SourceMgr sourceMgr;
|
|
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
|
|
return parseSourceFile(sourceMgr, context);
|
|
}
|