llvm-project/mlir/lib/Parser/Parser.cpp

2422 lines
85 KiB
C++

//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Verifier.h"
#include "mlir/Parser.h"
#include "mlir/Parser/AsmParserState.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SourceMgr.h"
#include <algorithm>
using namespace mlir;
using namespace mlir::detail;
using llvm::MemoryBuffer;
using llvm::SMLoc;
using llvm::SourceMgr;
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult
Parser::parseCommaSeparatedList(function_ref<ParseResult()> parseElement) {
// Non-empty case starts with an element.
if (parseElement())
return failure();
// Otherwise we have a list of comma separated elements.
while (consumeIf(Token::comma)) {
if (parseElement())
return failure();
}
return success();
}
/// Parse a comma-separated list of elements, terminated with an arbitrary
/// token. This allows empty lists if allowEmptyList is true.
///
/// abstract-list ::= rightToken // if allowEmptyList == true
/// abstract-list ::= element (',' element)* rightToken
///
ParseResult
Parser::parseCommaSeparatedListUntil(Token::Kind rightToken,
function_ref<ParseResult()> parseElement,
bool allowEmptyList) {
// Handle the empty case.
if (getToken().is(rightToken)) {
if (!allowEmptyList)
return emitError("expected list element");
consumeToken(rightToken);
return success();
}
if (parseCommaSeparatedList(parseElement) ||
parseToken(rightToken, "expected ',' or '" +
Token::getTokenSpelling(rightToken) + "'"))
return failure();
return success();
}
InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);
// If we hit a parse error in response to a lexer error, then the lexer
// already reported the error.
if (getToken().is(Token::error))
diag.abandon();
return diag;
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult Parser::parseToken(Token::Kind expectedToken,
const Twine &message) {
if (consumeIf(expectedToken))
return success();
return emitError(message);
}
/// Parse an optional integer value from the stream.
OptionalParseResult Parser::parseOptionalInteger(APInt &result) {
Token curToken = getToken();
if (curToken.isNot(Token::integer, Token::minus))
return llvm::None;
bool negative = consumeIf(Token::minus);
Token curTok = getToken();
if (parseToken(Token::integer, "expected integer value"))
return failure();
StringRef spelling = curTok.getSpelling();
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
if (spelling.getAsInteger(isHex ? 0 : 10, result))
return emitError(curTok.getLoc(), "integer value too large");
// Make sure we have a zero at the top so we return the right signedness.
if (result.isNegative())
result = result.zext(result.getBitWidth() + 1);
// Process the negative sign if present.
if (negative)
result.negate();
return success();
}
/// Parse a floating point value from an integer literal token.
ParseResult Parser::parseFloatFromIntegerLiteral(
Optional<APFloat> &result, const Token &tok, bool isNegative,
const llvm::fltSemantics &semantics, size_t typeSizeInBits) {
llvm::SMLoc loc = tok.getLoc();
StringRef spelling = tok.getSpelling();
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
if (!isHex) {
return emitError(loc, "unexpected decimal integer literal for a "
"floating point value")
.attachNote()
<< "add a trailing dot to make the literal a float";
}
if (isNegative) {
return emitError(loc, "hexadecimal float literal should not have a "
"leading minus");
}
Optional<uint64_t> value = tok.getUInt64IntegerValue();
if (!value.hasValue())
return emitError(loc, "hexadecimal float constant out of range for type");
if (&semantics == &APFloat::IEEEdouble()) {
result = APFloat(semantics, APInt(typeSizeInBits, *value));
return success();
}
APInt apInt(typeSizeInBits, *value);
if (apInt != *value)
return emitError(loc, "hexadecimal float constant out of range for type");
result = APFloat(semantics, apInt);
return success();
}
//===----------------------------------------------------------------------===//
// OperationParser
//===----------------------------------------------------------------------===//
namespace {
/// This class provides support for parsing operations and regions of
/// operations.
class OperationParser : public Parser {
public:
OperationParser(ParserState &state, ModuleOp topLevelOp);
~OperationParser();
/// After parsing is finished, this function must be called to see if there
/// are any remaining issues.
ParseResult finalize();
//===--------------------------------------------------------------------===//
// SSA Value Handling
//===--------------------------------------------------------------------===//
/// This represents a use of an SSA value in the program. The first two
/// entries in the tuple are the name and result number of a reference. The
/// third is the location of the reference, which is used in case this ends
/// up being a use of an undefined value.
struct SSAUseInfo {
StringRef name; // Value name, e.g. %42 or %abc
unsigned number; // Number, specified with #12
SMLoc loc; // Location of first definition or use.
};
/// Push a new SSA name scope to the parser.
void pushSSANameScope(bool isIsolated);
/// Pop the last SSA name scope from the parser.
ParseResult popSSANameScope();
/// Register a definition of a value with the symbol table.
ParseResult addDefinition(SSAUseInfo useInfo, Value value);
/// Parse an optional list of SSA uses into 'results'.
ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
/// Parse a single SSA use into 'result'.
ParseResult parseSSAUse(SSAUseInfo &result);
/// Given a reference to an SSA value and its type, return a reference. This
/// returns null on failure.
Value resolveSSAUse(SSAUseInfo useInfo, Type type);
ParseResult
parseSSADefOrUseAndType(function_ref<ParseResult(SSAUseInfo, Type)> action);
ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);
/// Return the location of the value identified by its name and number if it
/// has been already reference.
Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
auto &values = isolatedNameScopes.back().values;
if (!values.count(name) || number >= values[name].size())
return {};
if (values[name][number].value)
return values[name][number].loc;
return {};
}
//===--------------------------------------------------------------------===//
// Operation Parsing
//===--------------------------------------------------------------------===//
/// Parse an operation instance.
ParseResult parseOperation();
/// Parse a single operation successor.
ParseResult parseSuccessor(Block *&dest);
/// Parse a comma-separated list of operation successors in brackets.
ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations);
/// Parse an operation instance that is in the generic form.
Operation *parseGenericOperation();
/// Parse an operation instance that is in the generic form and insert it at
/// the provided insertion point.
Operation *parseGenericOperation(Block *insertBlock,
Block::iterator insertPt);
/// This type is used to keep track of things that are either an Operation or
/// a BlockArgument. We cannot use Value for this, because not all Operations
/// have results.
using OpOrArgument = llvm::PointerUnion<Operation *, BlockArgument>;
/// Parse an optional trailing location and add it to the specifier Operation
/// or `OperandType` if present.
///
/// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))?
///
ParseResult parseTrailingLocationSpecifier(OpOrArgument opOrArgument);
/// This is the structure of a result specifier in the assembly syntax,
/// including the name, number of results, and location.
using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>;
/// Parse an operation instance that is in the op-defined custom form.
/// resultInfo specifies information about the "%name =" specifiers.
Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs);
//===--------------------------------------------------------------------===//
// Region Parsing
//===--------------------------------------------------------------------===//
/// Parse a region into 'region' with the provided entry block arguments.
/// 'isIsolatedNameScope' indicates if the naming scope of this region is
/// isolated from those above.
ParseResult parseRegion(Region &region,
ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
bool isIsolatedNameScope = false);
/// Parse a region body into 'region'.
ParseResult
parseRegionBody(Region &region, llvm::SMLoc startLoc,
ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
bool isIsolatedNameScope);
//===--------------------------------------------------------------------===//
// Block Parsing
//===--------------------------------------------------------------------===//
/// Parse a new block into 'block'.
ParseResult parseBlock(Block *&block);
/// Parse a list of operations into 'block'.
ParseResult parseBlockBody(Block *block);
/// Parse a (possibly empty) list of block arguments.
ParseResult parseOptionalBlockArgList(Block *owner);
/// Get the block with the specified name, creating it if it doesn't
/// already exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *getBlockNamed(StringRef name, SMLoc loc);
/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);
private:
/// This class represents a definition of a Block.
struct BlockDefinition {
/// A pointer to the defined Block.
Block *block;
/// The location that the Block was defined at.
SMLoc loc;
};
/// This class represents a definition of a Value.
struct ValueDefinition {
/// A pointer to the defined Value.
Value value;
/// The location that the Value was defined at.
SMLoc loc;
};
/// Returns the info for a block at the current scope for the given name.
BlockDefinition &getBlockInfoByName(StringRef name) {
return blocksByName.back()[name];
}
/// Insert a new forward reference to the given block.
void insertForwardRef(Block *block, SMLoc loc) {
forwardRef.back().try_emplace(block, loc);
}
/// Erase any forward reference to the given block.
bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }
/// Record that a definition was added at the current scope.
void recordDefinition(StringRef def);
/// Get the value entry for the given SSA name.
SmallVectorImpl<ValueDefinition> &getSSAValueEntry(StringRef name);
/// Create a forward reference placeholder value with the given location and
/// result type.
Value createForwardRefPlaceholder(SMLoc loc, Type type);
/// Return true if this is a forward reference.
bool isForwardRefPlaceholder(Value value) {
return forwardRefPlaceholders.count(value);
}
/// This struct represents an isolated SSA name scope. This scope may contain
/// other nested non-isolated scopes. These scopes are used for operations
/// that are known to be isolated to allow for reusing names within their
/// regions, even if those names are used above.
struct IsolatedSSANameScope {
/// Record that a definition was added at the current scope.
void recordDefinition(StringRef def) {
definitionsPerScope.back().insert(def);
}
/// Push a nested name scope.
void pushSSANameScope() { definitionsPerScope.push_back({}); }
/// Pop a nested name scope.
void popSSANameScope() {
for (auto &def : definitionsPerScope.pop_back_val())
values.erase(def.getKey());
}
/// This keeps track of all of the SSA values we are tracking for each name
/// scope, indexed by their name. This has one entry per result number.
llvm::StringMap<SmallVector<ValueDefinition, 1>> values;
/// This keeps track of all of the values defined by a specific name scope.
SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
};
/// A list of isolated name scopes.
SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;
/// This keeps track of the block names as well as the location of the first
/// reference for each nested name scope. This is used to diagnose invalid
/// block references and memorize them.
SmallVector<DenseMap<StringRef, BlockDefinition>, 2> blocksByName;
SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;
/// These are all of the placeholders we've made along with the location of
/// their first reference, to allow checking for use of undefined values.
DenseMap<Value, SMLoc> forwardRefPlaceholders;
/// A set of operations whose locations reference aliases that have yet to
/// be resolved.
SmallVector<std::pair<OpOrArgument, Token>, 8>
opsAndArgumentsWithDeferredLocs;
/// The builder used when creating parsed operation instances.
OpBuilder opBuilder;
/// The top level operation that holds all of the parsed operations.
Operation *topLevelOp;
};
} // end anonymous namespace
OperationParser::OperationParser(ParserState &state, ModuleOp topLevelOp)
: Parser(state), opBuilder(topLevelOp.getRegion()), topLevelOp(topLevelOp) {
// The top level operation starts a new name scope.
pushSSANameScope(/*isIsolated=*/true);
// If we are populating the parser state, prepare it for parsing.
if (state.asmState)
state.asmState->initialize(topLevelOp);
}
OperationParser::~OperationParser() {
for (auto &fwd : forwardRefPlaceholders) {
// Drop all uses of undefined forward declared reference and destroy
// defining operation.
fwd.first.dropAllUses();
fwd.first.getDefiningOp()->destroy();
}
for (const auto &scope : forwardRef) {
for (const auto &fwd : scope) {
// Delete all blocks that were created as forward references but never
// included into a region.
fwd.first->dropAllUses();
delete fwd.first;
}
}
}
/// After parsing is finished, this function must be called to see if there are
/// any remaining issues.
ParseResult OperationParser::finalize() {
// Check for any forward references that are left. If we find any, error
// out.
if (!forwardRefPlaceholders.empty()) {
SmallVector<const char *, 4> errors;
// Iteration over the map isn't deterministic, so sort by source location.
for (auto entry : forwardRefPlaceholders)
errors.push_back(entry.second.getPointer());
llvm::array_pod_sort(errors.begin(), errors.end());
for (auto entry : errors) {
auto loc = SMLoc::getFromPointer(entry);
emitError(loc, "use of undeclared SSA value name");
}
return failure();
}
// Resolve the locations of any deferred operations.
auto &attributeAliases = state.symbols.attributeAliasDefinitions;
for (std::pair<OpOrArgument, Token> &it : opsAndArgumentsWithDeferredLocs) {
llvm::SMLoc tokLoc = it.second.getLoc();
StringRef identifier = it.second.getSpelling().drop_front();
Attribute attr = attributeAliases.lookup(identifier);
if (!attr)
return emitError(tokLoc) << "operation location alias was never defined";
LocationAttr locAttr = attr.dyn_cast<LocationAttr>();
if (!locAttr)
return emitError(tokLoc)
<< "expected location, but found '" << attr << "'";
auto opOrArgument = it.first;
if (auto *op = opOrArgument.dyn_cast<Operation *>())
op->setLoc(locAttr);
else
opOrArgument.get<BlockArgument>().setLoc(locAttr);
}
// Pop the top level name scope.
if (failed(popSSANameScope()))
return failure();
// Verify that the parsed operations are valid.
if (failed(verify(topLevelOp)))
return failure();
// If we are populating the parser state, finalize the top-level operation.
if (state.asmState)
state.asmState->finalize(topLevelOp);
return success();
}
//===----------------------------------------------------------------------===//
// SSA Value Handling
//===----------------------------------------------------------------------===//
void OperationParser::pushSSANameScope(bool isIsolated) {
blocksByName.push_back(DenseMap<StringRef, BlockDefinition>());
forwardRef.push_back(DenseMap<Block *, SMLoc>());
// Push back a new name definition scope.
if (isIsolated)
isolatedNameScopes.push_back({});
isolatedNameScopes.back().pushSSANameScope();
}
ParseResult OperationParser::popSSANameScope() {
auto forwardRefInCurrentScope = forwardRef.pop_back_val();
// Verify that all referenced blocks were defined.
if (!forwardRefInCurrentScope.empty()) {
SmallVector<std::pair<const char *, Block *>, 4> errors;
// Iteration over the map isn't deterministic, so sort by source location.
for (auto entry : forwardRefInCurrentScope) {
errors.push_back({entry.second.getPointer(), entry.first});
// Add this block to the top-level region to allow for automatic cleanup.
topLevelOp->getRegion(0).push_back(entry.first);
}
llvm::array_pod_sort(errors.begin(), errors.end());
for (auto entry : errors) {
auto loc = SMLoc::getFromPointer(entry.first);
emitError(loc, "reference to an undefined block");
}
return failure();
}
// Pop the next nested namescope. If there is only one internal namescope,
// just pop the isolated scope.
auto &currentNameScope = isolatedNameScopes.back();
if (currentNameScope.definitionsPerScope.size() == 1)
isolatedNameScopes.pop_back();
else
currentNameScope.popSSANameScope();
blocksByName.pop_back();
return success();
}
/// Register a definition of a value with the symbol table.
ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) {
auto &entries = getSSAValueEntry(useInfo.name);
// Make sure there is a slot for this value.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If we already have an entry for this, check to see if it was a definition
// or a forward reference.
if (auto existing = entries[useInfo.number].value) {
if (!isForwardRefPlaceholder(existing)) {
return emitError(useInfo.loc)
.append("redefinition of SSA value '", useInfo.name, "'")
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
.append("previously defined here");
}
if (existing.getType() != value.getType()) {
return emitError(useInfo.loc)
.append("definition of SSA value '", useInfo.name, "#",
useInfo.number, "' has type ", value.getType())
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
.append("previously used here with type ", existing.getType());
}
// If it was a forward reference, update everything that used it to use
// the actual definition instead, delete the forward ref, and remove it
// from our set of forward references we track.
existing.replaceAllUsesWith(value);
existing.getDefiningOp()->destroy();
forwardRefPlaceholders.erase(existing);
// If a definition of the value already exists, replace it in the assembly
// state.
if (state.asmState)
state.asmState->refineDefinition(existing, value);
}
/// Record this definition for the current scope.
entries[useInfo.number] = {value, useInfo.loc};
recordDefinition(useInfo.name);
return success();
}
/// Parse a (possibly empty) list of SSA operands.
///
/// ssa-use-list ::= ssa-use (`,` ssa-use)*
/// ssa-use-list-opt ::= ssa-use-list?
///
ParseResult
OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
if (getToken().isNot(Token::percent_identifier))
return success();
return parseCommaSeparatedList([&]() -> ParseResult {
SSAUseInfo result;
if (parseSSAUse(result))
return failure();
results.push_back(result);
return success();
});
}
/// Parse a SSA operand for an operation.
///
/// ssa-use ::= ssa-id
///
ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
result.name = getTokenSpelling();
result.number = 0;
result.loc = getToken().getLoc();
if (parseToken(Token::percent_identifier, "expected SSA operand"))
return failure();
// If we have an attribute ID, it is a result number.
if (getToken().is(Token::hash_identifier)) {
if (auto value = getToken().getHashIdentifierNumber())
result.number = value.getValue();
else
return emitError("invalid SSA value result number");
consumeToken(Token::hash_identifier);
}
return success();
}
/// Given an unbound reference to an SSA value and its type, return the value
/// it specifies. This returns null on failure.
Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
auto &entries = getSSAValueEntry(useInfo.name);
// Functor used to record the use of the given value if the assembly state
// field is populated.
auto maybeRecordUse = [&](Value value) {
if (state.asmState)
state.asmState->addUses(value, useInfo.loc);
return value;
};
// If we have already seen a value of this name, return it.
if (useInfo.number < entries.size() && entries[useInfo.number].value) {
Value result = entries[useInfo.number].value;
// Check that the type matches the other uses.
if (result.getType() == type)
return maybeRecordUse(result);
emitError(useInfo.loc, "use of value '")
.append(useInfo.name,
"' expects different type than prior uses: ", type, " vs ",
result.getType())
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
.append("prior use here");
return nullptr;
}
// Make sure we have enough slots for this.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If the value has already been defined and this is an overly large result
// number, diagnose that.
if (entries[0].value && !isForwardRefPlaceholder(entries[0].value))
return (emitError(useInfo.loc, "reference to invalid result number"),
nullptr);
// Otherwise, this is a forward reference. Create a placeholder and remember
// that we did so.
Value result = createForwardRefPlaceholder(useInfo.loc, type);
entries[useInfo.number] = {result, useInfo.loc};
return maybeRecordUse(result);
}
/// Parse an SSA use with an associated type.
///
/// ssa-use-and-type ::= ssa-use `:` type
ParseResult OperationParser::parseSSADefOrUseAndType(
function_ref<ParseResult(SSAUseInfo, Type)> action) {
SSAUseInfo useInfo;
if (parseSSAUse(useInfo) ||
parseToken(Token::colon, "expected ':' and type for SSA operand"))
return failure();
auto type = parseType();
if (!type)
return failure();
return action(useInfo, type);
}
/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
/// followed by a type list.
///
/// ssa-use-and-type-list
/// ::= ssa-use-list ':' type-list-no-parens
///
ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
SmallVectorImpl<Value> &results) {
SmallVector<SSAUseInfo, 4> valueIDs;
if (parseOptionalSSAUseList(valueIDs))
return failure();
// If there were no operands, then there is no colon or type lists.
if (valueIDs.empty())
return success();
SmallVector<Type, 4> types;
if (parseToken(Token::colon, "expected ':' in operand list") ||
parseTypeListNoParens(types))
return failure();
if (valueIDs.size() != types.size())
return emitError("expected ")
<< valueIDs.size() << " types to match operand list";
results.reserve(valueIDs.size());
for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
if (auto value = resolveSSAUse(valueIDs[i], types[i]))
results.push_back(value);
else
return failure();
}
return success();
}
/// Record that a definition was added at the current scope.
void OperationParser::recordDefinition(StringRef def) {
isolatedNameScopes.back().recordDefinition(def);
}
/// Get the value entry for the given SSA name.
auto OperationParser::getSSAValueEntry(StringRef name)
-> SmallVectorImpl<ValueDefinition> & {
return isolatedNameScopes.back().values[name];
}
/// Create and remember a new placeholder for a forward reference.
Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
// Forward references are always created as operations, because we just need
// something with a def/use chain.
//
// We create these placeholders as having an empty name, which we know
// cannot be created through normal user input, allowing us to distinguish
// them.
auto name = OperationName("unrealized_conversion_cast", getContext());
auto *op = Operation::create(
getEncodedSourceLocation(loc), name, type, /*operands=*/{},
/*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0);
forwardRefPlaceholders[op->getResult(0)] = loc;
return op->getResult(0);
}
//===----------------------------------------------------------------------===//
// Operation Parsing
//===----------------------------------------------------------------------===//
/// Parse an operation.
///
/// operation ::= op-result-list?
/// (generic-operation | custom-operation)
/// trailing-location?
/// generic-operation ::= string-literal `(` ssa-use-list? `)`
/// successor-list? (`(` region-list `)`)?
/// attribute-dict? `:` function-type
/// custom-operation ::= bare-id custom-operation-format
/// op-result-list ::= op-result (`,` op-result)* `=`
/// op-result ::= ssa-id (`:` integer-literal)
///
ParseResult OperationParser::parseOperation() {
auto loc = getToken().getLoc();
SmallVector<ResultRecord, 1> resultIDs;
size_t numExpectedResults = 0;
if (getToken().is(Token::percent_identifier)) {
// Parse the group of result ids.
auto parseNextResult = [&]() -> ParseResult {
// Parse the next result id.
if (!getToken().is(Token::percent_identifier))
return emitError("expected valid ssa identifier");
Token nameTok = getToken();
consumeToken(Token::percent_identifier);
// If the next token is a ':', we parse the expected result count.
size_t expectedSubResults = 1;
if (consumeIf(Token::colon)) {
// Check that the next token is an integer.
if (!getToken().is(Token::integer))
return emitError("expected integer number of results");
// Check that number of results is > 0.
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || val.getValue() < 1)
return emitError("expected named operation to have atleast 1 result");
consumeToken(Token::integer);
expectedSubResults = *val;
}
resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
nameTok.getLoc());
numExpectedResults += expectedSubResults;
return success();
};
if (parseCommaSeparatedList(parseNextResult))
return failure();
if (parseToken(Token::equal, "expected '=' after SSA name"))
return failure();
}
Operation *op;
Token nameTok = getToken();
if (nameTok.is(Token::bare_identifier) || nameTok.isKeyword())
op = parseCustomOperation(resultIDs);
else if (nameTok.is(Token::string))
op = parseGenericOperation();
else
return emitError("expected operation name in quotes");
// If parsing of the basic operation failed, then this whole thing fails.
if (!op)
return failure();
// If the operation had a name, register it.
if (!resultIDs.empty()) {
if (op->getNumResults() == 0)
return emitError(loc, "cannot name an operation with no results");
if (numExpectedResults != op->getNumResults())
return emitError(loc, "operation defines ")
<< op->getNumResults() << " results but was provided "
<< numExpectedResults << " to bind";
// Add this operation to the assembly state if it was provided to populate.
if (state.asmState) {
unsigned resultIt = 0;
SmallVector<std::pair<unsigned, llvm::SMLoc>> asmResultGroups;
asmResultGroups.reserve(resultIDs.size());
for (ResultRecord &record : resultIDs) {
asmResultGroups.emplace_back(resultIt, std::get<2>(record));
resultIt += std::get<1>(record);
}
state.asmState->finalizeOperationDefinition(
op, nameTok.getLocRange(), /*endLoc=*/getToken().getLoc(),
asmResultGroups);
}
// Add definitions for each of the result groups.
unsigned opResI = 0;
for (ResultRecord &resIt : resultIDs) {
for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)},
op->getResult(opResI++)))
return failure();
}
}
// Add this operation to the assembly state if it was provided to populate.
} else if (state.asmState) {
state.asmState->finalizeOperationDefinition(op, nameTok.getLocRange(),
/*endLoc=*/getToken().getLoc());
}
return success();
}
/// Parse a single operation successor.
///
/// successor ::= block-id
///
ParseResult OperationParser::parseSuccessor(Block *&dest) {
// Verify branch is identifier and get the matching block.
if (!getToken().is(Token::caret_identifier))
return emitError("expected block name");
dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
consumeToken();
return success();
}
/// Parse a comma-separated list of operation successors in brackets.
///
/// successor-list ::= `[` successor (`,` successor )* `]`
///
ParseResult
OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) {
if (parseToken(Token::l_square, "expected '['"))
return failure();
auto parseElt = [this, &destinations] {
Block *dest;
ParseResult res = parseSuccessor(dest);
destinations.push_back(dest);
return res;
};
return parseCommaSeparatedListUntil(Token::r_square, parseElt,
/*allowEmptyList=*/false);
}
namespace {
// RAII-style guard for cleaning up the regions in the operation state before
// deleting them. Within the parser, regions may get deleted if parsing failed,
// and other errors may be present, in particular undominated uses. This makes
// sure such uses are deleted.
struct CleanupOpStateRegions {
~CleanupOpStateRegions() {
SmallVector<Region *, 4> regionsToClean;
regionsToClean.reserve(state.regions.size());
for (auto &region : state.regions)
if (region)
for (auto &block : *region)
block.dropAllDefinedValueUses();
}
OperationState &state;
};
} // namespace
Operation *OperationParser::parseGenericOperation() {
// Get location information for the operation.
auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
std::string name = getToken().getStringValue();
if (name.empty())
return (emitError("empty operation name is invalid"), nullptr);
if (name.find('\0') != StringRef::npos)
return (emitError("null character not allowed in operation name"), nullptr);
consumeToken(Token::string);
OperationState result(srcLocation, name);
// Lazy load dialects in the context as needed.
if (!result.name.getAbstractOperation()) {
StringRef dialectName = StringRef(name).split('.').first;
if (!getContext()->getLoadedDialect(dialectName) &&
getContext()->getOrLoadDialect(dialectName)) {
result.name = OperationName(name, getContext());
}
}
// If we are populating the parser state, start a new operation definition.
if (state.asmState)
state.asmState->startOperationDefinition(result.name);
// Parse the operand list.
SmallVector<SSAUseInfo, 8> operandInfos;
if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
parseOptionalSSAUseList(operandInfos) ||
parseToken(Token::r_paren, "expected ')' to end operand list")) {
return nullptr;
}
// Parse the successor list.
if (getToken().is(Token::l_square)) {
// Check if the operation is a known terminator.
const AbstractOperation *abstractOp = result.name.getAbstractOperation();
if (abstractOp && !abstractOp->hasTrait<OpTrait::IsTerminator>())
return emitError("successors in non-terminator"), nullptr;
SmallVector<Block *, 2> successors;
if (parseSuccessors(successors))
return nullptr;
result.addSuccessors(successors);
}
// Parse the region list.
CleanupOpStateRegions guard{result};
if (consumeIf(Token::l_paren)) {
do {
// Create temporary regions with the top level region as parent.
result.regions.emplace_back(new Region(topLevelOp));
if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
return nullptr;
} while (consumeIf(Token::comma));
if (parseToken(Token::r_paren, "expected ')' to end region list"))
return nullptr;
}
if (getToken().is(Token::l_brace)) {
if (parseAttributeDict(result.attributes))
return nullptr;
}
if (parseToken(Token::colon, "expected ':' followed by operation type"))
return nullptr;
auto typeLoc = getToken().getLoc();
auto type = parseType();
if (!type)
return nullptr;
auto fnType = type.dyn_cast<FunctionType>();
if (!fnType)
return (emitError(typeLoc, "expected function type"), nullptr);
result.addTypes(fnType.getResults());
// Check that we have the right number of types for the operands.
auto operandTypes = fnType.getInputs();
if (operandTypes.size() != operandInfos.size()) {
auto plural = "s"[operandInfos.size() == 1];
return (emitError(typeLoc, "expected ")
<< operandInfos.size() << " operand type" << plural
<< " but had " << operandTypes.size(),
nullptr);
}
// Resolve all of the operands.
for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
if (!result.operands.back())
return nullptr;
}
// Create the operation and try to parse a location for it.
Operation *op = opBuilder.createOperation(result);
if (parseTrailingLocationSpecifier(op))
return nullptr;
return op;
}
Operation *OperationParser::parseGenericOperation(Block *insertBlock,
Block::iterator insertPt) {
Token nameToken = getToken();
OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
opBuilder.setInsertionPoint(insertBlock, insertPt);
Operation *op = parseGenericOperation();
if (!op)
return nullptr;
// If we are populating the parser asm state, finalize this operation
// definition.
if (state.asmState)
state.asmState->finalizeOperationDefinition(op, nameToken.getLocRange(),
/*endLoc=*/getToken().getLoc());
return op;
}
namespace {
class CustomOpAsmParser : public OpAsmParser {
public:
CustomOpAsmParser(
SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs,
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly,
bool isIsolatedFromAbove, StringRef opName, OperationParser &parser)
: nameLoc(nameLoc), resultIDs(resultIDs), parseAssembly(parseAssembly),
isIsolatedFromAbove(isIsolatedFromAbove), opName(opName),
parser(parser) {
(void)isIsolatedFromAbove; // Only used in assert, silence unused warning.
}
/// Parse an instance of the operation described by 'opDefinition' into the
/// provided operation state.
ParseResult parseOperation(OperationState &opState) {
if (parseAssembly(*this, opState))
return failure();
// Verify that the parsed attributes does not have duplicate attributes.
// This can happen if an attribute set during parsing is also specified in
// the attribute dictionary in the assembly, or the attribute is set
// multiple during parsing.
Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate();
if (duplicate)
return emitError(getNameLoc(), "attribute '")
<< duplicate->first
<< "' occurs more than once in the attribute list";
return success();
}
Operation *parseGenericOperation(Block *insertBlock,
Block::iterator insertPt) final {
return parser.parseGenericOperation(insertBlock, insertPt);
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// Return if any errors were emitted during parsing.
bool didEmitError() const { return emittedError; }
/// Emit a diagnostic at the specified location and return failure.
InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
emittedError = true;
return parser.emitError(loc, "custom op '" + opName + "' " + message);
}
llvm::SMLoc getCurrentLocation() override {
return parser.getToken().getLoc();
}
Builder &getBuilder() const override { return parser.builder; }
/// Return the name of the specified result in the specified syntax, as well
/// as the subelement in the name. For example, in this operation:
///
/// %x, %y:2, %z = foo.op
///
/// getResultName(0) == {"x", 0 }
/// getResultName(1) == {"y", 0 }
/// getResultName(2) == {"y", 1 }
/// getResultName(3) == {"z", 0 }
std::pair<StringRef, unsigned>
getResultName(unsigned resultNo) const override {
// Scan for the resultID that contains this result number.
for (unsigned nameID = 0, e = resultIDs.size(); nameID != e; ++nameID) {
const auto &entry = resultIDs[nameID];
if (resultNo < std::get<1>(entry)) {
// Don't pass on the leading %.
StringRef name = std::get<0>(entry).drop_front();
return {name, resultNo};
}
resultNo -= std::get<1>(entry);
}
// Invalid result number.
return {"", ~0U};
}
/// Return the number of declared SSA results. This returns 4 for the foo.op
/// example in the comment for getResultName.
size_t getNumResults() const override {
size_t count = 0;
for (auto &entry : resultIDs)
count += std::get<1>(entry);
return count;
}
llvm::SMLoc getNameLoc() const override { return nameLoc; }
/// Re-encode the given source location as an MLIR location and return it.
Location getEncodedSourceLoc(llvm::SMLoc loc) override {
return parser.getEncodedSourceLocation(loc);
}
//===--------------------------------------------------------------------===//
// Token Parsing
//===--------------------------------------------------------------------===//
/// Parse a `->` token.
ParseResult parseArrow() override {
return parser.parseToken(Token::arrow, "expected '->'");
}
/// Parses a `->` if present.
ParseResult parseOptionalArrow() override {
return success(parser.consumeIf(Token::arrow));
}
/// Parse a '{' token.
ParseResult parseLBrace() override {
return parser.parseToken(Token::l_brace, "expected '{'");
}
/// Parse a '{' token if present
ParseResult parseOptionalLBrace() override {
return success(parser.consumeIf(Token::l_brace));
}
/// Parse a `}` token.
ParseResult parseRBrace() override {
return parser.parseToken(Token::r_brace, "expected '}'");
}
/// Parse a `}` token if present
ParseResult parseOptionalRBrace() override {
return success(parser.consumeIf(Token::r_brace));
}
/// Parse a `:` token.
ParseResult parseColon() override {
return parser.parseToken(Token::colon, "expected ':'");
}
/// Parse a `:` token if present.
ParseResult parseOptionalColon() override {
return success(parser.consumeIf(Token::colon));
}
/// Parse a `,` token.
ParseResult parseComma() override {
return parser.parseToken(Token::comma, "expected ','");
}
/// Parse a `,` token if present.
ParseResult parseOptionalComma() override {
return success(parser.consumeIf(Token::comma));
}
/// Parses a `...` if present.
ParseResult parseOptionalEllipsis() override {
return success(parser.consumeIf(Token::ellipsis));
}
/// Parse a `=` token.
ParseResult parseEqual() override {
return parser.parseToken(Token::equal, "expected '='");
}
/// Parse a `=` token if present.
ParseResult parseOptionalEqual() override {
return success(parser.consumeIf(Token::equal));
}
/// Parse a '<' token.
ParseResult parseLess() override {
return parser.parseToken(Token::less, "expected '<'");
}
/// Parse a '<' token if present.
ParseResult parseOptionalLess() override {
return success(parser.consumeIf(Token::less));
}
/// Parse a '>' token.
ParseResult parseGreater() override {
return parser.parseToken(Token::greater, "expected '>'");
}
/// Parse a '>' token if present.
ParseResult parseOptionalGreater() override {
return success(parser.consumeIf(Token::greater));
}
/// Parse a `(` token.
ParseResult parseLParen() override {
return parser.parseToken(Token::l_paren, "expected '('");
}
/// Parses a '(' if present.
ParseResult parseOptionalLParen() override {
return success(parser.consumeIf(Token::l_paren));
}
/// Parse a `)` token.
ParseResult parseRParen() override {
return parser.parseToken(Token::r_paren, "expected ')'");
}
/// Parses a ')' if present.
ParseResult parseOptionalRParen() override {
return success(parser.consumeIf(Token::r_paren));
}
/// Parse a `[` token.
ParseResult parseLSquare() override {
return parser.parseToken(Token::l_square, "expected '['");
}
/// Parses a '[' if present.
ParseResult parseOptionalLSquare() override {
return success(parser.consumeIf(Token::l_square));
}
/// Parse a `]` token.
ParseResult parseRSquare() override {
return parser.parseToken(Token::r_square, "expected ']'");
}
/// Parses a ']' if present.
ParseResult parseOptionalRSquare() override {
return success(parser.consumeIf(Token::r_square));
}
/// Parses a '?' token.
ParseResult parseQuestion() override {
return parser.parseToken(Token::question, "expected '?'");
}
/// Parses a '?' token if present.
ParseResult parseOptionalQuestion() override {
return success(parser.consumeIf(Token::question));
}
/// Parses a '+' token.
ParseResult parsePlus() override {
return parser.parseToken(Token::plus, "expected '+'");
}
/// Parses a '+' token if present.
ParseResult parseOptionalPlus() override {
return success(parser.consumeIf(Token::plus));
}
/// Parses a '*' token.
ParseResult parseStar() override {
return parser.parseToken(Token::star, "expected '*'");
}
/// Parses a '*' token if present.
ParseResult parseOptionalStar() override {
return success(parser.consumeIf(Token::star));
}
/// Parse an optional integer value from the stream.
OptionalParseResult parseOptionalInteger(APInt &result) override {
return parser.parseOptionalInteger(result);
}
//===--------------------------------------------------------------------===//
// Attribute Parsing
//===--------------------------------------------------------------------===//
/// Parse an arbitrary attribute of a given type and return it in result.
ParseResult parseAttribute(Attribute &result, Type type) override {
result = parser.parseAttribute(type);
return success(static_cast<bool>(result));
}
/// Parse an optional attribute.
template <typename AttrT>
OptionalParseResult
parseOptionalAttributeAndAddToList(AttrT &result, Type type,
StringRef attrName, NamedAttrList &attrs) {
OptionalParseResult parseResult =
parser.parseOptionalAttribute(result, type);
if (parseResult.hasValue() && succeeded(*parseResult))
attrs.push_back(parser.builder.getNamedAttr(attrName, result));
return parseResult;
}
OptionalParseResult parseOptionalAttribute(Attribute &result, Type type,
StringRef attrName,
NamedAttrList &attrs) override {
return parseOptionalAttributeAndAddToList(result, type, attrName, attrs);
}
OptionalParseResult parseOptionalAttribute(ArrayAttr &result, Type type,
StringRef attrName,
NamedAttrList &attrs) override {
return parseOptionalAttributeAndAddToList(result, type, attrName, attrs);
}
OptionalParseResult parseOptionalAttribute(StringAttr &result, Type type,
StringRef attrName,
NamedAttrList &attrs) override {
return parseOptionalAttributeAndAddToList(result, type, attrName, attrs);
}
/// Parse a named dictionary into 'result' if it is present.
ParseResult parseOptionalAttrDict(NamedAttrList &result) override {
if (parser.getToken().isNot(Token::l_brace))
return success();
return parser.parseAttributeDict(result);
}
/// Parse a named dictionary into 'result' if the `attributes` keyword is
/// present.
ParseResult parseOptionalAttrDictWithKeyword(NamedAttrList &result) override {
if (failed(parseOptionalKeyword("attributes")))
return success();
return parser.parseAttributeDict(result);
}
/// Parse an affine map instance into 'map'.
ParseResult parseAffineMap(AffineMap &map) override {
return parser.parseAffineMapReference(map);
}
/// Parse an integer set instance into 'set'.
ParseResult printIntegerSet(IntegerSet &set) override {
return parser.parseIntegerSetReference(set);
}
//===--------------------------------------------------------------------===//
// Identifier Parsing
//===--------------------------------------------------------------------===//
/// Returns true if the current token corresponds to a keyword.
bool isCurrentTokenAKeyword() const {
return parser.getToken().is(Token::bare_identifier) ||
parser.getToken().isKeyword();
}
/// Parse the given keyword if present.
ParseResult parseOptionalKeyword(StringRef keyword) override {
// Check that the current token has the same spelling.
if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
return failure();
parser.consumeToken();
return success();
}
/// Parse a keyword, if present, into 'keyword'.
ParseResult parseOptionalKeyword(StringRef *keyword) override {
// Check that the current token is a keyword.
if (!isCurrentTokenAKeyword())
return failure();
*keyword = parser.getTokenSpelling();
parser.consumeToken();
return success();
}
/// Parse a keyword if it is one of the 'allowedKeywords'.
ParseResult
parseOptionalKeyword(StringRef *keyword,
ArrayRef<StringRef> allowedKeywords) override {
// Check that the current token is a keyword.
if (!isCurrentTokenAKeyword())
return failure();
StringRef currentKeyword = parser.getTokenSpelling();
if (llvm::is_contained(allowedKeywords, currentKeyword)) {
*keyword = currentKeyword;
parser.consumeToken();
return success();
}
return failure();
}
/// Parse an optional @-identifier and store it (without the '@' symbol) in a
/// string attribute named 'attrName'.
ParseResult parseOptionalSymbolName(StringAttr &result, StringRef attrName,
NamedAttrList &attrs) override {
Token atToken = parser.getToken();
if (atToken.isNot(Token::at_identifier))
return failure();
result = getBuilder().getStringAttr(atToken.getSymbolReference());
attrs.push_back(getBuilder().getNamedAttr(attrName, result));
parser.consumeToken();
// If we are populating the assembly parser state, record this as a symbol
// reference.
if (parser.getState().asmState) {
parser.getState().asmState->addUses(
getBuilder().getSymbolRefAttr(result.getValue()),
atToken.getLocRange());
}
return success();
}
/// Parse a loc(...) specifier if present, filling in result if so.
ParseResult
parseOptionalLocationSpecifier(Optional<Location> &result) override {
// If there is a 'loc' we parse a trailing location.
if (!parser.consumeIf(Token::kw_loc))
return success();
LocationAttr directLoc;
if (parser.parseToken(Token::l_paren, "expected '(' in location") ||
parser.parseLocationInstance(directLoc) ||
parser.parseToken(Token::r_paren, "expected ')' in location"))
return failure();
result = directLoc;
return success();
}
//===--------------------------------------------------------------------===//
// Operand Parsing
//===--------------------------------------------------------------------===//
/// Parse a single operand.
ParseResult parseOperand(OperandType &result) override {
OperationParser::SSAUseInfo useInfo;
if (parser.parseSSAUse(useInfo))
return failure();
result = {useInfo.loc, useInfo.name, useInfo.number};
return success();
}
/// Parse a single operand if present.
OptionalParseResult parseOptionalOperand(OperandType &result) override {
if (parser.getToken().is(Token::percent_identifier))
return parseOperand(result);
return llvm::None;
}
/// Parse zero or more SSA comma-separated operand references with a specified
/// surrounding delimiter, and an optional required operand count.
ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) override {
return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
requiredOperandCount, delimiter);
}
/// Parse zero or more SSA comma-separated operand or region arguments with
/// optional surrounding delimiter and required operand count.
ParseResult
parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
bool isOperandList, int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) {
auto startLoc = parser.getToken().getLoc();
// Handle delimiters.
switch (delimiter) {
case Delimiter::None:
// Don't check for the absence of a delimiter if the number of operands
// is unknown (and hence the operand list could be empty).
if (requiredOperandCount == -1)
break;
// Token already matches an identifier and so can't be a delimiter.
if (parser.getToken().is(Token::percent_identifier))
break;
// Test against known delimiters.
if (parser.getToken().is(Token::l_paren) ||
parser.getToken().is(Token::l_square))
return emitError(startLoc, "unexpected delimiter");
return emitError(startLoc, "invalid operand");
case Delimiter::OptionalParen:
if (parser.getToken().isNot(Token::l_paren))
return success();
LLVM_FALLTHROUGH;
case Delimiter::Paren:
if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
return failure();
break;
case Delimiter::OptionalSquare:
if (parser.getToken().isNot(Token::l_square))
return success();
LLVM_FALLTHROUGH;
case Delimiter::Square:
if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
return failure();
break;
}
// Check for zero operands.
if (parser.getToken().is(Token::percent_identifier)) {
do {
OperandType operandOrArg;
if (isOperandList ? parseOperand(operandOrArg)
: parseRegionArgument(operandOrArg))
return failure();
result.push_back(operandOrArg);
} while (parser.consumeIf(Token::comma));
}
// Handle delimiters. If we reach here, the optional delimiters were
// present, so we need to parse their closing one.
switch (delimiter) {
case Delimiter::None:
break;
case Delimiter::OptionalParen:
case Delimiter::Paren:
if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
return failure();
break;
case Delimiter::OptionalSquare:
case Delimiter::Square:
if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
return failure();
break;
}
if (requiredOperandCount != -1 &&
result.size() != static_cast<size_t>(requiredOperandCount))
return emitError(startLoc, "expected ")
<< requiredOperandCount << " operands";
return success();
}
/// Parse zero or more trailing SSA comma-separated trailing operand
/// references with a specified surrounding delimiter, and an optional
/// required operand count. A leading comma is expected before the operands.
ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount,
Delimiter delimiter) override {
if (parser.getToken().is(Token::comma)) {
parseComma();
return parseOperandList(result, requiredOperandCount, delimiter);
}
if (requiredOperandCount != -1)
return emitError(parser.getToken().getLoc(), "expected ")
<< requiredOperandCount << " operands";
return success();
}
/// Resolve an operand to an SSA value, emitting an error on failure.
ParseResult resolveOperand(const OperandType &operand, Type type,
SmallVectorImpl<Value> &result) override {
OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
operand.location};
if (auto value = parser.resolveSSAUse(operandInfo, type)) {
result.push_back(value);
return success();
}
return failure();
}
/// Parse an AffineMap of SSA ids.
ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
Attribute &mapAttr, StringRef attrName,
NamedAttrList &attrs,
Delimiter delimiter) override {
SmallVector<OperandType, 2> dimOperands;
SmallVector<OperandType, 1> symOperands;
auto parseElement = [&](bool isSymbol) -> ParseResult {
OperandType operand;
if (parseOperand(operand))
return failure();
if (isSymbol)
symOperands.push_back(operand);
else
dimOperands.push_back(operand);
return success();
};
AffineMap map;
if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter))
return failure();
// Add AffineMap attribute.
if (map) {
mapAttr = AffineMapAttr::get(map);
attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
}
// Add dim operands before symbol operands in 'operands'.
operands.assign(dimOperands.begin(), dimOperands.end());
operands.append(symOperands.begin(), symOperands.end());
return success();
}
/// Parse an AffineExpr of SSA ids.
ParseResult
parseAffineExprOfSSAIds(SmallVectorImpl<OperandType> &dimOperands,
SmallVectorImpl<OperandType> &symbOperands,
AffineExpr &expr) override {
auto parseElement = [&](bool isSymbol) -> ParseResult {
OperandType operand;
if (parseOperand(operand))
return failure();
if (isSymbol)
symbOperands.push_back(operand);
else
dimOperands.push_back(operand);
return success();
};
return parser.parseAffineExprOfSSAIds(expr, parseElement);
}
//===--------------------------------------------------------------------===//
// Region Parsing
//===--------------------------------------------------------------------===//
/// Parse a region that takes `arguments` of `argTypes` types. This
/// effectively defines the SSA values of `arguments` and assigns their type.
ParseResult parseRegion(Region &region, ArrayRef<OperandType> arguments,
ArrayRef<Type> argTypes,
bool enableNameShadowing) override {
assert(arguments.size() == argTypes.size() &&
"mismatching number of arguments and types");
SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
regionArguments;
for (auto pair : llvm::zip(arguments, argTypes)) {
const OperandType &operand = std::get<0>(pair);
Type type = std::get<1>(pair);
OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
operand.location};
regionArguments.emplace_back(operandInfo, type);
}
// Try to parse the region.
(void)isIsolatedFromAbove;
assert((!enableNameShadowing || isIsolatedFromAbove) &&
"name shadowing is only allowed on isolated regions");
if (parser.parseRegion(region, regionArguments, enableNameShadowing))
return failure();
return success();
}
/// Parses a region if present.
OptionalParseResult parseOptionalRegion(Region &region,
ArrayRef<OperandType> arguments,
ArrayRef<Type> argTypes,
bool enableNameShadowing) override {
if (parser.getToken().isNot(Token::l_brace))
return llvm::None;
return parseRegion(region, arguments, argTypes, enableNameShadowing);
}
/// Parses a region if present. If the region is present, a new region is
/// allocated and placed in `region`. If no region is present, `region`
/// remains untouched.
OptionalParseResult
parseOptionalRegion(std::unique_ptr<Region> &region,
ArrayRef<OperandType> arguments, ArrayRef<Type> argTypes,
bool enableNameShadowing = false) override {
if (parser.getToken().isNot(Token::l_brace))
return llvm::None;
std::unique_ptr<Region> newRegion = std::make_unique<Region>();
if (parseRegion(*newRegion, arguments, argTypes, enableNameShadowing))
return failure();
region = std::move(newRegion);
return success();
}
/// Parse a region argument. The type of the argument will be resolved later
/// by a call to `parseRegion`.
ParseResult parseRegionArgument(OperandType &argument) override {
return parseOperand(argument);
}
/// Parse a region argument if present.
ParseResult parseOptionalRegionArgument(OperandType &argument) override {
if (parser.getToken().isNot(Token::percent_identifier))
return success();
return parseRegionArgument(argument);
}
ParseResult
parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) override {
return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
requiredOperandCount, delimiter);
}
//===--------------------------------------------------------------------===//
// Successor Parsing
//===--------------------------------------------------------------------===//
/// Parse a single operation successor.
ParseResult parseSuccessor(Block *&dest) override {
return parser.parseSuccessor(dest);
}
/// Parse an optional operation successor and its operand list.
OptionalParseResult parseOptionalSuccessor(Block *&dest) override {
if (parser.getToken().isNot(Token::caret_identifier))
return llvm::None;
return parseSuccessor(dest);
}
/// Parse a single operation successor and its operand list.
ParseResult
parseSuccessorAndUseList(Block *&dest,
SmallVectorImpl<Value> &operands) override {
if (parseSuccessor(dest))
return failure();
// Handle optional arguments.
if (succeeded(parseOptionalLParen()) &&
(parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) {
return failure();
}
return success();
}
//===--------------------------------------------------------------------===//
// Type Parsing
//===--------------------------------------------------------------------===//
/// Parse a type.
ParseResult parseType(Type &result) override {
return failure(!(result = parser.parseType()));
}
/// Parse an optional type.
OptionalParseResult parseOptionalType(Type &result) override {
return parser.parseOptionalType(result);
}
/// Parse an arrow followed by a type list.
ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override {
if (parseArrow() || parser.parseFunctionResultTypes(result))
return failure();
return success();
}
/// Parse an optional arrow followed by a type list.
ParseResult
parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override {
if (!parser.consumeIf(Token::arrow))
return success();
return parser.parseFunctionResultTypes(result);
}
/// Parse a colon followed by a type.
ParseResult parseColonType(Type &result) override {
return failure(parser.parseToken(Token::colon, "expected ':'") ||
!(result = parser.parseType()));
}
/// Parse a colon followed by a type list, which must have at least one type.
ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override {
if (parser.parseToken(Token::colon, "expected ':'"))
return failure();
return parser.parseTypeListNoParens(result);
}
/// Parse an optional colon followed by a type list, which if present must
/// have at least one type.
ParseResult
parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override {
if (!parser.consumeIf(Token::colon))
return success();
return parser.parseTypeListNoParens(result);
}
/// Parse a list of assignments of the form
/// (%x1 = %y1, %x2 = %y2, ...).
OptionalParseResult
parseOptionalAssignmentList(SmallVectorImpl<OperandType> &lhs,
SmallVectorImpl<OperandType> &rhs) override {
if (failed(parseOptionalLParen()))
return llvm::None;
auto parseElt = [&]() -> ParseResult {
OperandType regionArg, operand;
if (parseRegionArgument(regionArg) || parseEqual() ||
parseOperand(operand))
return failure();
lhs.push_back(regionArg);
rhs.push_back(operand);
return success();
};
return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parse a list of assignments of the form
/// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...).
OptionalParseResult
parseOptionalAssignmentListWithTypes(SmallVectorImpl<OperandType> &lhs,
SmallVectorImpl<OperandType> &rhs,
SmallVectorImpl<Type> &types) override {
if (failed(parseOptionalLParen()))
return llvm::None;
auto parseElt = [&]() -> ParseResult {
OperandType regionArg, operand;
Type type;
if (parseRegionArgument(regionArg) || parseEqual() ||
parseOperand(operand) || parseColon() || parseType(type))
return failure();
lhs.push_back(regionArg);
rhs.push_back(operand);
types.push_back(type);
return success();
};
return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
private:
/// The source location of the operation name.
SMLoc nameLoc;
/// Information about the result name specifiers.
ArrayRef<OperationParser::ResultRecord> resultIDs;
/// The abstract information of the operation.
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly;
bool isIsolatedFromAbove;
StringRef opName;
/// The main operation parser.
OperationParser &parser;
/// A flag that indicates if any errors were emitted during parsing.
bool emittedError = false;
};
} // end anonymous namespace.
Operation *
OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) {
llvm::SMLoc opLoc = getToken().getLoc();
StringRef opName = getTokenSpelling();
auto *opDefinition = AbstractOperation::lookup(opName, getContext());
Dialect *dialect = nullptr;
if (opDefinition) {
dialect = &opDefinition->dialect;
} else {
if (opName.contains('.')) {
// This op has a dialect, we try to check if we can register it in the
// context on the fly.
StringRef dialectName = opName.split('.').first;
dialect = getContext()->getLoadedDialect(dialectName);
if (!dialect && (dialect = getContext()->getOrLoadDialect(dialectName)))
opDefinition = AbstractOperation::lookup(opName, getContext());
} else {
// If the operation name has no namespace prefix we treat it as a standard
// operation and prefix it with "std".
// TODO: Would it be better to just build a mapping of the registered
// operations in the standard dialect?
if (getContext()->getOrLoadDialect("std")) {
opDefinition = AbstractOperation::lookup(Twine("std." + opName).str(),
getContext());
if (opDefinition)
opName = opDefinition->name.strref();
}
}
}
// This is the actual hook for the custom op parsing, usually implemented by
// the op itself (`Op::parse()`). We retrieve it either from the
// AbstractOperation or from the Dialect.
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssemblyFn;
bool isIsolatedFromAbove = false;
if (opDefinition) {
parseAssemblyFn = opDefinition->getParseAssemblyFn();
isIsolatedFromAbove =
opDefinition->hasTrait<OpTrait::IsIsolatedFromAbove>();
} else {
Optional<Dialect::ParseOpHook> dialectHook;
if (dialect)
dialectHook = dialect->getParseOperationHook(opName);
if (!dialectHook.hasValue()) {
emitError(opLoc) << "custom op '" << opName << "' is unknown";
return nullptr;
}
parseAssemblyFn = *dialectHook;
}
consumeToken();
// If the custom op parser crashes, produce some indication to help
// debugging.
std::string opNameStr = opName.str();
llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
opNameStr.c_str());
// Get location information for the operation.
auto srcLocation = getEncodedSourceLocation(opLoc);
OperationState opState(srcLocation, opName);
// If we are populating the parser state, start a new operation definition.
if (state.asmState)
state.asmState->startOperationDefinition(opState.name);
// Have the op implementation take a crack and parsing this.
CleanupOpStateRegions guard{opState};
CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn,
isIsolatedFromAbove, opName, *this);
if (opAsmParser.parseOperation(opState))
return nullptr;
// If it emitted an error, we failed.
if (opAsmParser.didEmitError())
return nullptr;
// Otherwise, create the operation and try to parse a location for it.
Operation *op = opBuilder.createOperation(opState);
if (parseTrailingLocationSpecifier(op))
return nullptr;
return op;
}
ParseResult
OperationParser::parseTrailingLocationSpecifier(OpOrArgument opOrArgument) {
// If there is a 'loc' we parse a trailing location.
if (!consumeIf(Token::kw_loc))
return success();
if (parseToken(Token::l_paren, "expected '(' in location"))
return failure();
Token tok = getToken();
// Check to see if we are parsing a location alias.
LocationAttr directLoc;
if (tok.is(Token::hash_identifier)) {
consumeToken();
StringRef identifier = tok.getSpelling().drop_front();
if (identifier.contains('.')) {
return emitError(tok.getLoc())
<< "expected location, but found dialect attribute: '#"
<< identifier << "'";
}
// If this alias can be resolved, do it now.
Attribute attr = state.symbols.attributeAliasDefinitions.lookup(identifier);
if (attr) {
if (!(directLoc = attr.dyn_cast<LocationAttr>()))
return emitError(tok.getLoc())
<< "expected location, but found '" << attr << "'";
} else {
// Otherwise, remember this operation and resolve its location later.
opsAndArgumentsWithDeferredLocs.emplace_back(opOrArgument, tok);
}
// Otherwise, we parse the location directly.
} else if (parseLocationInstance(directLoc)) {
return failure();
}
if (parseToken(Token::r_paren, "expected ')' in location"))
return failure();
if (directLoc) {
if (auto *op = opOrArgument.dyn_cast<Operation *>())
op->setLoc(directLoc);
else
opOrArgument.get<BlockArgument>().setLoc(directLoc);
}
return success();
}
//===----------------------------------------------------------------------===//
// Region Parsing
//===----------------------------------------------------------------------===//
ParseResult OperationParser::parseRegion(
Region &region,
ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
bool isIsolatedNameScope) {
// Parse the '{'.
Token lBraceTok = getToken();
if (parseToken(Token::l_brace, "expected '{' to begin a region"))
return failure();
// If we are populating the parser state, start a new region definition.
if (state.asmState)
state.asmState->startRegionDefinition();
// Parse the region body.
if ((!entryArguments.empty() || getToken().isNot(Token::r_brace)) &&
parseRegionBody(region, lBraceTok.getLoc(), entryArguments,
isIsolatedNameScope)) {
return failure();
}
consumeToken(Token::r_brace);
// If we are populating the parser state, finalize this region.
if (state.asmState)
state.asmState->finalizeRegionDefinition();
return success();
}
ParseResult OperationParser::parseRegionBody(
Region &region, llvm::SMLoc startLoc,
ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
bool isIsolatedNameScope) {
auto currentPt = opBuilder.saveInsertionPoint();
// Push a new named value scope.
pushSSANameScope(isIsolatedNameScope);
// Parse the first block directly to allow for it to be unnamed.
auto owning_block = std::make_unique<Block>();
Block *block = owning_block.get();
// If this block is not defined in the source file, add a definition for it
// now in the assembly state. Blocks with a name will be defined when the name
// is parsed.
if (state.asmState && getToken().isNot(Token::caret_identifier))
state.asmState->addDefinition(block, startLoc);
// Add arguments to the entry block.
if (!entryArguments.empty()) {
// If we had named arguments, then don't allow a block name.
if (getToken().is(Token::caret_identifier))
return emitError("invalid block name in region with named arguments");
for (auto &placeholderArgPair : entryArguments) {
auto &argInfo = placeholderArgPair.first;
// Ensure that the argument was not already defined.
if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
"' is already in use")
.attachNote(getEncodedSourceLocation(*defLoc))
<< "previously referenced here";
}
auto loc = getEncodedSourceLocation(placeholderArgPair.first.loc);
BlockArgument arg = block->addArgument(placeholderArgPair.second, loc);
// Add a definition of this arg to the assembly state if provided.
if (state.asmState)
state.asmState->addDefinition(arg, argInfo.loc);
// Record the definition for this argument.
if (addDefinition(argInfo, arg))
return failure();
}
}
if (parseBlock(block))
return failure();
// Verify that no other arguments were parsed.
if (!entryArguments.empty() &&
block->getNumArguments() > entryArguments.size()) {
return emitError("entry block arguments were already defined");
}
// Parse the rest of the region.
region.push_back(owning_block.release());
while (getToken().isNot(Token::r_brace)) {
Block *newBlock = nullptr;
if (parseBlock(newBlock))
return failure();
region.push_back(newBlock);
}
// Pop the SSA value scope for this region.
if (popSSANameScope())
return failure();
// Reset the original insertion point.
opBuilder.restoreInsertionPoint(currentPt);
return success();
}
//===----------------------------------------------------------------------===//
// Block Parsing
//===----------------------------------------------------------------------===//
/// Block declaration.
///
/// block ::= block-label? operation*
/// block-label ::= block-id block-arg-list? `:`
/// block-id ::= caret-id
/// block-arg-list ::= `(` ssa-id-and-type-list? `)`
///
ParseResult OperationParser::parseBlock(Block *&block) {
// The first block of a region may already exist, if it does the caret
// identifier is optional.
if (block && getToken().isNot(Token::caret_identifier))
return parseBlockBody(block);
SMLoc nameLoc = getToken().getLoc();
auto name = getTokenSpelling();
if (parseToken(Token::caret_identifier, "expected block name"))
return failure();
block = defineBlockNamed(name, nameLoc, block);
// Fail if the block was already defined.
if (!block)
return emitError(nameLoc, "redefinition of block '") << name << "'";
// If an argument list is present, parse it.
if (consumeIf(Token::l_paren)) {
if (parseOptionalBlockArgList(block) ||
parseToken(Token::r_paren, "expected ')' to end argument list"))
return failure();
}
if (parseToken(Token::colon, "expected ':' after block name"))
return failure();
return parseBlockBody(block);
}
ParseResult OperationParser::parseBlockBody(Block *block) {
// Set the insertion point to the end of the block to parse.
opBuilder.setInsertionPointToEnd(block);
// Parse the list of operations that make up the body of the block.
while (getToken().isNot(Token::caret_identifier, Token::r_brace))
if (parseOperation())
return failure();
return success();
}
/// Get the block with the specified name, creating it if it doesn't already
/// exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
BlockDefinition &blockDef = getBlockInfoByName(name);
if (!blockDef.block) {
blockDef = {new Block(), loc};
insertForwardRef(blockDef.block, blockDef.loc);
}
// Populate the high level assembly state if necessary.
if (state.asmState)
state.asmState->addUses(blockDef.block, loc);
return blockDef.block;
}
/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
Block *existing) {
auto &blockAndLoc = getBlockInfoByName(name);
blockAndLoc.loc = loc;
// If a block has yet to be set, this is a new definition. If the caller
// provided a block, use it. Otherwise create a new one.
if (!blockAndLoc.block) {
blockAndLoc.block = existing ? existing : new Block();
// Otherwise, the block has a forward declaration. Forward declarations are
// removed once defined, so if we are defining a existing block and it is
// not a forward declaration, then it is a redeclaration.
} else if (!eraseForwardRef(blockAndLoc.block)) {
return nullptr;
}
// Populate the high level assembly state if necessary.
if (state.asmState)
state.asmState->addDefinition(blockAndLoc.block, loc);
return blockAndLoc.block;
}
/// Parse a (possibly empty) list of SSA operands with types as block arguments.
///
/// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
///
ParseResult OperationParser::parseOptionalBlockArgList(Block *owner) {
if (getToken().is(Token::r_brace))
return success();
// If the block already has arguments, then we're handling the entry block.
// Parse and register the names for the arguments, but do not add them.
bool definingExistingArgs = owner->getNumArguments() != 0;
unsigned nextArgument = 0;
return parseCommaSeparatedList([&]() -> ParseResult {
return parseSSADefOrUseAndType(
[&](SSAUseInfo useInfo, Type type) -> ParseResult {
BlockArgument arg;
// If we are defining existing arguments, ensure that the argument
// has already been created with the right type.
if (definingExistingArgs) {
// Otherwise, ensure that this argument has already been created.
if (nextArgument >= owner->getNumArguments())
return emitError("too many arguments specified in argument list");
// Finally, make sure the existing argument has the correct type.
arg = owner->getArgument(nextArgument++);
if (arg.getType() != type)
return emitError("argument and block argument type mismatch");
} else {
auto loc = getEncodedSourceLocation(useInfo.loc);
arg = owner->addArgument(type, loc);
}
// If the argument has an explicit loc(...) specifier, parse and apply
// it.
if (parseTrailingLocationSpecifier(arg))
return failure();
// Mark this block argument definition in the parser state if it was
// provided.
if (state.asmState)
state.asmState->addDefinition(arg, useInfo.loc);
return addDefinition(useInfo, arg);
});
});
}
//===----------------------------------------------------------------------===//
// Top-level entity parsing.
//===----------------------------------------------------------------------===//
namespace {
/// This parser handles entities that are only valid at the top level of the
/// file.
class TopLevelOperationParser : public Parser {
public:
explicit TopLevelOperationParser(ParserState &state) : Parser(state) {}
/// Parse a set of operations into the end of the given Block.
ParseResult parse(Block *topLevelBlock, Location parserLoc);
private:
/// Parse an attribute alias declaration.
ParseResult parseAttributeAliasDef();
/// Parse an attribute alias declaration.
ParseResult parseTypeAliasDef();
};
} // end anonymous namespace
/// Parses an attribute alias declaration.
///
/// attribute-alias-def ::= '#' alias-name `=` attribute-value
///
ParseResult TopLevelOperationParser::parseAttributeAliasDef() {
assert(getToken().is(Token::hash_identifier));
StringRef aliasName = getTokenSpelling().drop_front();
// Check for redefinitions.
if (state.symbols.attributeAliasDefinitions.count(aliasName) > 0)
return emitError("redefinition of attribute alias id '" + aliasName + "'");
// Make sure this isn't invading the dialect attribute namespace.
if (aliasName.contains('.'))
return emitError("attribute names with a '.' are reserved for "
"dialect-defined names");
consumeToken(Token::hash_identifier);
// Parse the '='.
if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
return failure();
// Parse the attribute value.
Attribute attr = parseAttribute();
if (!attr)
return failure();
state.symbols.attributeAliasDefinitions[aliasName] = attr;
return success();
}
/// Parse a type alias declaration.
///
/// type-alias-def ::= '!' alias-name `=` 'type' type
///
ParseResult TopLevelOperationParser::parseTypeAliasDef() {
assert(getToken().is(Token::exclamation_identifier));
StringRef aliasName = getTokenSpelling().drop_front();
// Check for redefinitions.
if (state.symbols.typeAliasDefinitions.count(aliasName) > 0)
return emitError("redefinition of type alias id '" + aliasName + "'");
// Make sure this isn't invading the dialect type namespace.
if (aliasName.contains('.'))
return emitError("type names with a '.' are reserved for "
"dialect-defined names");
consumeToken(Token::exclamation_identifier);
// Parse the '=' and 'type'.
if (parseToken(Token::equal, "expected '=' in type alias definition") ||
parseToken(Token::kw_type, "expected 'type' in type alias definition"))
return failure();
// Parse the type.
Type aliasedType = parseType();
if (!aliasedType)
return failure();
// Register this alias with the parser state.
state.symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
return success();
}
ParseResult TopLevelOperationParser::parse(Block *topLevelBlock,
Location parserLoc) {
// Create a top-level operation to contain the parsed state.
OwningOpRef<ModuleOp> topLevelOp(ModuleOp::create(parserLoc));
OperationParser opParser(state, topLevelOp.get());
while (true) {
switch (getToken().getKind()) {
default:
// Parse a top-level operation.
if (opParser.parseOperation())
return failure();
break;
// If we got to the end of the file, then we're done.
case Token::eof: {
if (opParser.finalize())
return failure();
// Splice the blocks of the parsed operation over to the provided
// top-level block.
auto &parsedOps = topLevelOp->getBody()->getOperations();
auto &destOps = topLevelBlock->getOperations();
destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()),
parsedOps, parsedOps.begin(), parsedOps.end());
return success();
}
// If we got an error token, then the lexer already emitted an error, just
// stop. Someday we could introduce error recovery if there was demand
// for it.
case Token::error:
return failure();
// Parse an attribute alias.
case Token::hash_identifier:
if (parseAttributeAliasDef())
return failure();
break;
// Parse a type alias.
case Token::exclamation_identifier:
if (parseTypeAliasDef())
return failure();
break;
}
}
}
//===----------------------------------------------------------------------===//
LogicalResult mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
Block *block, MLIRContext *context,
LocationAttr *sourceFileLoc,
AsmParserState *asmState) {
const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());
Location parserLoc = FileLineColLoc::get(
context, sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0);
if (sourceFileLoc)
*sourceFileLoc = parserLoc;
SymbolState aliasState;
ParserState state(sourceMgr, context, aliasState, asmState);
return TopLevelOperationParser(state).parse(block, parserLoc);
}
LogicalResult mlir::parseSourceFile(llvm::StringRef filename, Block *block,
MLIRContext *context,
LocationAttr *sourceFileLoc) {
llvm::SourceMgr sourceMgr;
return parseSourceFile(filename, sourceMgr, block, context, sourceFileLoc);
}
LogicalResult mlir::parseSourceFile(llvm::StringRef filename,
llvm::SourceMgr &sourceMgr, Block *block,
MLIRContext *context,
LocationAttr *sourceFileLoc,
AsmParserState *asmState) {
if (sourceMgr.getNumBuffers() != 0) {
// TODO: Extend to support multiple buffers.
return emitError(mlir::UnknownLoc::get(context),
"only main buffer parsed at the moment");
}
auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename);
if (std::error_code error = file_or_err.getError())
return emitError(mlir::UnknownLoc::get(context),
"could not open input file " + filename);
// Load the MLIR source file.
sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc());
return parseSourceFile(sourceMgr, block, context, sourceFileLoc, asmState);
}
LogicalResult mlir::parseSourceString(llvm::StringRef sourceStr, Block *block,
MLIRContext *context,
LocationAttr *sourceFileLoc) {
auto memBuffer = MemoryBuffer::getMemBuffer(sourceStr);
if (!memBuffer)
return failure();
SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
return parseSourceFile(sourceMgr, block, context, sourceFileLoc);
}