llvm-project/mlir/lib/Parser/Parser.cpp

3483 lines
115 KiB
C++

//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//
#include "mlir/Parser.h"
#include "Lexer.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/InstVisitor.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/STLExtras.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include <algorithm>
using namespace mlir;
using llvm::MemoryBuffer;
using llvm::SMLoc;
using llvm::SourceMgr;
/// Simple enum to make code read better in cases that would otherwise return a
/// bool value. Failure is "true" in a boolean context.
enum ParseResult { ParseSuccess, ParseFailure };
namespace {
class Parser;
/// This class refers to all of the state maintained globally by the parser,
/// such as the current lexer position etc. The Parser base class provides
/// methods to access this.
class ParserState {
public:
ParserState(const llvm::SourceMgr &sourceMgr, Module *module)
: context(module->getContext()), module(module), lex(sourceMgr, context),
curToken(lex.lexToken()) {}
~ParserState() {
// Destroy the forward references upon error.
for (auto forwardRef : functionForwardRefs)
delete forwardRef.second;
functionForwardRefs.clear();
}
// A map from affine map identifier to AffineMap.
llvm::StringMap<AffineMap> affineMapDefinitions;
// A map from integer set identifier to IntegerSet.
llvm::StringMap<IntegerSet> integerSetDefinitions;
// This keeps track of all forward references to functions along with the
// temporary function used to represent them.
llvm::DenseMap<Identifier, Function *> functionForwardRefs;
private:
ParserState(const ParserState &) = delete;
void operator=(const ParserState &) = delete;
friend class Parser;
// The context we're parsing into.
MLIRContext *const context;
// This is the module we are parsing into.
Module *const module;
// The lexer for the source file we're parsing.
Lexer lex;
// This is the next token that hasn't been consumed yet.
Token curToken;
};
} // end anonymous namespace
namespace {
/// This class implement support for parsing global entities like types and
/// shared entities like SSA names. It is intended to be subclassed by
/// specialized subparsers that include state, e.g. when a local symbol table.
class Parser {
public:
Builder builder;
Parser(ParserState &state) : builder(state.context), state(state) {}
// Helper methods to get stuff from the parser-global state.
ParserState &getState() const { return state; }
MLIRContext *getContext() const { return state.context; }
Module *getModule() { return state.module; }
const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); }
/// Return the current token the parser is inspecting.
const Token &getToken() const { return state.curToken; }
StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }
/// Encode the specified source location information into an attribute for
/// attachment to the IR.
Location getEncodedSourceLocation(llvm::SMLoc loc) {
return state.lex.getEncodedSourceLocation(loc);
}
/// Emit an error and return failure.
ParseResult emitError(const Twine &message) {
return emitError(state.curToken.getLoc(), message);
}
ParseResult emitError(SMLoc loc, const Twine &message);
/// Advance the current lexer onto the next token.
void consumeToken() {
assert(state.curToken.isNot(Token::eof, Token::error) &&
"shouldn't advance past EOF or errors");
state.curToken = state.lex.lexToken();
}
/// Advance the current lexer onto the next token, asserting what the expected
/// current token is. This is preferred to the above method because it leads
/// to more self-documenting code with better checking.
void consumeToken(Token::Kind kind) {
assert(state.curToken.is(kind) && "consumed an unexpected token");
consumeToken();
}
/// If the current token has the specified kind, consume it and return true.
/// If not, return false.
bool consumeIf(Token::Kind kind) {
if (state.curToken.isNot(kind))
return false;
consumeToken(kind);
return true;
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult parseToken(Token::Kind expectedToken, const Twine &message);
/// Parse a comma-separated list of elements up until the specified end token.
ParseResult
parseCommaSeparatedListUntil(Token::Kind rightToken,
const std::function<ParseResult()> &parseElement,
bool allowEmptyList = true);
/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult
parseCommaSeparatedList(const std::function<ParseResult()> &parseElement);
// We have two forms of parsing methods - those that return a non-null
// pointer on success, and those that return a ParseResult to indicate whether
// they returned a failure. The second class fills in by-reference arguments
// as the results of their action.
// Type parsing.
VectorType parseVectorType();
ParseResult parseXInDimensionList();
ParseResult parseDimensionListRanked(SmallVectorImpl<int> &dimensions);
Type parseDialectType();
Type parseTensorType();
Type parseMemRefType();
Type parseFunctionType();
Type parseType();
ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements);
ParseResult parseTypeList(SmallVectorImpl<Type> &elements);
// Attribute parsing.
Function *resolveFunctionReference(StringRef nameStr, SMLoc nameLoc,
FunctionType type);
Attribute parseAttribute(Type type = {});
ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes);
// Polyhedral structures.
void parseAffineStructureInline(AffineMap *map, IntegerSet *set);
void parseAffineStructureReference(AffineMap *map, IntegerSet *set);
AffineMap parseAffineMapInline();
AffineMap parseAffineMapReference();
IntegerSet parseIntegerSetInline();
IntegerSet parseIntegerSetReference();
DenseElementsAttr parseDenseElementsAttr(VectorOrTensorType type);
DenseElementsAttr parseDenseElementsAttr(Type eltType, bool isVector);
VectorOrTensorType parseVectorOrTensorType();
private:
// The Parser is subclassed and reinstantiated. Do not add additional
// non-trivial state here, add it to the ParserState class.
ParserState &state;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
ParseResult Parser::emitError(SMLoc loc, const Twine &message) {
// If we hit a parse error in response to a lexer error, then the lexer
// already reported the error.
if (getToken().is(Token::error))
return ParseFailure;
getContext()->emitError(getEncodedSourceLocation(loc), message);
return ParseFailure;
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult Parser::parseToken(Token::Kind expectedToken,
const Twine &message) {
if (consumeIf(expectedToken))
return ParseSuccess;
return emitError(message);
}
/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult Parser::parseCommaSeparatedList(
const std::function<ParseResult()> &parseElement) {
// Non-empty case starts with an element.
if (parseElement())
return ParseFailure;
// Otherwise we have a list of comma separated elements.
while (consumeIf(Token::comma)) {
if (parseElement())
return ParseFailure;
}
return ParseSuccess;
}
/// Parse a comma-separated list of elements, terminated with an arbitrary
/// token. This allows empty lists if allowEmptyList is true.
///
/// abstract-list ::= rightToken // if allowEmptyList == true
/// abstract-list ::= element (',' element)* rightToken
///
ParseResult Parser::parseCommaSeparatedListUntil(
Token::Kind rightToken, const std::function<ParseResult()> &parseElement,
bool allowEmptyList) {
// Handle the empty case.
if (getToken().is(rightToken)) {
if (!allowEmptyList)
return emitError("expected list element");
consumeToken(rightToken);
return ParseSuccess;
}
if (parseCommaSeparatedList(parseElement) ||
parseToken(rightToken, "expected ',' or '" +
Token::getTokenSpelling(rightToken) + "'"))
return ParseFailure;
return ParseSuccess;
}
//===----------------------------------------------------------------------===//
// Type Parsing
//===----------------------------------------------------------------------===//
/// Parse an arbitrary type.
///
/// type ::= integer-type
/// | index-type
/// | float-type
/// | dialect-type
/// | vector-type
/// | tensor-type
/// | memref-type
/// | function-type
///
/// index-type ::= `index`
/// float-type ::= `f16` | `bf16` | `f32` | `f64`
///
Type Parser::parseType() {
switch (getToken().getKind()) {
default:
return (emitError("expected type"), nullptr);
case Token::kw_memref:
return parseMemRefType();
case Token::kw_tensor:
return parseTensorType();
case Token::kw_vector:
return parseVectorType();
case Token::l_paren:
return parseFunctionType();
// integer-type
case Token::inttype: {
auto width = getToken().getIntTypeBitwidth();
if (!width.hasValue())
return (emitError("invalid integer width"), nullptr);
auto loc = getEncodedSourceLocation(getToken().getLoc());
consumeToken(Token::inttype);
return IntegerType::getChecked(width.getValue(), builder.getContext(), loc);
}
// float-type
case Token::kw_bf16:
consumeToken(Token::kw_bf16);
return builder.getBF16Type();
case Token::kw_f16:
consumeToken(Token::kw_f16);
return builder.getF16Type();
case Token::kw_f32:
consumeToken(Token::kw_f32);
return builder.getF32Type();
case Token::kw_f64:
consumeToken(Token::kw_f64);
return builder.getF64Type();
// index-type
case Token::kw_index:
consumeToken(Token::kw_index);
return builder.getIndexType();
// dialect-specific type
case Token::exclamation_identifier:
return parseDialectType();
}
}
/// Parse a vector type.
///
/// vector-type ::= `vector` `<` const-dimension-list primitive-type `>`
/// const-dimension-list ::= (integer-literal `x`)+
///
VectorType Parser::parseVectorType() {
consumeToken(Token::kw_vector);
if (parseToken(Token::less, "expected '<' in vector type"))
return nullptr;
if (getToken().isNot(Token::integer))
return (emitError("expected dimension size in vector type"), nullptr);
SmallVector<int, 4> dimensions;
while (getToken().is(Token::integer)) {
// Make sure this integer value is in bound and valid.
auto dimension = getToken().getUnsignedIntegerValue();
if (!dimension.hasValue())
return (emitError("invalid dimension in vector type"), nullptr);
dimensions.push_back((int)dimension.getValue());
consumeToken(Token::integer);
// Make sure we have an 'x' or something like 'xbf32'.
if (getToken().isNot(Token::bare_identifier) ||
getTokenSpelling()[0] != 'x')
return (emitError("expected 'x' in vector dimension list"), nullptr);
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
if (getTokenSpelling().size() != 1)
state.lex.resetPointer(getTokenSpelling().data() + 1);
// Consume the 'x'.
consumeToken(Token::bare_identifier);
}
// Parse the element type.
auto typeLoc = getToken().getLoc();
auto elementType = parseType();
if (!elementType || parseToken(Token::greater, "expected '>' in vector type"))
return nullptr;
return VectorType::getChecked(dimensions, elementType,
getEncodedSourceLocation(typeLoc));
}
/// Parse an 'x' token in a dimension list, handling the case where the x is
/// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next
/// token.
ParseResult Parser::parseXInDimensionList() {
if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x')
return emitError("expected 'x' in dimension list");
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
if (getTokenSpelling().size() != 1)
state.lex.resetPointer(getTokenSpelling().data() + 1);
// Consume the 'x'.
consumeToken(Token::bare_identifier);
return ParseSuccess;
}
/// Parse a dimension list of a tensor or memref type. This populates the
/// dimension list, returning -1 for the '?' dimensions.
///
/// dimension-list-ranked ::= (dimension `x`)*
/// dimension ::= `?` | integer-literal
///
ParseResult Parser::parseDimensionListRanked(SmallVectorImpl<int> &dimensions) {
while (getToken().isAny(Token::integer, Token::question)) {
if (consumeIf(Token::question)) {
dimensions.push_back(-1);
} else {
// Make sure this integer value is in bound and valid.
auto dimension = getToken().getUnsignedIntegerValue();
if (!dimension.hasValue() || (int)dimension.getValue() < 0)
return emitError("invalid dimension");
dimensions.push_back((int)dimension.getValue());
consumeToken(Token::integer);
}
// Make sure we have an 'x' or something like 'xbf32'.
if (parseXInDimensionList())
return ParseFailure;
}
return ParseSuccess;
}
/// Parse a dialect-specific type.
///
/// dialect-type ::= `!` dialect-namespace `<` '"' type-data '"' `>`
///
Type Parser::parseDialectType() {
assert(getToken().is(Token::exclamation_identifier));
// Parse the dialect namespace.
StringRef dialectName = getTokenSpelling().drop_front();
consumeToken(Token::exclamation_identifier);
// Check for a registered dialect with this name.
auto *dialect = state.context->getRegisteredDialect(dialectName);
if (dialect) {
// Make sure that the dialect provides a parsing hook.
if (!dialect->typeParseHook)
return (emitError("dialect '" + dialect->getNamespace() +
"' provides no type parsing hook"),
nullptr);
}
// Consume the '<'.
if (parseToken(Token::less, "expected '<' in dialect type"))
return nullptr;
// Parse the type specific data.
if (getToken().isNot(Token::string))
return (emitError("expected string literal type data in dialect type"),
nullptr);
auto typeData = getToken().getStringValue();
auto loc = getEncodedSourceLocation(getToken().getLoc());
consumeToken(Token::string);
Type result;
// If we found a registered dialect, then ask it to parse the type.
if (dialect) {
result = dialect->typeParseHook(typeData, loc, state.context);
if (!result)
return nullptr;
} else {
// Otherwise, form a new unknown type.
result = UnknownType::get(Identifier::get(dialectName, state.context),
typeData, state.context);
}
// Consume the '>'.
if (parseToken(Token::greater, "expected '>' in dialect type"))
return nullptr;
return result;
}
/// Parse a tensor type.
///
/// tensor-type ::= `tensor` `<` dimension-list element-type `>`
/// dimension-list ::= dimension-list-ranked | `*x`
///
Type Parser::parseTensorType() {
consumeToken(Token::kw_tensor);
if (parseToken(Token::less, "expected '<' in tensor type"))
return nullptr;
bool isUnranked;
SmallVector<int, 4> dimensions;
if (consumeIf(Token::star)) {
// This is an unranked tensor type.
isUnranked = true;
if (parseXInDimensionList())
return nullptr;
} else {
isUnranked = false;
if (parseDimensionListRanked(dimensions))
return nullptr;
}
// Parse the element type.
auto typeLocation = getEncodedSourceLocation(getToken().getLoc());
auto elementType = parseType();
if (!elementType || parseToken(Token::greater, "expected '>' in tensor type"))
return nullptr;
if (isUnranked)
return UnrankedTensorType::getChecked(elementType, typeLocation);
return RankedTensorType::getChecked(dimensions, elementType, typeLocation);
}
/// Parse a memref type.
///
/// memref-type ::= `memref` `<` dimension-list-ranked element-type
/// (`,` semi-affine-map-composition)? (`,` memory-space)? `>`
///
/// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
/// memory-space ::= integer-literal /* | TODO: address-space-id */
///
Type Parser::parseMemRefType() {
consumeToken(Token::kw_memref);
if (parseToken(Token::less, "expected '<' in memref type"))
return nullptr;
SmallVector<int, 4> dimensions;
if (parseDimensionListRanked(dimensions))
return nullptr;
// Parse the element type.
auto typeLoc = getToken().getLoc();
auto elementType = parseType();
if (!elementType)
return nullptr;
// Parse semi-affine-map-composition.
SmallVector<AffineMap, 2> affineMapComposition;
unsigned memorySpace = 0;
bool parsedMemorySpace = false;
auto parseElt = [&]() -> ParseResult {
if (getToken().is(Token::integer)) {
// Parse memory space.
if (parsedMemorySpace)
return emitError("multiple memory spaces specified in memref type");
auto v = getToken().getUnsignedIntegerValue();
if (!v.hasValue())
return emitError("invalid memory space in memref type");
memorySpace = v.getValue();
consumeToken(Token::integer);
parsedMemorySpace = true;
} else {
// Parse affine map.
if (parsedMemorySpace)
return emitError("affine map after memory space in memref type");
auto affineMap = parseAffineMapReference();
if (!affineMap)
return ParseFailure;
affineMapComposition.push_back(affineMap);
}
return ParseSuccess;
};
// Parse a list of mappings and address space if present.
if (consumeIf(Token::comma)) {
// Parse comma separated list of affine maps, followed by memory space.
if (parseCommaSeparatedListUntil(Token::greater, parseElt,
/*allowEmptyList=*/false)) {
return nullptr;
}
} else {
if (parseToken(Token::greater, "expected ',' or '>' in memref type"))
return nullptr;
}
return MemRefType::getChecked(dimensions, elementType, affineMapComposition,
memorySpace, getEncodedSourceLocation(typeLoc));
}
/// Parse a function type.
///
/// function-type ::= type-list-parens `->` type-list
///
Type Parser::parseFunctionType() {
assert(getToken().is(Token::l_paren));
SmallVector<Type, 4> arguments, results;
if (parseTypeList(arguments) ||
parseToken(Token::arrow, "expected '->' in function type") ||
parseTypeList(results))
return nullptr;
return builder.getFunctionType(arguments, results);
}
/// Parse a list of types without an enclosing parenthesis. The list must have
/// at least one member.
///
/// type-list-no-parens ::= type (`,` type)*
///
ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) {
auto parseElt = [&]() -> ParseResult {
auto elt = parseType();
elements.push_back(elt);
return elt ? ParseSuccess : ParseFailure;
};
return parseCommaSeparatedList(parseElt);
}
/// Parse a "type list", which is a singular type, or a parenthesized list of
/// types.
///
/// type-list ::= type-list-parens | type
/// type-list-parens ::= `(` `)`
/// | `(` type-list-no-parens `)`
///
ParseResult Parser::parseTypeList(SmallVectorImpl<Type> &elements) {
auto parseElt = [&]() -> ParseResult {
auto elt = parseType();
elements.push_back(elt);
return elt ? ParseSuccess : ParseFailure;
};
// If there is no parens, then it must be a singular type.
if (!consumeIf(Token::l_paren))
return parseElt();
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt))
return ParseFailure;
return ParseSuccess;
}
//===----------------------------------------------------------------------===//
// Attribute parsing.
//===----------------------------------------------------------------------===//
namespace {
class TensorLiteralParser {
public:
TensorLiteralParser(Parser &p, Type eltTy)
: p(p), eltTy(eltTy), currBitPos(0) {}
ParseResult parse() { return parseList(shape); }
ArrayRef<char> getValues() const {
return {reinterpret_cast<const char *>(storage.data()), storage.size() * 8};
}
ArrayRef<int> getShape() const { return shape; }
private:
/// Parse either a single element or a list of elements. Return the dimensions
/// of the parsed sub-tensor in dims.
ParseResult parseElementOrList(llvm::SmallVectorImpl<int> &dims);
/// Parse a list of either lists or elements, returning the dimensions of the
/// parsed sub-tensors in dims. For example:
/// parseList([1, 2, 3]) -> Success, [3]
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
/// parseList([[1, 2], 3]) -> Failure
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
ParseResult parseList(llvm::SmallVectorImpl<int> &dims);
void addToStorage(uint64_t value) {
// Only tensors of integers or floats are supported.
// FIXME: use full word to store BF16 as double because APFloat, which we
// use to work with floats, does not have support for BF16 yet.
size_t bitWidth = eltTy.isBF16() ? 64 : eltTy.getIntOrFloatBitWidth();
if (bitWidth == 64)
storage.push_back(value);
if (currBitPos + bitWidth > storage.size() * 64)
storage.push_back(0L);
auto *rawData = reinterpret_cast<char *>(storage.data());
DenseElementsAttr::writeBits(rawData, currBitPos, bitWidth, value);
currBitPos += bitWidth;
}
Parser &p;
Type eltTy;
size_t currBitPos;
SmallVector<int, 4> shape;
std::vector<uint64_t> storage;
};
} // namespace
/// Parse either a single element or a list of elements. Return the dimensions
/// of the parsed sub-tensor in dims.
ParseResult
TensorLiteralParser::parseElementOrList(llvm::SmallVectorImpl<int> &dims) {
switch (p.getToken().getKind()) {
case Token::l_square:
return parseList(dims);
case Token::floatliteral:
case Token::integer:
case Token::minus: {
auto result = p.parseAttribute(eltTy);
if (!result)
return ParseResult::ParseFailure;
// check result matches the element type.
switch (eltTy.getKind()) {
case StandardTypes::BF16:
case StandardTypes::F16:
case StandardTypes::F32:
case StandardTypes::F64: {
// Bitcast the APFloat value to APInt and store the bit representation.
auto fpAttrResult = result.dyn_cast<FloatAttr>();
if (!fpAttrResult)
return p.emitError(
"expected tensor literal element with floating point type");
auto apInt = fpAttrResult.getValue().bitcastToAPInt();
// FIXME: using 64 bits and double semantics for BF16 because APFloat does
// not support BF16 directly.
size_t bitWidth = eltTy.isBF16() ? 64 : eltTy.getIntOrFloatBitWidth();
assert(apInt.getBitWidth() == bitWidth);
(void)bitWidth;
addToStorage(apInt.getRawData()[0]);
break;
}
case StandardTypes::Integer: {
if (!result.isa<IntegerAttr>())
return p.emitError("expected tensor literal element has integer type");
auto value = result.cast<IntegerAttr>().getValue();
auto bitWidth = eltTy.getIntOrFloatBitWidth();
if (value.getMinSignedBits() > bitWidth)
return p.emitError("tensor literal element has more bits than that "
"specified in the type");
addToStorage(value.getSExtValue());
break;
}
default:
return p.emitError("expected integer or float tensor element");
}
break;
}
default:
return p.emitError("expected '[' or scalar constant inside tensor literal");
}
return ParseSuccess;
}
/// Parse a list of either lists or elements, returning the dimensions of the
/// parsed sub-tensors in dims. For example:
/// parseList([1, 2, 3]) -> Success, [3]
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
/// parseList([[1, 2], 3]) -> Failure
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
ParseResult TensorLiteralParser::parseList(llvm::SmallVectorImpl<int> &dims) {
p.consumeToken(Token::l_square);
auto checkDims = [&](const llvm::SmallVectorImpl<int> &prevDims,
const llvm::SmallVectorImpl<int> &newDims) {
if (prevDims == newDims)
return ParseSuccess;
return p.emitError("tensor literal is invalid; ranks are not consistent "
"between elements");
};
bool first = true;
llvm::SmallVector<int, 4> newDims;
unsigned size = 0;
auto parseCommaSeparatedList = [&]() {
llvm::SmallVector<int, 4> thisDims;
if (parseElementOrList(thisDims))
return ParseFailure;
++size;
if (!first)
return checkDims(newDims, thisDims);
newDims = thisDims;
first = false;
return ParseSuccess;
};
if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList))
return ParseFailure;
// Return the sublists' dimensions with 'size' prepended.
dims.clear();
dims.push_back(size);
dims.append(newDims.begin(), newDims.end());
return ParseSuccess;
}
/// Given a parsed reference to a function name like @foo and a type that it
/// corresponds to, resolve it to a concrete function object (possibly
/// synthesizing a forward reference) or emit an error and return null on
/// failure.
Function *Parser::resolveFunctionReference(StringRef nameStr, SMLoc nameLoc,
FunctionType type) {
Identifier name = builder.getIdentifier(nameStr.drop_front());
// See if the function has already been defined in the module.
Function *function = getModule()->getNamedFunction(name);
// If not, get or create a forward reference to one.
if (!function) {
auto &entry = state.functionForwardRefs[name];
if (!entry)
entry = new Function(getEncodedSourceLocation(nameLoc), name, type,
/*attrs=*/{});
function = entry;
}
if (function->getType() != type)
return (emitError(nameLoc, "reference to function with mismatched type"),
nullptr);
return function;
}
/// Attribute parsing.
///
/// attribute-value ::= bool-literal
/// | integer-literal (`:` integer-type)
/// | float-literal (`:` float-type)
/// | string-literal
/// | type
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
/// | function-id `:` function-type
/// | (`splat<` | `dense<`) (tensor-type | vector-type)`,`
/// attribute-value `>`
/// | `sparse<` (tensor-type | vector-type)`,`
/// attribute-value`, ` attribute-value `>`
///
Attribute Parser::parseAttribute(Type type) {
switch (getToken().getKind()) {
case Token::kw_true:
consumeToken(Token::kw_true);
return builder.getBoolAttr(true);
case Token::kw_false:
consumeToken(Token::kw_false);
return builder.getBoolAttr(false);
case Token::floatliteral: {
auto val = getToken().getFloatingPointValue();
if (!val.hasValue())
return (emitError("floating point value too large for attribute"),
nullptr);
consumeToken(Token::floatliteral);
if (!type) {
if (consumeIf(Token::colon)) {
if (!(type = parseType()))
return nullptr;
} else {
// Default to F64 when no type is specified.
type = builder.getF64Type();
}
}
if (!type.isa<FloatType>())
return (emitError("floating point value not valid for specified type"),
nullptr);
return builder.getFloatAttr(type, val.getValue());
}
case Token::integer: {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return (emitError("integer constant out of range for attribute"),
nullptr);
consumeToken(Token::integer);
if (!type) {
if (consumeIf(Token::colon)) {
if (!(type = parseType()))
return nullptr;
} else {
// Default to i64 if not type is specified.
type = builder.getIntegerType(64);
}
}
if (!type.isIntOrIndex())
return (emitError("integer value not valid for specified type"), nullptr);
int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth();
APInt apInt(width, val.getValue());
if (apInt != *val)
return emitError("integer constant out of range for attribute"), nullptr;
return builder.getIntegerAttr(type, apInt);
}
case Token::minus: {
consumeToken(Token::minus);
if (getToken().is(Token::integer)) {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)-val.getValue() >= 0)
return (emitError("integer constant out of range for attribute"),
nullptr);
consumeToken(Token::integer);
if (!type) {
if (consumeIf(Token::colon)) {
if (!(type = parseType()))
return nullptr;
} else {
// Default to i64 if not type is specified.
type = builder.getIntegerType(64);
}
}
if (!type.isIntOrIndex())
return (emitError("integer value not valid for type"), nullptr);
int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth();
APInt apInt(width, *val, /*isSigned=*/true);
if (apInt != *val)
return (emitError("integer constant out of range for attribute"),
nullptr);
return builder.getIntegerAttr(type, -apInt);
}
if (getToken().is(Token::floatliteral)) {
auto val = getToken().getFloatingPointValue();
if (!val.hasValue())
return (emitError("floating point value too large for attribute"),
nullptr);
consumeToken(Token::floatliteral);
if (!type) {
if (consumeIf(Token::colon)) {
if (!(type = parseType()))
return nullptr;
} else {
// Default to F64 when no type is specified.
type = builder.getF64Type();
}
}
if (!type.isa<FloatType>())
return (emitError("floating point value not valid for type"), nullptr);
return builder.getFloatAttr(type, -val.getValue());
}
return (emitError("expected constant integer or floating point value"),
nullptr);
}
case Token::string: {
auto val = getToken().getStringValue();
consumeToken(Token::string);
return builder.getStringAttr(val);
}
case Token::l_square: {
consumeToken(Token::l_square);
SmallVector<Attribute, 4> elements;
auto parseElt = [&]() -> ParseResult {
elements.push_back(parseAttribute());
return elements.back() ? ParseSuccess : ParseFailure;
};
if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
return nullptr;
return builder.getArrayAttr(elements);
}
case Token::hash_identifier:
case Token::l_paren: {
// Try to parse an affine map or an integer set reference.
AffineMap map;
IntegerSet set;
parseAffineStructureReference(&map, &set);
if (map)
return builder.getAffineMapAttr(map);
if (set)
return builder.getIntegerSetAttr(set);
return (emitError("expected affine map or integer set attribute value"),
nullptr);
}
case Token::at_identifier: {
auto nameLoc = getToken().getLoc();
auto nameStr = getTokenSpelling();
consumeToken(Token::at_identifier);
if (parseToken(Token::colon, "expected ':' and function type"))
return nullptr;
auto typeLoc = getToken().getLoc();
Type type = parseType();
if (!type)
return nullptr;
auto fnType = type.dyn_cast<FunctionType>();
if (!fnType)
return (emitError(typeLoc, "expected function type"), nullptr);
auto *function = resolveFunctionReference(nameStr, nameLoc, fnType);
return function ? builder.getFunctionAttr(function) : nullptr;
}
case Token::kw_opaque: {
consumeToken(Token::kw_opaque);
if (parseToken(Token::less, "expected '<' after 'opaque'"))
return nullptr;
auto type = parseVectorOrTensorType();
if (!type)
return nullptr;
auto val = getToken().getStringValue();
if (val.size() < 2 || val[0] != '0' || val[1] != 'x')
return (emitError("opaque string should start with '0x'"), nullptr);
val = val.substr(2);
if (!std::all_of(val.begin(), val.end(),
[](char c) { return llvm::isHexDigit(c); })) {
return (emitError("opaque string only contains hex digits"), nullptr);
}
consumeToken(Token::string);
if (parseToken(Token::greater, "expected '>'"))
return nullptr;
return builder.getOpaqueElementsAttr(type, llvm::fromHex(val));
}
case Token::kw_splat: {
consumeToken(Token::kw_splat);
if (parseToken(Token::less, "expected '<' after 'splat'"))
return nullptr;
auto type = parseVectorOrTensorType();
if (!type)
return nullptr;
switch (getToken().getKind()) {
case Token::floatliteral:
case Token::integer:
case Token::minus: {
auto scalar = parseAttribute(type.getElementType());
if (!scalar)
return nullptr;
if (parseToken(Token::greater, "expected '>'"))
return nullptr;
return builder.getSplatElementsAttr(type, scalar);
}
default:
return (emitError("expected scalar constant inside tensor literal"),
nullptr);
}
}
case Token::kw_dense: {
consumeToken(Token::kw_dense);
if (parseToken(Token::less, "expected '<' after 'dense'"))
return nullptr;
auto type = parseVectorOrTensorType();
if (!type)
return nullptr;
switch (getToken().getKind()) {
case Token::l_square: {
auto attr = parseDenseElementsAttr(type);
if (!attr)
return nullptr;
if (parseToken(Token::greater, "expected '>'"))
return nullptr;
return attr;
}
default:
return (emitError("expected '[' to start dense tensor literal"), nullptr);
}
}
case Token::kw_sparse: {
consumeToken(Token::kw_sparse);
if (parseToken(Token::less, "Expected '<' after 'sparse'"))
return nullptr;
auto type = parseVectorOrTensorType();
if (!type)
return nullptr;
switch (getToken().getKind()) {
case Token::l_square: {
/// Parse indices
auto indicesEltType = builder.getIntegerType(32);
auto indices =
parseDenseElementsAttr(indicesEltType, type.isa<VectorType>());
if (parseToken(Token::comma, "expected ','"))
return nullptr;
/// Parse values.
auto valuesEltType = type.getElementType();
auto values =
parseDenseElementsAttr(valuesEltType, type.isa<VectorType>());
/// Sanity check.
auto indicesType = indices.getType();
auto valuesType = values.getType();
auto sameShape = (indicesType.getRank() == 1) ||
(type.getRank() == indicesType.getDimSize(1));
auto sameElementNum =
indicesType.getDimSize(0) == valuesType.getDimSize(0);
if (!sameShape || !sameElementNum) {
std::string str;
llvm::raw_string_ostream s(str);
s << "expected shape ([";
interleaveComma(type.getShape(), s);
s << "]); inferred shape of indices literal ([";
interleaveComma(indicesType.getShape(), s);
s << "]); inferred shape of values literal ([";
interleaveComma(valuesType.getShape(), s);
s << "])";
return (emitError(s.str()), nullptr);
}
if (parseToken(Token::greater, "expected '>'"))
return nullptr;
// Build the sparse elements attribute by the indices and values.
return builder.getSparseElementsAttr(
type, indices.cast<DenseIntElementsAttr>(), values);
}
default:
return (emitError("expected '[' to start sparse tensor literal"),
nullptr);
}
return (emitError("expected elements literal has a tensor or vector type"),
nullptr);
}
default: {
if (Type type = parseType())
return builder.getTypeAttr(type);
return nullptr;
}
}
}
/// Dense elements attribute.
///
/// dense-attr-list ::= `[` attribute-value `]`
/// attribute-value ::= integer-literal
/// | float-literal
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
///
/// This method returns a constructed dense elements attribute with the shape
/// from the parsing result.
DenseElementsAttr Parser::parseDenseElementsAttr(Type eltType, bool isVector) {
TensorLiteralParser literalParser(*this, eltType);
if (literalParser.parse())
return nullptr;
VectorOrTensorType type;
if (isVector) {
type = builder.getVectorType(literalParser.getShape(), eltType);
} else {
type = builder.getTensorType(literalParser.getShape(), eltType);
}
return builder.getDenseElementsAttr(type, literalParser.getValues())
.cast<DenseElementsAttr>();
}
/// Dense elements attribute.
///
/// dense-attr-list ::= `[` attribute-value `]`
/// attribute-value ::= integer-literal
/// | float-literal
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
///
/// This method compares the shapes from the parsing result and that from the
/// input argument. It returns a constructed dense elements attribute if both
/// match.
DenseElementsAttr Parser::parseDenseElementsAttr(VectorOrTensorType type) {
auto eltTy = type.getElementType();
TensorLiteralParser literalParser(*this, eltTy);
if (literalParser.parse())
return nullptr;
if (literalParser.getShape() != type.getShape()) {
std::string str;
llvm::raw_string_ostream s(str);
s << "inferred shape of elements literal ([";
interleaveComma(literalParser.getShape(), s);
s << "]) does not match type ([";
interleaveComma(type.getShape(), s);
s << "])";
return (emitError(s.str()), nullptr);
}
return builder.getDenseElementsAttr(type, literalParser.getValues())
.cast<DenseElementsAttr>();
}
/// Vector or tensor type for elements attribute.
///
/// vector-or-tensor-type ::= vector-type | tensor-type
///
/// This method also checks the type has static shape and ranked.
VectorOrTensorType Parser::parseVectorOrTensorType() {
auto elementType = parseType();
if (!elementType)
return nullptr;
auto type = elementType.dyn_cast<VectorOrTensorType>();
if (!type) {
return (emitError("expected elements literal has a tensor or vector type"),
nullptr);
}
if (parseToken(Token::comma, "expected ','"))
return nullptr;
if (!type.hasStaticShape() || type.getRank() == -1) {
return (emitError("tensor literals must be ranked and have static shape"),
nullptr);
}
return type;
}
/// Attribute dictionary.
///
/// attribute-dict ::= `{` `}`
/// | `{` attribute-entry (`,` attribute-entry)* `}`
/// attribute-entry ::= bare-id `:` attribute-value
///
ParseResult
Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) {
if (!consumeIf(Token::l_brace))
return ParseFailure;
auto parseElt = [&]() -> ParseResult {
// We allow keywords as attribute names.
if (getToken().isNot(Token::bare_identifier, Token::inttype) &&
!getToken().isKeyword())
return emitError("expected attribute name");
auto nameId = builder.getIdentifier(getTokenSpelling());
consumeToken();
if (parseToken(Token::colon, "expected ':' in attribute list"))
return ParseFailure;
auto attr = parseAttribute();
if (!attr)
return ParseFailure;
attributes.push_back({nameId, attr});
return ParseSuccess;
};
if (parseCommaSeparatedListUntil(Token::r_brace, parseElt))
return ParseFailure;
return ParseSuccess;
}
//===----------------------------------------------------------------------===//
// Polyhedral structures.
//===----------------------------------------------------------------------===//
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
/// Null value.
LNoOp,
Add,
Sub
};
/// Higher precedence ops - all at the same precedence level. HNoOp is false
/// in the boolean sense.
enum AffineHighPrecOp {
/// Null value.
HNoOp,
Mul,
FloorDiv,
CeilDiv,
Mod
};
namespace {
/// This is a specialized parser for affine structures (affine maps, affine
/// expressions, and integer sets), maintaining the state transient to their
/// bodies.
class AffineParser : public Parser {
public:
explicit AffineParser(ParserState &state) : Parser(state) {}
void parseAffineStructureInline(AffineMap *map, IntegerSet *set);
AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
private:
// Binary affine op parsing.
AffineLowPrecOp consumeIfLowPrecOp();
AffineHighPrecOp consumeIfHighPrecOp();
// Identifier lists for polyhedral structures.
ParseResult parseDimIdList(unsigned &numDims);
ParseResult parseSymbolIdList(unsigned &numSymbols);
ParseResult parseIdentifierDefinition(AffineExpr idExpr);
AffineExpr parseAffineExpr();
AffineExpr parseParentheticalExpr();
AffineExpr parseNegateExpression(AffineExpr lhs);
AffineExpr parseIntegerExpr();
AffineExpr parseBareIdExpr();
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
AffineExpr rhs, SMLoc opLoc);
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
AffineExpr rhs);
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc);
AffineExpr parseAffineConstraint(bool *isEq);
private:
SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
};
} // end anonymous namespace
/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
AffineExpr lhs, AffineExpr rhs,
SMLoc opLoc) {
// TODO: make the error location info accurate.
switch (op) {
case Mul:
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: at least one of the multiply "
"operands has to be either a constant or symbolic");
return nullptr;
}
return lhs * rhs;
case FloorDiv:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of floordiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.floorDiv(rhs);
case CeilDiv:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of ceildiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.ceilDiv(rhs);
case Mod:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of mod "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs % rhs;
case HNoOp:
llvm_unreachable("can't create affine expression for null high prec op");
return nullptr;
}
}
/// Create an affine binary low precedence op expression (add, sub).
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
AffineExpr lhs, AffineExpr rhs) {
switch (op) {
case AffineLowPrecOp::Add:
return lhs + rhs;
case AffineLowPrecOp::Sub:
return lhs - rhs;
case AffineLowPrecOp::LNoOp:
llvm_unreachable("can't create affine expression for null low prec op");
return nullptr;
}
}
/// Consume this token if it is a lower precedence affine op (there are only
/// two precedence levels).
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
switch (getToken().getKind()) {
case Token::plus:
consumeToken(Token::plus);
return AffineLowPrecOp::Add;
case Token::minus:
consumeToken(Token::minus);
return AffineLowPrecOp::Sub;
default:
return AffineLowPrecOp::LNoOp;
}
}
/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
switch (getToken().getKind()) {
case Token::star:
consumeToken(Token::star);
return Mul;
case Token::kw_floordiv:
consumeToken(Token::kw_floordiv);
return FloorDiv;
case Token::kw_ceildiv:
consumeToken(Token::kw_ceildiv);
return CeilDiv;
case Token::kw_mod:
consumeToken(Token::kw_mod);
return Mod;
default:
return HNoOp;
}
}
/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
/// expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc) {
AffineExpr lhs = parseAffineOperandExpr(llhs);
if (!lhs)
return nullptr;
// Found an LHS. Parse the remaining expression.
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
if (llhs) {
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
if (!expr)
return nullptr;
return parseAffineHighPrecOpExpr(expr, op, opLoc);
}
// No LLHS, get RHS
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
}
// This is the last operand in this expression.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression inside parentheses.
///
/// affine-expr ::= `(` affine-expr `)`
AffineExpr AffineParser::parseParentheticalExpr() {
if (parseToken(Token::l_paren, "expected '('"))
return nullptr;
if (getToken().is(Token::r_paren))
return (emitError("no expression inside parentheses"), nullptr);
auto expr = parseAffineExpr();
if (!expr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')'"))
return nullptr;
return expr;
}
/// Parse the negation expression.
///
/// affine-expr ::= `-` affine-expr
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
if (parseToken(Token::minus, "expected '-'"))
return nullptr;
AffineExpr operand = parseAffineOperandExpr(lhs);
// Since negation has the highest precedence of all ops (including high
// precedence ops) but lower than parentheses, we are only going to use
// parseAffineOperandExpr instead of parseAffineExpr here.
if (!operand)
// Extra error message although parseAffineOperandExpr would have
// complained. Leads to a better diagnostic.
return (emitError("missing operand of negation"), nullptr);
return (-1) * operand;
}
/// Parse a bare id that may appear in an affine expression.
///
/// affine-expr ::= bare-id
AffineExpr AffineParser::parseBareIdExpr() {
if (getToken().isNot(Token::bare_identifier))
return (emitError("expected bare identifier"), nullptr);
StringRef sRef = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == sRef) {
consumeToken(Token::bare_identifier);
return entry.second;
}
}
return (emitError("use of undeclared identifier"), nullptr);
}
/// Parse a positive integral constant appearing in an affine expression.
///
/// affine-expr ::= integer-literal
AffineExpr AffineParser::parseIntegerExpr() {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return (emitError("constant too large for index"), nullptr);
consumeToken(Token::integer);
return builder.getAffineConstantExpr((int64_t)val.getValue());
}
/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
// Eg: for an expression without parentheses (like i + j + k + l), each
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
// operand expression, it's an op expression and will be parsed via
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
// -l are valid operands that will be parsed by this function.
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
switch (getToken().getKind()) {
case Token::bare_identifier:
return parseBareIdExpr();
case Token::integer:
return parseIntegerExpr();
case Token::l_paren:
return parseParentheticalExpr();
case Token::minus:
return parseNegateExpression(lhs);
case Token::kw_ceildiv:
case Token::kw_floordiv:
case Token::kw_mod:
case Token::plus:
case Token::star:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("missing left operand of binary operator");
return nullptr;
default:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("expected affine expression");
return nullptr;
}
}
/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
AffineLowPrecOp llhsOp) {
AffineExpr lhs;
if (!(lhs = parseAffineOperandExpr(llhs)))
return nullptr;
// Found an LHS. Deal with the ops.
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
if (llhs) {
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
return parseAffineLowPrecOpExpr(sum, lOp);
}
// No LLHS, get RHS and form the expression.
return parseAffineLowPrecOpExpr(lhs, lOp);
}
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
// We have a higher precedence op here. Get the rhs operand for the llhs
// through parseAffineHighPrecOpExpr.
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
if (!highRes)
return nullptr;
// If llhs is null, the product forms the first operand of the yet to be
// found expression. If non-null, the op to associate with llhs is llhsOp.
AffineExpr expr =
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
// Recurse for subsequent low prec op's after the affine high prec op
// expression.
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
return parseAffineLowPrecOpExpr(expr, nextOp);
return expr;
}
// Last operand in the expression list.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression.
/// affine-expr ::= `(` affine-expr `)`
/// | `-` affine-expr
/// | affine-expr `+` affine-expr
/// | affine-expr `-` affine-expr
/// | affine-expr `*` affine-expr
/// | affine-expr `floordiv` affine-expr
/// | affine-expr `ceildiv` affine-expr
/// | affine-expr `mod` affine-expr
/// | bare-id
/// | integer-literal
///
/// Additional conditions are checked depending on the production. For eg.,
/// one of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr AffineParser::parseAffineExpr() {
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}
/// Parse a dim or symbol from the lists appearing before the actual
/// expressions of the affine map. Update our state to store the
/// dimensional/symbolic identifier.
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
if (getToken().isNot(Token::bare_identifier))
return emitError("expected bare identifier");
auto name = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == name)
return emitError("redefinition of identifier '" + Twine(name) + "'");
}
consumeToken(Token::bare_identifier);
dimsAndSymbols.push_back({name, idExpr});
return ParseSuccess;
}
/// Parse the list of symbolic identifiers to an affine map.
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
consumeToken(Token::l_square);
auto parseElt = [&]() -> ParseResult {
auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
return parseIdentifierDefinition(symbol);
};
return parseCommaSeparatedListUntil(Token::r_square, parseElt);
}
/// Parse the list of dimensional identifiers to an affine map.
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
if (parseToken(Token::l_paren,
"expected '(' at start of dimensional identifiers list"))
return ParseFailure;
auto parseElt = [&]() -> ParseResult {
auto dimension = getAffineDimExpr(numDims++, getContext());
return parseIdentifierDefinition(dimension);
};
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parses either an affine map or an integer set definition inline. If both
/// 'map' and 'set' are non-null, parses either an affine map or an integer set.
/// If 'map' is set to nullptr, parses an integer set. If 'set' is set to
/// nullptr, parses an affine map. 'map'/'set' are set to the parsed structure.
///
/// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
/// (`size` `(` dim-size (`,` dim-size)* `)`)?
/// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)`
///
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
///
///
/// integer-set-inline
/// ::= dim-and-symbol-id-lists `:`
/// affine-constraint-conjunction
/// affine-constraint-conjunction ::= /*empty*/
/// | affine-constraint (`,`
/// affine-constraint)*
///
void AffineParser::parseAffineStructureInline(AffineMap *map, IntegerSet *set) {
assert((map || set) && "one of map or set expected to be non-null");
unsigned numDims = 0, numSymbols = 0;
// List of dimensional identifiers.
if (parseDimIdList(numDims)) {
if (map)
*map = AffineMap::Null();
if (set)
*set = IntegerSet::Null();
return;
}
// Symbols are optional.
if (getToken().is(Token::l_square)) {
if (parseSymbolIdList(numSymbols)) {
if (map)
*map = AffineMap::Null();
if (set)
*set = IntegerSet::Null();
return;
}
}
// This is needed for parsing attributes as we wouldn't know whether we would
// be parsing an integer set attribute or an affine map attribute.
if (map && set && getToken().isNot(Token::arrow) &&
getToken().isNot(Token::colon)) {
emitError("expected '->' or ':' or '['");
*map = AffineMap::Null();
*set = IntegerSet::Null();
return;
}
if (map && (!set || getToken().is(Token::arrow))) {
// Parse an affine map.
if (parseToken(Token::arrow, "expected '->' or '['")) {
*map = AffineMap::Null();
if (set)
*set = IntegerSet::Null();
return;
}
*map = parseAffineMapRange(numDims, numSymbols);
if (set)
*set = IntegerSet::Null();
return;
}
if (set && (!map || getToken().is(Token::colon))) {
// Parse an integer set.
if (parseToken(Token::colon, "expected ':' or '['")) {
*set = IntegerSet::Null();
if (map)
*map = AffineMap::Null();
return;
}
*set = parseIntegerSetConstraints(numDims, numSymbols);
if (map)
*map = AffineMap::Null();
return;
}
}
/// Parse the range and sizes affine map definition inline.
///
/// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
/// (`size` `(` dim-size (`,` dim-size)* `)`)?
/// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)`
///
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
unsigned numSymbols) {
parseToken(Token::l_paren, "expected '(' at start of affine map range");
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto elt = parseAffineExpr();
ParseResult res = elt ? ParseSuccess : ParseFailure;
exprs.push_back(elt);
return res;
};
// Parse a multi-dimensional affine expression (a comma-separated list of
// 1-d affine expressions); the list cannot be empty. Grammar:
// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, false))
return AffineMap::Null();
// Parse optional range sizes.
// range-sizes ::= (`size` `(` dim-size (`,` dim-size)* `)`)?
// dim-size ::= affine-expr | `min` `(` affine-expr (`,` affine-expr)+ `)`
// TODO(bondhugula): support for min of several affine expressions.
// TODO: check if sizes are non-negative whenever they are constant.
SmallVector<AffineExpr, 4> rangeSizes;
if (consumeIf(Token::kw_size)) {
// Location of the l_paren token (if it exists) for error reporting later.
auto loc = getToken().getLoc();
if (parseToken(Token::l_paren, "expected '(' at start of affine map range"))
return AffineMap::Null();
auto parseRangeSize = [&]() -> ParseResult {
auto loc = getToken().getLoc();
auto elt = parseAffineExpr();
if (!elt)
return ParseFailure;
if (!elt.isSymbolicOrConstant())
return emitError(loc,
"size expressions cannot refer to dimension values");
rangeSizes.push_back(elt);
return ParseSuccess;
};
if (parseCommaSeparatedListUntil(Token::r_paren, parseRangeSize, false))
return AffineMap::Null();
if (exprs.size() > rangeSizes.size())
return (emitError(loc, "fewer range sizes than range expressions"),
AffineMap::Null());
if (exprs.size() < rangeSizes.size())
return (emitError(loc, "more range sizes than range expressions"),
AffineMap::Null());
}
// Parsed a valid affine map.
return builder.getAffineMap(numDims, numSymbols, exprs, rangeSizes);
}
void Parser::parseAffineStructureInline(AffineMap *map, IntegerSet *set) {
AffineParser(state).parseAffineStructureInline(map, set);
}
AffineMap Parser::parseAffineMapInline() {
AffineMap map;
AffineParser(state).parseAffineStructureInline(&map, nullptr);
return map;
}
/// Parse either an affine map reference or integer set reference.
///
/// affine-structure ::= affine-structure-id | affine-structure-inline
/// affine-structure-id ::= `#` suffix-id
///
/// affine-structure ::= affine-map | integer-set
///
void Parser::parseAffineStructureReference(AffineMap *map, IntegerSet *set) {
assert((map || set) && "both map and set are non-null");
if (getToken().isNot(Token::hash_identifier)) {
// Try to parse inline affine map or integer set.
return parseAffineStructureInline(map, set);
}
// Parse affine map / integer set identifier and verify that it exists.
// Note that an id can't be in both affineMapDefinitions and
// integerSetDefinitions since they use the same sigil '#'.
StringRef affineStructId = getTokenSpelling().drop_front();
if (getState().affineMapDefinitions.count(affineStructId) > 0) {
consumeToken(Token::hash_identifier);
if (map)
*map = getState().affineMapDefinitions[affineStructId];
if (set)
*set = IntegerSet::Null();
return;
}
if (getState().integerSetDefinitions.count(affineStructId) > 0) {
consumeToken(Token::hash_identifier);
if (set)
*set = getState().integerSetDefinitions[affineStructId];
if (map)
*map = AffineMap::Null();
return;
}
// The id isn't among any of the recorded definitions.
// Emit the right message depending on what the caller expected.
if (map && !set)
emitError("undefined affine map id '" + affineStructId + "'");
else if (set && !map)
emitError("undefined integer set id '" + affineStructId + "'");
else if (set && map)
emitError("undefined affine map or integer set id '" + affineStructId +
"'");
if (map)
*map = AffineMap::Null();
if (set)
*set = IntegerSet::Null();
}
/// Parse a reference to an integer set.
/// affine-map ::= affine-map-id | affine-map-inline
/// affine-map-id ::= `#` suffix-id
///
AffineMap Parser::parseAffineMapReference() {
AffineMap map;
parseAffineStructureReference(&map, nullptr);
return map;
}
/// Parse a reference to an integer set.
/// integer-set ::= integer-set-id | integer-set-inline
/// integer-set-id ::= `#` suffix-id
///
IntegerSet Parser::parseIntegerSetReference() {
IntegerSet set;
parseAffineStructureReference(nullptr, &set);
return set;
}
//===----------------------------------------------------------------------===//
// FunctionParser
//===----------------------------------------------------------------------===//
namespace {
/// This class contains parser state that is common across CFG and ML
/// functions, notably for dealing with operations and SSA values.
class FunctionParser : public Parser {
public:
/// This builder intentionally shadows the builder in the base class, with a
/// more specific builder type.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshadow-field"
FuncBuilder builder;
#pragma clang diagnostic pop
FunctionParser(ParserState &state, Function *function)
: Parser(state), builder(function), function(function) {}
~FunctionParser();
ParseResult parseFunctionBody(bool hadNamedArguments);
/// Parse a single operation successor and it's operand list.
bool parseSuccessorAndUseList(Block *&dest,
SmallVectorImpl<Value *> &operands);
ParseResult
parseOptionalBlockArgList(SmallVectorImpl<BlockArgument *> &results,
Block *owner);
ParseResult parseBlock(Block *blockToUse);
ParseResult parseBlockBody(Block *block);
/// After the function is finished parsing, this function checks to see if
/// there are any remaining issues.
ParseResult finalizeFunction(SMLoc loc);
/// This represents a use of an SSA value in the program. The first two
/// entries in the tuple are the name and result number of a reference. The
/// third is the location of the reference, which is used in case this ends
/// up being a use of an undefined value.
struct SSAUseInfo {
StringRef name; // Value name, e.g. %42 or %abc
unsigned number; // Number, specified with #12
SMLoc loc; // Location of first definition or use.
};
/// Given a reference to an SSA value and its type, return a reference. This
/// returns null on failure.
Value *resolveSSAUse(SSAUseInfo useInfo, Type type);
/// Register a definition of a value with the symbol table.
ParseResult addDefinition(SSAUseInfo useInfo, Value *value);
// SSA parsing productions.
ParseResult parseSSAUse(SSAUseInfo &result);
ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
template <typename ResultType>
ResultType parseSSADefOrUseAndType(
const std::function<ResultType(SSAUseInfo, Type)> &action);
Value *parseSSAUseAndType() {
return parseSSADefOrUseAndType<Value *>(
[&](SSAUseInfo useInfo, Type type) -> Value * {
return resolveSSAUse(useInfo, type);
});
}
template <typename ValueTy>
ParseResult
parseOptionalSSAUseAndTypeList(SmallVectorImpl<ValueTy *> &results);
// Block references.
/// Get the block with the specified name, creating it if it doesn't
/// already exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *getBlockNamed(StringRef name, SMLoc loc);
// Define the block with the specified name. Returns the Block* or
// nullptr in the case of redefinition.
Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);
// Operations
ParseResult parseOperation();
OperationInst *parseVerboseOperation();
OperationInst *parseCustomOperation();
ParseResult parseForInst();
ParseResult parseIntConstant(int64_t &val);
ParseResult parseDimAndSymbolList(SmallVectorImpl<Value *> &operands,
unsigned numDims, unsigned numOperands,
const char *affineStructName);
ParseResult parseBound(SmallVectorImpl<Value *> &operands, AffineMap &map,
bool isLower);
ParseResult parseIfInst();
ParseResult parseElseClause(Block *elseClause);
ParseResult parseInstructions(Block *block);
private:
Function *function;
// This keeps track of the block names as well as the location of the first
// reference, used to diagnose invalid block references and memoize them.
llvm::StringMap<std::pair<Block *, SMLoc>> blocksByName;
DenseMap<Block *, SMLoc> forwardRef;
/// This keeps track of all of the SSA values we are tracking, indexed by
/// their name. This has one entry per result number.
llvm::StringMap<SmallVector<std::pair<Value *, SMLoc>, 1>> values;
/// These are all of the placeholders we've made along with the location of
/// their first reference, to allow checking for use of undefined values.
DenseMap<Value *, SMLoc> forwardReferencePlaceholders;
Value *createForwardReferencePlaceholder(SMLoc loc, Type type);
/// Return true if this is a forward reference.
bool isForwardReferencePlaceholder(Value *value) {
return forwardReferencePlaceholders.count(value);
}
};
} // end anonymous namespace
ParseResult FunctionParser::parseFunctionBody(bool hadNamedArguments) {
auto braceLoc = getToken().getLoc();
if (parseToken(Token::l_brace, "expected '{' in function"))
return ParseFailure;
// Make sure we have at least one block.
if (getToken().is(Token::r_brace))
return emitError("function must have a body");
// If we had named arguments, then we don't allow a block name.
if (hadNamedArguments) {
if (getToken().is(Token::caret_identifier))
return emitError("invalid block name in function with named arguments");
}
// The first block is already created and should be filled in.
auto firstBlock = &function->front();
// Parse the remaining list of blocks.
while (!consumeIf(Token::r_brace)) {
if (parseBlock(firstBlock))
return ParseFailure;
// Create the second and subsequent block.
firstBlock = nullptr;
}
// Verify that all referenced blocks were defined.
if (!forwardRef.empty()) {
SmallVector<std::pair<const char *, Block *>, 4> errors;
// Iteration over the map isn't deterministic, so sort by source location.
for (auto entry : forwardRef)
errors.push_back({entry.second.getPointer(), entry.first});
llvm::array_pod_sort(errors.begin(), errors.end());
for (auto entry : errors) {
auto loc = SMLoc::getFromPointer(entry.first);
emitError(loc, "reference to an undefined block");
}
return ParseFailure;
}
return finalizeFunction(braceLoc);
}
/// Block declaration.
///
/// block ::= block-label? instruction* terminator-inst
/// block-label ::= block-id block-arg-list? `:`
/// block-id ::= caret-id
/// block-arg-list ::= `(` ssa-id-and-type-list? `)`
///
ParseResult FunctionParser::parseBlock(Block *blockToUse) {
Block *block = blockToUse;
// The first block for a function is already created.
if (block) {
// The name for a first block is optional.
if (getToken().isNot(Token::caret_identifier))
return parseBlockBody(block);
}
SMLoc nameLoc = getToken().getLoc();
auto name = getTokenSpelling();
if (parseToken(Token::caret_identifier, "expected block name"))
return ParseFailure;
block = defineBlockNamed(name, nameLoc, block);
// Fail if redefinition.
if (!block)
return emitError(nameLoc, "redefinition of block '" + name.str() + "'");
// If an argument list is present, parse it.
if (consumeIf(Token::l_paren)) {
SmallVector<BlockArgument *, 8> bbArgs;
if (parseOptionalBlockArgList(bbArgs, block) ||
parseToken(Token::r_paren, "expected ')' to end argument list"))
return ParseFailure;
}
if (parseToken(Token::colon, "expected ':' after block name"))
return ParseFailure;
return parseBlockBody(block);
}
ParseResult FunctionParser::parseBlockBody(Block *block) {
// Set the insertion point to the block we want to insert new operations
// into.
builder.setInsertionPointToEnd(block);
// Parse the list of operations that make up the body of the block.
while (getToken().isNot(Token::caret_identifier, Token::r_brace)) {
switch (getToken().getKind()) {
default:
if (parseOperation())
return ParseFailure;
break;
case Token::kw_for:
if (parseForInst())
return ParseFailure;
break;
case Token::kw_if:
if (parseIfInst())
return ParseFailure;
break;
}
}
return ParseSuccess;
}
/// Create and remember a new placeholder for a forward reference.
Value *FunctionParser::createForwardReferencePlaceholder(SMLoc loc, Type type) {
// Forward references are always created as instructions, even in ML
// functions, because we just need something with a def/use chain.
//
// We create these placeholders as having an empty name, which we know
// cannot be created through normal user input, allowing us to distinguish
// them.
auto name = OperationName("placeholder", getContext());
auto *inst = OperationInst::create(getEncodedSourceLocation(loc), name,
/*operands=*/{}, type,
/*attributes=*/{},
/*successors=*/{}, getContext());
forwardReferencePlaceholders[inst->getResult(0)] = loc;
return inst->getResult(0);
}
/// Given an unbound reference to an SSA value and its type, return the value
/// it specifies. This returns null on failure.
Value *FunctionParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
auto &entries = values[useInfo.name];
// If we have already seen a value of this name, return it.
if (useInfo.number < entries.size() && entries[useInfo.number].first) {
auto *result = entries[useInfo.number].first;
// Check that the type matches the other uses.
if (result->getType() == type)
return result;
emitError(useInfo.loc, "use of value '" + useInfo.name.str() +
"' expects different type than prior uses");
emitError(entries[useInfo.number].second, "prior use here");
return nullptr;
}
// Make sure we have enough slots for this.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If the value has already been defined and this is an overly large result
// number, diagnose that.
if (entries[0].first && !isForwardReferencePlaceholder(entries[0].first))
return (emitError(useInfo.loc, "reference to invalid result number"),
nullptr);
// Otherwise, this is a forward reference. Create a placeholder and remember
// that we did so.
auto *result = createForwardReferencePlaceholder(useInfo.loc, type);
entries[useInfo.number].first = result;
entries[useInfo.number].second = useInfo.loc;
return result;
}
/// After the function is finished parsing, this function checks to see if
/// there are any remaining issues.
ParseResult FunctionParser::finalizeFunction(SMLoc loc) {
// Check for any forward references that are left. If we find any, error
// out.
if (!forwardReferencePlaceholders.empty()) {
SmallVector<std::pair<const char *, Value *>, 4> errors;
// Iteration over the map isn't deterministic, so sort by source location.
for (auto entry : forwardReferencePlaceholders)
errors.push_back({entry.second.getPointer(), entry.first});
llvm::array_pod_sort(errors.begin(), errors.end());
for (auto entry : errors) {
auto loc = SMLoc::getFromPointer(entry.first);
emitError(loc, "use of undeclared SSA value name");
}
return ParseFailure;
}
return ParseSuccess;
}
FunctionParser::~FunctionParser() {
for (auto &fwd : forwardReferencePlaceholders) {
// Drop all uses of undefined forward declared reference and destroy
// defining instruction.
fwd.first->dropAllUses();
fwd.first->getDefiningInst()->destroy();
}
}
/// Register a definition of a value with the symbol table.
ParseResult FunctionParser::addDefinition(SSAUseInfo useInfo, Value *value) {
auto &entries = values[useInfo.name];
// Make sure there is a slot for this value.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If we already have an entry for this, check to see if it was a definition
// or a forward reference.
if (auto *existing = entries[useInfo.number].first) {
if (!isForwardReferencePlaceholder(existing)) {
emitError(useInfo.loc,
"redefinition of SSA value '" + useInfo.name + "'");
return emitError(entries[useInfo.number].second,
"previously defined here");
}
// If it was a forward reference, update everything that used it to use
// the actual definition instead, delete the forward ref, and remove it
// from our set of forward references we track.
existing->replaceAllUsesWith(value);
existing->getDefiningInst()->destroy();
forwardReferencePlaceholders.erase(existing);
}
entries[useInfo.number].first = value;
entries[useInfo.number].second = useInfo.loc;
return ParseSuccess;
}
/// Parse a SSA operand for an instruction or instruction.
///
/// ssa-use ::= ssa-id
///
ParseResult FunctionParser::parseSSAUse(SSAUseInfo &result) {
result.name = getTokenSpelling();
result.number = 0;
result.loc = getToken().getLoc();
if (parseToken(Token::percent_identifier, "expected SSA operand"))
return ParseFailure;
// If we have an affine map ID, it is a result number.
if (getToken().is(Token::hash_identifier)) {
if (auto value = getToken().getHashIdentifierNumber())
result.number = value.getValue();
else
return emitError("invalid SSA value result number");
consumeToken(Token::hash_identifier);
}
return ParseSuccess;
}
/// Parse a (possibly empty) list of SSA operands.
///
/// ssa-use-list ::= ssa-use (`,` ssa-use)*
/// ssa-use-list-opt ::= ssa-use-list?
///
ParseResult
FunctionParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
if (getToken().isNot(Token::percent_identifier))
return ParseSuccess;
return parseCommaSeparatedList([&]() -> ParseResult {
SSAUseInfo result;
if (parseSSAUse(result))
return ParseFailure;
results.push_back(result);
return ParseSuccess;
});
}
/// Parse an SSA use with an associated type.
///
/// ssa-use-and-type ::= ssa-use `:` type
template <typename ResultType>
ResultType FunctionParser::parseSSADefOrUseAndType(
const std::function<ResultType(SSAUseInfo, Type)> &action) {
SSAUseInfo useInfo;
if (parseSSAUse(useInfo) ||
parseToken(Token::colon, "expected ':' and type for SSA operand"))
return nullptr;
auto type = parseType();
if (!type)
return nullptr;
return action(useInfo, type);
}
/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
/// followed by a type list.
///
/// ssa-use-and-type-list
/// ::= ssa-use-list ':' type-list-no-parens
///
template <typename ValueTy>
ParseResult FunctionParser::parseOptionalSSAUseAndTypeList(
SmallVectorImpl<ValueTy *> &results) {
SmallVector<SSAUseInfo, 4> valueIDs;
if (parseOptionalSSAUseList(valueIDs))
return ParseFailure;
// If there were no operands, then there is no colon or type lists.
if (valueIDs.empty())
return ParseSuccess;
SmallVector<Type, 4> types;
if (parseToken(Token::colon, "expected ':' in operand list") ||
parseTypeListNoParens(types))
return ParseFailure;
if (valueIDs.size() != types.size())
return emitError("expected " + Twine(valueIDs.size()) +
" types to match operand list");
results.reserve(valueIDs.size());
for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
if (auto *value = resolveSSAUse(valueIDs[i], types[i]))
results.push_back(cast<ValueTy>(value));
else
return ParseFailure;
}
return ParseSuccess;
}
/// Get the block with the specified name, creating it if it doesn't already
/// exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *FunctionParser::getBlockNamed(StringRef name, SMLoc loc) {
auto &blockAndLoc = blocksByName[name];
if (!blockAndLoc.first) {
blockAndLoc.first = new Block();
forwardRef[blockAndLoc.first] = loc;
function->push_back(blockAndLoc.first);
blockAndLoc.second = loc;
}
return blockAndLoc.first;
}
/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *FunctionParser::defineBlockNamed(StringRef name, SMLoc loc,
Block *existing) {
auto &blockAndLoc = blocksByName[name];
if (!blockAndLoc.first) {
// If the caller provided a block, use it. Otherwise create a new one.
if (!existing)
existing = builder.createBlock();
blockAndLoc.first = existing;
blockAndLoc.second = loc;
return blockAndLoc.first;
}
// Forward declarations are removed once defined, so if we are defining a
// existing block and it is not a forward declaration, then it is a
// redeclaration.
if (!forwardRef.erase(blockAndLoc.first))
return nullptr;
// Move the block to the end of the function. Forward ref'd blocks are
// inserted wherever they happen to be referenced.
function->getBlocks().splice(function->end(), function->getBlocks(),
blockAndLoc.first);
return blockAndLoc.first;
}
/// Parse a single operation successor and it's operand list.
///
/// successor ::= block-id branch-use-list?
/// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)`
///
bool FunctionParser::parseSuccessorAndUseList(
Block *&dest, SmallVectorImpl<Value *> &operands) {
// Verify branch is identifier and get the matching block.
if (!getToken().is(Token::caret_identifier))
return emitError("expected block name");
dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
consumeToken();
// Handle optional arguments.
if (consumeIf(Token::l_paren) &&
(parseOptionalSSAUseAndTypeList(operands) ||
parseToken(Token::r_paren, "expected ')' to close argument list"))) {
return true;
}
return false;
}
/// Parse a (possibly empty) list of SSA operands with types as block arguments.
///
/// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
///
ParseResult FunctionParser::parseOptionalBlockArgList(
SmallVectorImpl<BlockArgument *> &results, Block *owner) {
if (getToken().is(Token::r_brace))
return ParseSuccess;
// If the block already has arguments, then we're handling the entry block.
// Parse and register the names for the arguments, but do not add them.
bool definingExistingArgs = owner->getNumArguments() != 0;
unsigned nextArgument = 0;
return parseCommaSeparatedList([&]() -> ParseResult {
auto type = parseSSADefOrUseAndType<Type>(
[&](SSAUseInfo useInfo, Type type) -> Type {
BlockArgument *arg;
if (!definingExistingArgs) {
arg = owner->addArgument(type);
} else if (nextArgument >= owner->getNumArguments()) {
emitError("too many arguments specified in argument list");
return {};
} else {
arg = owner->getArgument(nextArgument++);
if (arg->getType() != type) {
emitError("argument and block argument type mismatch");
return {};
}
}
if (addDefinition(useInfo, arg))
return {};
return type;
});
return type ? ParseSuccess : ParseFailure;
});
}
/// Parse an operation.
///
/// operation ::=
/// (ssa-id `=`)? string '(' ssa-use-list? ')' attribute-dict?
/// `:` function-type
///
ParseResult FunctionParser::parseOperation() {
auto loc = getToken().getLoc();
StringRef resultID;
if (getToken().is(Token::percent_identifier)) {
resultID = getTokenSpelling();
consumeToken(Token::percent_identifier);
if (parseToken(Token::equal, "expected '=' after SSA name"))
return ParseFailure;
}
OperationInst *op;
if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
op = parseCustomOperation();
else if (getToken().is(Token::string))
op = parseVerboseOperation();
else
return emitError("expected operation name in quotes");
// If parsing of the basic operation failed, then this whole thing fails.
if (!op)
return ParseFailure;
// We just parsed an operation. If it is a recognized one, verify that it
// is structurally as we expect. If not, produce an error with a reasonable
// source location.
if (auto *opInfo = op->getAbstractOperation()) {
// We don't wan't to verify branching terminators at this time because
// the successors may not have been fully parsed yet.
if (!(op->isTerminator() && op->getNumSuccessors() != 0) &&
opInfo->verifyInvariants(op))
return ParseFailure;
}
// If the instruction had a name, register it.
if (!resultID.empty()) {
if (op->getNumResults() == 0)
return emitError(loc, "cannot name an operation with no results");
for (unsigned i = 0, e = op->getNumResults(); i != e; ++i)
if (addDefinition({resultID, i, loc}, op->getResult(i)))
return ParseFailure;
}
return ParseSuccess;
}
OperationInst *FunctionParser::parseVerboseOperation() {
// Get location information for the operation.
auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
auto name = getToken().getStringValue();
if (name.empty())
return (emitError("empty operation name is invalid"), nullptr);
if (name.find('\0') != StringRef::npos)
return (emitError("null character not allowed in operation name"), nullptr);
consumeToken(Token::string);
OperationState result(builder.getContext(), srcLocation, name);
// Parse the operand list.
SmallVector<SSAUseInfo, 8> operandInfos;
if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
parseOptionalSSAUseList(operandInfos) ||
parseToken(Token::r_paren, "expected ')' to end operand list")) {
return nullptr;
}
if (getToken().is(Token::l_brace)) {
if (parseAttributeDict(result.attributes))
return nullptr;
}
if (parseToken(Token::colon, "expected ':' followed by instruction type"))
return nullptr;
auto typeLoc = getToken().getLoc();
auto type = parseType();
if (!type)
return nullptr;
auto fnType = type.dyn_cast<FunctionType>();
if (!fnType)
return (emitError(typeLoc, "expected function type"), nullptr);
result.addTypes(fnType.getResults());
// Check that we have the right number of types for the operands.
auto operandTypes = fnType.getInputs();
if (operandTypes.size() != operandInfos.size()) {
auto plural = "s"[operandInfos.size() == 1];
return (emitError(typeLoc, "expected " + llvm::utostr(operandInfos.size()) +
" operand type" + plural + " but had " +
llvm::utostr(operandTypes.size())),
nullptr);
}
// Resolve all of the operands.
for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
if (!result.operands.back())
return nullptr;
}
return builder.createOperation(result);
}
namespace {
class CustomOpAsmParser : public OpAsmParser {
public:
CustomOpAsmParser(SMLoc nameLoc, StringRef opName, FunctionParser &parser)
: nameLoc(nameLoc), opName(opName), parser(parser) {}
//===--------------------------------------------------------------------===//
// High level parsing methods.
//===--------------------------------------------------------------------===//
bool getCurrentLocation(llvm::SMLoc *loc) override {
*loc = parser.getToken().getLoc();
return false;
}
bool parseComma() override {
return parser.parseToken(Token::comma, "expected ','");
}
bool parseType(Type &result) override {
return !(result = parser.parseType());
}
bool parseColonType(Type &result) override {
return parser.parseToken(Token::colon, "expected ':'") ||
!(result = parser.parseType());
}
bool parseColonTypeList(SmallVectorImpl<Type> &result) override {
if (parser.parseToken(Token::colon, "expected ':'"))
return true;
do {
if (auto type = parser.parseType())
result.push_back(type);
else
return true;
} while (parser.consumeIf(Token::comma));
return false;
}
bool parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount,
Delimiter delimiter) override {
if (parser.getToken().is(Token::comma)) {
parseComma();
return parseOperandList(result, requiredOperandCount, delimiter);
}
if (requiredOperandCount != -1)
return emitError(parser.getToken().getLoc(),
"expected " + Twine(requiredOperandCount) + " operands");
return false;
}
/// Parse a keyword followed by a type.
bool parseKeywordType(const char *keyword, Type &result) override {
if (parser.getTokenSpelling() != keyword)
return parser.emitError("expected '" + Twine(keyword) + "'");
parser.consumeToken();
return !(result = parser.parseType());
}
/// Parse an arbitrary attribute of a given type and return it in result. This
/// also adds the attribute to the specified attribute list with the specified
/// name.
bool parseAttribute(Attribute &result, Type type, const char *attrName,
SmallVectorImpl<NamedAttribute> &attrs) override {
result = parser.parseAttribute(type);
if (!result)
return true;
attrs.push_back(
NamedAttribute(parser.builder.getIdentifier(attrName), result));
return false;
}
/// Parse an arbitrary attribute and return it in result. This also adds
/// the attribute to the specified attribute list with the specified name.
bool parseAttribute(Attribute &result, const char *attrName,
SmallVectorImpl<NamedAttribute> &attrs) override {
return parseAttribute(result, Type(), attrName, attrs);
}
/// If a named attribute list is present, parse is into result.
bool
parseOptionalAttributeDict(SmallVectorImpl<NamedAttribute> &result) override {
if (parser.getToken().isNot(Token::l_brace))
return false;
return parser.parseAttributeDict(result) == ParseFailure;
}
/// Parse a function name like '@foo' and return the name in a form that can
/// be passed to resolveFunctionName when a function type is available.
virtual bool parseFunctionName(StringRef &result, llvm::SMLoc &loc) {
loc = parser.getToken().getLoc();
if (parser.getToken().isNot(Token::at_identifier))
return emitError(loc, "expected function name");
result = parser.getTokenSpelling();
parser.consumeToken(Token::at_identifier);
return false;
}
bool parseOperand(OperandType &result) override {
FunctionParser::SSAUseInfo useInfo;
if (parser.parseSSAUse(useInfo))
return true;
result = {useInfo.loc, useInfo.name, useInfo.number};
return false;
}
bool parseSuccessorAndUseList(Block *&dest,
SmallVectorImpl<Value *> &operands) override {
// Defer successor parsing to the function parsers.
return parser.parseSuccessorAndUseList(dest, operands);
}
bool parseOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) override {
auto startLoc = parser.getToken().getLoc();
// Handle delimiters.
switch (delimiter) {
case Delimiter::None:
// Don't check for the absence of a delimiter if the number of operands
// is unknown (and hence the operand list could be empty).
if (requiredOperandCount == -1)
break;
// Token already matches an identifier and so can't be a delimiter.
if (parser.getToken().is(Token::percent_identifier))
break;
// Test against known delimiters.
if (parser.getToken().is(Token::l_paren) ||
parser.getToken().is(Token::l_square))
return emitError(startLoc, "unexpected delimiter");
return emitError(startLoc, "invalid operand");
case Delimiter::OptionalParen:
if (parser.getToken().isNot(Token::l_paren))
return false;
LLVM_FALLTHROUGH;
case Delimiter::Paren:
if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
return true;
break;
case Delimiter::OptionalSquare:
if (parser.getToken().isNot(Token::l_square))
return false;
LLVM_FALLTHROUGH;
case Delimiter::Square:
if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
return true;
break;
}
// Check for zero operands.
if (parser.getToken().is(Token::percent_identifier)) {
do {
OperandType operand;
if (parseOperand(operand))
return true;
result.push_back(operand);
} while (parser.consumeIf(Token::comma));
}
// Handle delimiters. If we reach here, the optional delimiters were
// present, so we need to parse their closing one.
switch (delimiter) {
case Delimiter::None:
break;
case Delimiter::OptionalParen:
case Delimiter::Paren:
if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
return true;
break;
case Delimiter::OptionalSquare:
case Delimiter::Square:
if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
return true;
break;
}
if (requiredOperandCount != -1 && result.size() != requiredOperandCount)
return emitError(startLoc,
"expected " + Twine(requiredOperandCount) + " operands");
return false;
}
/// Resolve a parse function name and a type into a function reference.
virtual bool resolveFunctionName(StringRef name, FunctionType type,
llvm::SMLoc loc, Function *&result) {
result = parser.resolveFunctionReference(name, loc, type);
return result == nullptr;
}
//===--------------------------------------------------------------------===//
// Methods for interacting with the parser
//===--------------------------------------------------------------------===//
Builder &getBuilder() const override { return parser.builder; }
llvm::SMLoc getNameLoc() const override { return nameLoc; }
bool resolveOperand(const OperandType &operand, Type type,
SmallVectorImpl<Value *> &result) override {
FunctionParser::SSAUseInfo operandInfo = {operand.name, operand.number,
operand.location};
if (auto *value = parser.resolveSSAUse(operandInfo, type)) {
result.push_back(value);
return false;
}
return true;
}
/// Emit a diagnostic at the specified location and return true.
bool emitError(llvm::SMLoc loc, const Twine &message) override {
parser.emitError(loc, "custom op '" + Twine(opName) + "' " + message);
emittedError = true;
return true;
}
bool didEmitError() const { return emittedError; }
private:
SMLoc nameLoc;
StringRef opName;
FunctionParser &parser;
bool emittedError = false;
};
} // end anonymous namespace.
OperationInst *FunctionParser::parseCustomOperation() {
auto opLoc = getToken().getLoc();
auto opName = getTokenSpelling();
CustomOpAsmParser opAsmParser(opLoc, opName, *this);
auto *opDefinition = AbstractOperation::lookup(opName, getContext());
if (!opDefinition) {
opAsmParser.emitError(opLoc, "is unknown");
return nullptr;
}
consumeToken();
// If the custom op parser crashes, produce some indication to help
// debugging.
std::string opNameStr = opName.str();
llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
opNameStr.c_str());
// Get location information for the operation.
auto srcLocation = getEncodedSourceLocation(opLoc);
// Have the op implementation take a crack and parsing this.
OperationState opState(builder.getContext(), srcLocation, opName);
if (opDefinition->parseAssembly(&opAsmParser, &opState))
return nullptr;
// If it emitted an error, we failed.
if (opAsmParser.didEmitError())
return nullptr;
// Otherwise, we succeeded. Use the state it parsed as our op information.
return builder.createOperation(opState);
}
/// For instruction.
///
/// ml-for-inst ::= `for` ssa-id `=` lower-bound `to` upper-bound
/// (`step` integer-literal)? `{` inst* `}`
///
ParseResult FunctionParser::parseForInst() {
consumeToken(Token::kw_for);
// Parse induction variable.
if (getToken().isNot(Token::percent_identifier))
return emitError("expected SSA identifier for the loop variable");
auto loc = getToken().getLoc();
StringRef inductionVariableName = getTokenSpelling();
consumeToken(Token::percent_identifier);
if (parseToken(Token::equal, "expected '='"))
return ParseFailure;
// Parse lower bound.
SmallVector<Value *, 4> lbOperands;
AffineMap lbMap;
if (parseBound(lbOperands, lbMap, /*isLower*/ true))
return ParseFailure;
if (parseToken(Token::kw_to, "expected 'to' between bounds"))
return ParseFailure;
// Parse upper bound.
SmallVector<Value *, 4> ubOperands;
AffineMap ubMap;
if (parseBound(ubOperands, ubMap, /*isLower*/ false))
return ParseFailure;
// Parse step.
int64_t step = 1;
if (consumeIf(Token::kw_step) && parseIntConstant(step))
return ParseFailure;
// The loop step is a positive integer constant. Since index is stored as an
// int64_t type, we restrict step to be in the set of positive integers that
// int64_t can represent.
if (step < 1) {
return emitError("step has to be a positive integer");
}
// Create for instruction.
ForInst *forInst =
builder.createFor(getEncodedSourceLocation(loc), lbOperands, lbMap,
ubOperands, ubMap, step);
// Create SSA value definition for the induction variable.
if (addDefinition({inductionVariableName, 0, loc}, forInst))
return ParseFailure;
// If parsing of the for instruction body fails,
// MLIR contains for instruction with those nested instructions that have been
// successfully parsed.
if (parseToken(Token::l_brace, "expected '{' before instruction list") ||
parseBlock(forInst->getBody()) ||
parseToken(Token::r_brace, "expected '}' after instruction list"))
return ParseFailure;
// Reset insertion point to the current block.
builder.setInsertionPointToEnd(forInst->getBlock());
return ParseSuccess;
}
/// Parse integer constant as affine constant expression.
ParseResult FunctionParser::parseIntConstant(int64_t &val) {
bool negate = consumeIf(Token::minus);
if (getToken().isNot(Token::integer))
return emitError("expected integer");
auto uval = getToken().getUInt64IntegerValue();
if (!uval.hasValue() || (int64_t)uval.getValue() < 0) {
return emitError("bound or step is too large for index");
}
val = (int64_t)uval.getValue();
if (negate)
val = -val;
consumeToken();
return ParseSuccess;
}
/// Dimensions and symbol use list.
///
/// dim-use-list ::= `(` ssa-use-list? `)`
/// symbol-use-list ::= `[` ssa-use-list? `]`
/// dim-and-symbol-use-list ::= dim-use-list symbol-use-list?
///
ParseResult
FunctionParser::parseDimAndSymbolList(SmallVectorImpl<Value *> &operands,
unsigned numDims, unsigned numOperands,
const char *affineStructName) {
if (parseToken(Token::l_paren, "expected '('"))
return ParseFailure;
SmallVector<SSAUseInfo, 4> opInfo;
parseOptionalSSAUseList(opInfo);
if (parseToken(Token::r_paren, "expected ')'"))
return ParseFailure;
if (numDims != opInfo.size())
return emitError("dim operand count and " + Twine(affineStructName) +
" dim count must match");
if (consumeIf(Token::l_square)) {
parseOptionalSSAUseList(opInfo);
if (parseToken(Token::r_square, "expected ']'"))
return ParseFailure;
}
if (numOperands != opInfo.size())
return emitError("symbol operand count and " + Twine(affineStructName) +
" symbol count must match");
// Resolve SSA uses.
Type indexType = builder.getIndexType();
for (unsigned i = 0, e = opInfo.size(); i != e; ++i) {
Value *sval = resolveSSAUse(opInfo[i], indexType);
if (!sval)
return ParseFailure;
if (i < numDims && !sval->isValidDim())
return emitError(opInfo[i].loc, "value '" + opInfo[i].name.str() +
"' cannot be used as a dimension id");
if (i >= numDims && !sval->isValidSymbol())
return emitError(opInfo[i].loc, "value '" + opInfo[i].name.str() +
"' cannot be used as a symbol");
operands.push_back(sval);
}
return ParseSuccess;
}
// Loop bound.
///
/// lower-bound ::= `max`? affine-map dim-and-symbol-use-list |
/// shorthand-bound upper-bound ::= `min`? affine-map dim-and-symbol-use-list
/// | shorthand-bound shorthand-bound ::= ssa-id | `-`? integer-literal
///
ParseResult FunctionParser::parseBound(SmallVectorImpl<Value *> &operands,
AffineMap &map, bool isLower) {
// 'min' / 'max' prefixes are syntactic sugar. Ignore them.
if (isLower)
consumeIf(Token::kw_max);
else
consumeIf(Token::kw_min);
// Parse full form - affine map followed by dim and symbol list.
if (getToken().isAny(Token::hash_identifier, Token::l_paren)) {
map = parseAffineMapReference();
if (!map)
return ParseFailure;
if (parseDimAndSymbolList(operands, map.getNumDims(), map.getNumInputs(),
"affine map"))
return ParseFailure;
return ParseSuccess;
}
// Parse shorthand form.
if (getToken().isAny(Token::minus, Token::integer)) {
int64_t val;
if (!parseIntConstant(val)) {
map = builder.getConstantAffineMap(val);
return ParseSuccess;
}
return ParseFailure;
}
// Parse ssa-id as identity map.
SSAUseInfo opInfo;
if (parseSSAUse(opInfo))
return ParseFailure;
// TODO: improve error message when SSA value is not an affine integer.
// Currently it is 'use of value ... expects different type than prior uses'
if (auto *value = resolveSSAUse(opInfo, builder.getIndexType()))
operands.push_back(value);
else
return ParseFailure;
// Create an identity map using dim id for an induction variable and
// symbol otherwise. This representation is optimized for storage.
// Analysis passes may expand it into a multi-dimensional map if desired.
if (isa<ForInst>(operands[0]))
map = builder.getDimIdentityMap();
else
map = builder.getSymbolIdentityMap();
return ParseSuccess;
}
/// Parse an affine constraint.
/// affine-constraint ::= affine-expr `>=` `0`
/// | affine-expr `==` `0`
///
/// isEq is set to true if the parsed constraint is an equality, false if it
/// is an inequality (greater than or equal).
///
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
AffineExpr expr = parseAffineExpr();
if (!expr)
return nullptr;
if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
getToken().is(Token::integer)) {
auto dim = getToken().getUnsignedIntegerValue();
if (dim.hasValue() && dim.getValue() == 0) {
consumeToken(Token::integer);
*isEq = false;
return expr;
}
return (emitError("expected '0' after '>='"), nullptr);
}
if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
getToken().is(Token::integer)) {
auto dim = getToken().getUnsignedIntegerValue();
if (dim.hasValue() && dim.getValue() == 0) {
consumeToken(Token::integer);
*isEq = true;
return expr;
}
return (emitError("expected '0' after '=='"), nullptr);
}
return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
nullptr);
}
/// Parse the constraints that are part of an integer set definition.
/// integer-set-inline
/// ::= dim-and-symbol-id-lists `:`
/// affine-constraint-conjunction
/// affine-constraint-conjunction ::= /*empty*/
/// | affine-constraint (`,`
/// affine-constraint)*
///
IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
unsigned numSymbols) {
parseToken(Token::l_paren,
"expected '(' at start of integer set constraint list");
SmallVector<AffineExpr, 4> constraints;
SmallVector<bool, 4> isEqs;
auto parseElt = [&]() -> ParseResult {
bool isEq;
auto elt = parseAffineConstraint(&isEq);
ParseResult res = elt ? ParseSuccess : ParseFailure;
if (elt) {
constraints.push_back(elt);
isEqs.push_back(isEq);
}
return res;
};
// Parse a list of affine constraints (comma-separated) .
// Grammar: affine-constraint-conjunct ::= `(` affine-constraint (`,`
// affine-constraint)* `)
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
return IntegerSet();
// Parsed a valid integer set.
return builder.getIntegerSet(numDims, numSymbols, constraints, isEqs);
}
IntegerSet Parser::parseIntegerSetInline() {
IntegerSet set;
AffineParser(state).parseAffineStructureInline(nullptr, &set);
return set;
}
/// If instruction.
///
/// ml-if-head ::= `if` ml-if-cond `{` inst* `}`
/// | ml-if-head `else` `if` ml-if-cond `{` inst* `}`
/// ml-if-inst ::= ml-if-head
/// | ml-if-head `else` `{` inst* `}`
///
ParseResult FunctionParser::parseIfInst() {
auto loc = getToken().getLoc();
consumeToken(Token::kw_if);
IntegerSet set = parseIntegerSetReference();
if (!set)
return ParseFailure;
SmallVector<Value *, 4> operands;
if (parseDimAndSymbolList(operands, set.getNumDims(), set.getNumOperands(),
"integer set"))
return ParseFailure;
IfInst *ifInst =
builder.createIf(getEncodedSourceLocation(loc), operands, set);
Block *thenClause = ifInst->getThen();
// When parsing of an if instruction body fails, the IR contains
// the if instruction with the portion of the body that has been
// successfully parsed.
if (parseToken(Token::l_brace, "expected '{' before instruction list") ||
parseBlock(thenClause) ||
parseToken(Token::r_brace, "expected '}' after instruction list"))
return ParseFailure;
if (consumeIf(Token::kw_else)) {
auto *elseClause = ifInst->createElse();
if (parseElseClause(elseClause))
return ParseFailure;
}
// Reset insertion point to the current block.
builder.setInsertionPointToEnd(ifInst->getBlock());
return ParseSuccess;
}
ParseResult FunctionParser::parseElseClause(Block *elseClause) {
if (getToken().is(Token::kw_if)) {
builder.setInsertionPointToEnd(elseClause);
return parseIfInst();
}
if (parseToken(Token::l_brace, "expected '{' before instruction list") ||
parseBlock(elseClause) ||
parseToken(Token::r_brace, "expected '}' after instruction list"))
return ParseFailure;
return ParseSuccess;
}
//===----------------------------------------------------------------------===//
// Top-level entity parsing.
//===----------------------------------------------------------------------===//
namespace {
/// This parser handles entities that are only valid at the top level of the
/// file.
class ModuleParser : public Parser {
public:
explicit ModuleParser(ParserState &state) : Parser(state) {}
ParseResult parseModule();
private:
ParseResult finalizeModule();
ParseResult parseAffineStructureDef();
// Functions.
ParseResult parseArgumentList(SmallVectorImpl<Type> &argTypes,
SmallVectorImpl<StringRef> &argNames);
ParseResult parseFunctionSignature(StringRef &name, FunctionType &type,
SmallVectorImpl<StringRef> &argNames);
ParseResult parseFunc();
};
} // end anonymous namespace
/// Parses either an affine map declaration or an integer set declaration.
///
/// Affine map declaration.
///
/// affine-map-def ::= affine-map-id `=` affine-map-inline
///
/// Integer set declaration.
///
/// integer-set-decl ::= integer-set-id `=` integer-set-inline
///
ParseResult ModuleParser::parseAffineStructureDef() {
assert(getToken().is(Token::hash_identifier));
StringRef affineStructureId = getTokenSpelling().drop_front();
// Check for redefinitions.
if (getState().affineMapDefinitions.count(affineStructureId) > 0)
return emitError("redefinition of affine map id '" + affineStructureId +
"'");
if (getState().integerSetDefinitions.count(affineStructureId) > 0)
return emitError("redefinition of integer set id '" + affineStructureId +
"'");
consumeToken(Token::hash_identifier);
// Parse the '='
if (parseToken(Token::equal,
"expected '=' in affine map outlined definition"))
return ParseFailure;
AffineMap map;
IntegerSet set;
parseAffineStructureInline(&map, &set);
if (!map && !set)
return ParseFailure;
if (map)
getState().affineMapDefinitions[affineStructureId] = map;
else
getState().integerSetDefinitions[affineStructureId] = set;
return ParseSuccess;
}
/// Parse a (possibly empty) list of Function arguments with types.
///
/// named-argument ::= ssa-id `:` type
/// argument-list ::= named-argument (`,` named-argument)* | /*empty*/
/// argument-list ::= type (`,` type)* | /*empty*/
///
ParseResult
ModuleParser::parseArgumentList(SmallVectorImpl<Type> &argTypes,
SmallVectorImpl<StringRef> &argNames) {
consumeToken(Token::l_paren);
// The argument list either has to consistently have ssa-id's followed by
// types, or just be a type list. It isn't ok to sometimes have SSA ID's and
// sometimes not.
auto parseElt = [&]() -> ParseResult {
// Parse argument name if present.
auto loc = getToken().getLoc();
StringRef name = getTokenSpelling();
if (consumeIf(Token::percent_identifier)) {
// Reject this if the preceding argument was missing a name.
if (argNames.empty() && !argTypes.empty())
return emitError(loc, "expected type instead of SSA identifier");
argNames.push_back(name);
if (parseToken(Token::colon, "expected ':'"))
return ParseFailure;
} else {
// Reject this if the preceding argument had a name.
if (!argNames.empty())
return emitError("expected SSA identifier");
}
// Parse argument type
auto elt = parseType();
if (!elt)
return ParseFailure;
argTypes.push_back(elt);
return ParseSuccess;
};
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parse a function signature, starting with a name and including the
/// parameter list.
///
/// function-signature ::=
/// function-id `(` argument-list `)` (`->` type-list)?
///
ParseResult
ModuleParser::parseFunctionSignature(StringRef &name, FunctionType &type,
SmallVectorImpl<StringRef> &argNames) {
if (getToken().isNot(Token::at_identifier))
return emitError("expected a function identifier like '@foo'");
name = getTokenSpelling().drop_front();
consumeToken(Token::at_identifier);
if (getToken().isNot(Token::l_paren))
return emitError("expected '(' in function signature");
SmallVector<Type, 4> argTypes;
if (parseArgumentList(argTypes, argNames))
return ParseFailure;
// Parse the return type if present.
SmallVector<Type, 4> results;
if (consumeIf(Token::arrow)) {
if (parseTypeList(results))
return ParseFailure;
}
type = builder.getFunctionType(argTypes, results);
return ParseSuccess;
}
/// Function declarations.
///
/// function ::= `func` function-signature function-attributes? function-body?
/// function-body ::= `{` block+ `}`
/// function-attributes ::= `attributes` attribute-dict
///
ParseResult ModuleParser::parseFunc() {
consumeToken();
StringRef name;
FunctionType type;
SmallVector<StringRef, 4> argNames;
auto loc = getToken().getLoc();
if (parseFunctionSignature(name, type, argNames))
return ParseFailure;
// If function attributes are present, parse them.
SmallVector<NamedAttribute, 8> attrs;
if (consumeIf(Token::kw_attributes)) {
if (parseAttributeDict(attrs))
return ParseFailure;
}
// Okay, the function signature was parsed correctly, create the function now.
auto *function =
new Function(getEncodedSourceLocation(loc), name, type, attrs);
getModule()->getFunctions().push_back(function);
// Verify no name collision / redefinition.
if (function->getName() != name)
return emitError(loc,
"redefinition of function named '" + name.str() + "'");
// External functions have no body.
if (getToken().isNot(Token::l_brace))
return ParseSuccess;
// Create the parser.
auto parser = FunctionParser(getState(), function);
bool hadNamedArguments = !argNames.empty();
// Add the entry block and argument list.
function->addEntryBlock();
// Add definitions of the function arguments.
if (hadNamedArguments) {
for (unsigned i = 0, e = function->getNumArguments(); i != e; ++i) {
if (parser.addDefinition({argNames[i], 0, loc}, function->getArgument(i)))
return ParseFailure;
}
}
return parser.parseFunctionBody(hadNamedArguments);
}
/// Finish the end of module parsing - when the result is valid, do final
/// checking.
ParseResult ModuleParser::finalizeModule() {
// Resolve all forward references, building a remapping table of attributes.
DenseMap<Attribute, FunctionAttr> remappingTable;
for (auto forwardRef : getState().functionForwardRefs) {
auto name = forwardRef.first;
// Resolve the reference.
auto *resolvedFunction = getModule()->getNamedFunction(name);
if (!resolvedFunction) {
forwardRef.second->emitError("reference to undefined function '" +
name.str() + "'");
return ParseFailure;
}
remappingTable[builder.getFunctionAttr(forwardRef.second)] =
builder.getFunctionAttr(resolvedFunction);
}
// If there was nothing to remap, then we're done.
if (remappingTable.empty())
return ParseSuccess;
// Otherwise, walk the entire module replacing uses of one attribute set
// with the correct ones.
remapFunctionAttrs(*getModule(), remappingTable);
// Now that all references to the forward definition placeholders are
// resolved, we can deallocate the placeholders.
for (auto forwardRef : getState().functionForwardRefs)
delete forwardRef.second;
getState().functionForwardRefs.clear();
return ParseSuccess;
}
/// This is the top-level module parser.
ParseResult ModuleParser::parseModule() {
while (1) {
switch (getToken().getKind()) {
default:
emitError("expected a top level entity");
return ParseFailure;
// If we got to the end of the file, then we're done.
case Token::eof:
return finalizeModule();
// If we got an error token, then the lexer already emitted an error, just
// stop. Someday we could introduce error recovery if there was demand
// for it.
case Token::error:
return ParseFailure;
case Token::hash_identifier:
if (parseAffineStructureDef())
return ParseFailure;
break;
case Token::kw_func:
if (parseFunc())
return ParseFailure;
break;
}
}
}
//===----------------------------------------------------------------------===//
/// This parses the file specified by the indicated SourceMgr and returns an
/// MLIR module if it was valid. If not, it emits diagnostics and returns
/// null.
Module *mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
MLIRContext *context) {
// This is the result module we are parsing into.
std::unique_ptr<Module> module(new Module(context));
ParserState state(sourceMgr, module.get());
if (ModuleParser(state).parseModule()) {
return nullptr;
}
// Make sure the parse module has no other structural problems detected by
// the verifier.
if (module->verify())
return nullptr;
return module.release();
}
/// This parses the program string to a MLIR module if it was valid. If not,
/// it emits diagnostics and returns null.
Module *mlir::parseSourceString(StringRef moduleStr, MLIRContext *context) {
auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr);
if (!memBuffer)
return nullptr;
SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
return parseSourceFile(sourceMgr, context);
}