forked from OSchip/llvm-project
353 lines
13 KiB
C++
353 lines
13 KiB
C++
//===- AggressiveInstCombine.cpp ------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the aggressive expression pattern combiner classes.
|
|
// Currently, it handles expression patterns for:
|
|
// * Truncate instruction
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
|
|
#include "AggressiveInstCombineInternal.h"
|
|
#include "llvm-c/Initialization.h"
|
|
#include "llvm-c/Transforms/AggressiveInstCombine.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "aggressive-instcombine"
|
|
|
|
namespace {
|
|
/// Contains expression pattern combiner logic.
|
|
/// This class provides both the logic to combine expression patterns and
|
|
/// combine them. It differs from InstCombiner class in that each pattern
|
|
/// combiner runs only once as opposed to InstCombine's multi-iteration,
|
|
/// which allows pattern combiner to have higher complexity than the O(1)
|
|
/// required by the instruction combiner.
|
|
class AggressiveInstCombinerLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
|
|
initializeAggressiveInstCombinerLegacyPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
/// Run all expression pattern optimizations on the given /p F function.
|
|
///
|
|
/// \param F function to optimize.
|
|
/// \returns true if the IR is changed.
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
} // namespace
|
|
|
|
/// Match a pattern for a bitwise rotate operation that partially guards
|
|
/// against undefined behavior by branching around the rotation when the shift
|
|
/// amount is 0.
|
|
static bool foldGuardedRotateToFunnelShift(Instruction &I) {
|
|
if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
|
|
return false;
|
|
|
|
// As with the one-use checks below, this is not strictly necessary, but we
|
|
// are being cautious to avoid potential perf regressions on targets that
|
|
// do not actually have a rotate instruction (where the funnel shift would be
|
|
// expanded back into math/shift/logic ops).
|
|
if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
|
|
return false;
|
|
|
|
// Match V to funnel shift left/right and capture the source operand and
|
|
// shift amount in X and Y.
|
|
auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
|
|
Value *L0, *L1, *R0, *R1;
|
|
unsigned Width = V->getType()->getScalarSizeInBits();
|
|
auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
|
|
|
|
// rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
|
|
auto RotL = m_OneUse(m_c_Or(m_Shl(m_Value(L0), m_Value(L1)),
|
|
m_LShr(m_Value(R0), Sub)));
|
|
if (RotL.match(V) && L0 == R0 && L1 == R1) {
|
|
X = L0;
|
|
Y = L1;
|
|
return Intrinsic::fshl;
|
|
}
|
|
|
|
// rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
|
|
auto RotR = m_OneUse(m_c_Or(m_LShr(m_Value(L0), m_Value(L1)),
|
|
m_Shl(m_Value(R0), Sub)));
|
|
if (RotR.match(V) && L0 == R0 && L1 == R1) {
|
|
X = L0;
|
|
Y = L1;
|
|
return Intrinsic::fshr;
|
|
}
|
|
|
|
return Intrinsic::not_intrinsic;
|
|
};
|
|
|
|
// One phi operand must be a rotate operation, and the other phi operand must
|
|
// be the source value of that rotate operation:
|
|
// phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
|
|
PHINode &Phi = cast<PHINode>(I);
|
|
Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
|
|
Value *RotSrc, *RotAmt;
|
|
Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
|
|
if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
|
|
IID = matchRotate(P1, RotSrc, RotAmt);
|
|
if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
|
|
return false;
|
|
assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
|
|
"Pattern must match funnel shift left or right");
|
|
}
|
|
|
|
// The incoming block with our source operand must be the "guard" block.
|
|
// That must contain a cmp+branch to avoid the rotate when the shift amount
|
|
// is equal to 0. The other incoming block is the block with the rotate.
|
|
BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
|
|
BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
|
|
Instruction *TermI = GuardBB->getTerminator();
|
|
BasicBlock *TrueBB, *FalseBB;
|
|
ICmpInst::Predicate Pred;
|
|
if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()),
|
|
TrueBB, FalseBB)))
|
|
return false;
|
|
|
|
BasicBlock *PhiBB = Phi.getParent();
|
|
if (Pred != CmpInst::ICMP_EQ || TrueBB != PhiBB || FalseBB != RotBB)
|
|
return false;
|
|
|
|
// We matched a variation of this IR pattern:
|
|
// GuardBB:
|
|
// %cmp = icmp eq i32 %RotAmt, 0
|
|
// br i1 %cmp, label %PhiBB, label %RotBB
|
|
// RotBB:
|
|
// %sub = sub i32 32, %RotAmt
|
|
// %shr = lshr i32 %X, %sub
|
|
// %shl = shl i32 %X, %RotAmt
|
|
// %rot = or i32 %shr, %shl
|
|
// br label %PhiBB
|
|
// PhiBB:
|
|
// %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
|
|
// -->
|
|
// llvm.fshl.i32(i32 %X, i32 %RotAmt)
|
|
IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
|
|
Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
|
|
Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
|
|
return true;
|
|
}
|
|
|
|
/// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
|
|
/// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
|
|
/// of 'and' ops, then we also need to capture the fact that we saw an
|
|
/// "and X, 1", so that's an extra return value for that case.
|
|
struct MaskOps {
|
|
Value *Root;
|
|
APInt Mask;
|
|
bool MatchAndChain;
|
|
bool FoundAnd1;
|
|
|
|
MaskOps(unsigned BitWidth, bool MatchAnds) :
|
|
Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
|
|
MatchAndChain(MatchAnds), FoundAnd1(false) {}
|
|
};
|
|
|
|
/// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
|
|
/// chain of 'and' or 'or' instructions looking for shift ops of a common source
|
|
/// value. Examples:
|
|
/// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
|
|
/// returns { X, 0x129 }
|
|
/// and (and (X >> 1), 1), (X >> 4)
|
|
/// returns { X, 0x12 }
|
|
static bool matchAndOrChain(Value *V, MaskOps &MOps) {
|
|
Value *Op0, *Op1;
|
|
if (MOps.MatchAndChain) {
|
|
// Recurse through a chain of 'and' operands. This requires an extra check
|
|
// vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
|
|
// in the chain to know that all of the high bits are cleared.
|
|
if (match(V, m_And(m_Value(Op0), m_One()))) {
|
|
MOps.FoundAnd1 = true;
|
|
return matchAndOrChain(Op0, MOps);
|
|
}
|
|
if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
|
|
return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
|
|
} else {
|
|
// Recurse through a chain of 'or' operands.
|
|
if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
|
|
return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
|
|
}
|
|
|
|
// We need a shift-right or a bare value representing a compare of bit 0 of
|
|
// the original source operand.
|
|
Value *Candidate;
|
|
uint64_t BitIndex = 0;
|
|
if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
|
|
Candidate = V;
|
|
|
|
// Initialize result source operand.
|
|
if (!MOps.Root)
|
|
MOps.Root = Candidate;
|
|
|
|
// The shift constant is out-of-range? This code hasn't been simplified.
|
|
if (BitIndex >= MOps.Mask.getBitWidth())
|
|
return false;
|
|
|
|
// Fill in the mask bit derived from the shift constant.
|
|
MOps.Mask.setBit(BitIndex);
|
|
return MOps.Root == Candidate;
|
|
}
|
|
|
|
/// Match patterns that correspond to "any-bits-set" and "all-bits-set".
|
|
/// These will include a chain of 'or' or 'and'-shifted bits from a
|
|
/// common source value:
|
|
/// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
|
|
/// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
|
|
/// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
|
|
/// that differ only with a final 'not' of the result. We expect that final
|
|
/// 'not' to be folded with the compare that we create here (invert predicate).
|
|
static bool foldAnyOrAllBitsSet(Instruction &I) {
|
|
// The 'any-bits-set' ('or' chain) pattern is simpler to match because the
|
|
// final "and X, 1" instruction must be the final op in the sequence.
|
|
bool MatchAllBitsSet;
|
|
if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
|
|
MatchAllBitsSet = true;
|
|
else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
|
|
MatchAllBitsSet = false;
|
|
else
|
|
return false;
|
|
|
|
MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
|
|
if (MatchAllBitsSet) {
|
|
if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
|
|
return false;
|
|
} else {
|
|
if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
|
|
return false;
|
|
}
|
|
|
|
// The pattern was found. Create a masked compare that replaces all of the
|
|
// shift and logic ops.
|
|
IRBuilder<> Builder(&I);
|
|
Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
|
|
Value *And = Builder.CreateAnd(MOps.Root, Mask);
|
|
Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) :
|
|
Builder.CreateIsNotNull(And);
|
|
Value *Zext = Builder.CreateZExt(Cmp, I.getType());
|
|
I.replaceAllUsesWith(Zext);
|
|
return true;
|
|
}
|
|
|
|
/// This is the entry point for folds that could be implemented in regular
|
|
/// InstCombine, but they are separated because they are not expected to
|
|
/// occur frequently and/or have more than a constant-length pattern match.
|
|
static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
|
|
bool MadeChange = false;
|
|
for (BasicBlock &BB : F) {
|
|
// Ignore unreachable basic blocks.
|
|
if (!DT.isReachableFromEntry(&BB))
|
|
continue;
|
|
// Do not delete instructions under here and invalidate the iterator.
|
|
// Walk the block backwards for efficiency. We're matching a chain of
|
|
// use->defs, so we're more likely to succeed by starting from the bottom.
|
|
// Also, we want to avoid matching partial patterns.
|
|
// TODO: It would be more efficient if we removed dead instructions
|
|
// iteratively in this loop rather than waiting until the end.
|
|
for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
|
|
MadeChange |= foldAnyOrAllBitsSet(I);
|
|
MadeChange |= foldGuardedRotateToFunnelShift(I);
|
|
}
|
|
}
|
|
|
|
// We're done with transforms, so remove dead instructions.
|
|
if (MadeChange)
|
|
for (BasicBlock &BB : F)
|
|
SimplifyInstructionsInBlock(&BB);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// This is the entry point for all transforms. Pass manager differences are
|
|
/// handled in the callers of this function.
|
|
static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
|
|
bool MadeChange = false;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
TruncInstCombine TIC(TLI, DL, DT);
|
|
MadeChange |= TIC.run(F);
|
|
MadeChange |= foldUnusualPatterns(F, DT);
|
|
return MadeChange;
|
|
}
|
|
|
|
void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
|
|
AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<BasicAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
|
|
bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
|
|
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
return runImpl(F, TLI, DT);
|
|
}
|
|
|
|
PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
if (!runImpl(F, TLI, DT)) {
|
|
// No changes, all analyses are preserved.
|
|
return PreservedAnalyses::all();
|
|
}
|
|
// Mark all the analyses that instcombine updates as preserved.
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<AAManager>();
|
|
PA.preserve<GlobalsAA>();
|
|
return PA;
|
|
}
|
|
|
|
char AggressiveInstCombinerLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
|
|
"aggressive-instcombine",
|
|
"Combine pattern based expressions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
|
|
"Combine pattern based expressions", false, false)
|
|
|
|
// Initialization Routines
|
|
void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
|
|
initializeAggressiveInstCombinerLegacyPassPass(Registry);
|
|
}
|
|
|
|
void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
|
|
initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
|
|
}
|
|
|
|
FunctionPass *llvm::createAggressiveInstCombinerPass() {
|
|
return new AggressiveInstCombinerLegacyPass();
|
|
}
|
|
|
|
void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
|
|
unwrap(PM)->add(createAggressiveInstCombinerPass());
|
|
}
|