forked from OSchip/llvm-project
1452 lines
47 KiB
C++
1452 lines
47 KiB
C++
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass does misc. AMDGPU optimizations on IR before instruction
|
|
/// selection.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/Utils/IntegerDivision.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-codegenprepare"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
static cl::opt<bool> WidenLoads(
|
|
"amdgpu-codegenprepare-widen-constant-loads",
|
|
cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
|
|
cl::ReallyHidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> Widen16BitOps(
|
|
"amdgpu-codegenprepare-widen-16-bit-ops",
|
|
cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
|
|
cl::ReallyHidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> UseMul24Intrin(
|
|
"amdgpu-codegenprepare-mul24",
|
|
cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
|
|
cl::ReallyHidden,
|
|
cl::init(true));
|
|
|
|
// Legalize 64-bit division by using the generic IR expansion.
|
|
static cl::opt<bool> ExpandDiv64InIR(
|
|
"amdgpu-codegenprepare-expand-div64",
|
|
cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
|
|
cl::ReallyHidden,
|
|
cl::init(false));
|
|
|
|
// Leave all division operations as they are. This supersedes ExpandDiv64InIR
|
|
// and is used for testing the legalizer.
|
|
static cl::opt<bool> DisableIDivExpand(
|
|
"amdgpu-codegenprepare-disable-idiv-expansion",
|
|
cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
|
|
cl::ReallyHidden,
|
|
cl::init(false));
|
|
|
|
class AMDGPUCodeGenPrepare : public FunctionPass,
|
|
public InstVisitor<AMDGPUCodeGenPrepare, bool> {
|
|
const GCNSubtarget *ST = nullptr;
|
|
AssumptionCache *AC = nullptr;
|
|
DominatorTree *DT = nullptr;
|
|
LegacyDivergenceAnalysis *DA = nullptr;
|
|
Module *Mod = nullptr;
|
|
const DataLayout *DL = nullptr;
|
|
bool HasUnsafeFPMath = false;
|
|
bool HasFP32Denormals = false;
|
|
|
|
/// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
|
|
/// binary operation \p V.
|
|
///
|
|
/// \returns Binary operation \p V.
|
|
/// \returns \p T's base element bit width.
|
|
unsigned getBaseElementBitWidth(const Type *T) const;
|
|
|
|
/// \returns Equivalent 32 bit integer type for given type \p T. For example,
|
|
/// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
|
|
/// is returned.
|
|
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
|
|
|
|
/// \returns True if binary operation \p I is a signed binary operation, false
|
|
/// otherwise.
|
|
bool isSigned(const BinaryOperator &I) const;
|
|
|
|
/// \returns True if the condition of 'select' operation \p I comes from a
|
|
/// signed 'icmp' operation, false otherwise.
|
|
bool isSigned(const SelectInst &I) const;
|
|
|
|
/// \returns True if type \p T needs to be promoted to 32 bit integer type,
|
|
/// false otherwise.
|
|
bool needsPromotionToI32(const Type *T) const;
|
|
|
|
/// Promotes uniform binary operation \p I to equivalent 32 bit binary
|
|
/// operation.
|
|
///
|
|
/// \details \p I's base element bit width must be greater than 1 and less
|
|
/// than or equal 16. Promotion is done by sign or zero extending operands to
|
|
/// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
|
|
/// truncating the result of 32 bit binary operation back to \p I's original
|
|
/// type. Division operation is not promoted.
|
|
///
|
|
/// \returns True if \p I is promoted to equivalent 32 bit binary operation,
|
|
/// false otherwise.
|
|
bool promoteUniformOpToI32(BinaryOperator &I) const;
|
|
|
|
/// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
|
|
///
|
|
/// \details \p I's base element bit width must be greater than 1 and less
|
|
/// than or equal 16. Promotion is done by sign or zero extending operands to
|
|
/// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
|
|
///
|
|
/// \returns True.
|
|
bool promoteUniformOpToI32(ICmpInst &I) const;
|
|
|
|
/// Promotes uniform 'select' operation \p I to 32 bit 'select'
|
|
/// operation.
|
|
///
|
|
/// \details \p I's base element bit width must be greater than 1 and less
|
|
/// than or equal 16. Promotion is done by sign or zero extending operands to
|
|
/// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
|
|
/// result of 32 bit 'select' operation back to \p I's original type.
|
|
///
|
|
/// \returns True.
|
|
bool promoteUniformOpToI32(SelectInst &I) const;
|
|
|
|
/// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
|
|
/// intrinsic.
|
|
///
|
|
/// \details \p I's base element bit width must be greater than 1 and less
|
|
/// than or equal 16. Promotion is done by zero extending the operand to 32
|
|
/// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
|
|
/// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
|
|
/// shift amount is 32 minus \p I's base element bit width), and truncating
|
|
/// the result of the shift operation back to \p I's original type.
|
|
///
|
|
/// \returns True.
|
|
bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
|
|
|
|
|
|
unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
|
|
unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
|
|
|
|
/// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
|
|
/// SelectionDAG has an issue where an and asserting the bits are known
|
|
bool replaceMulWithMul24(BinaryOperator &I) const;
|
|
|
|
/// Perform same function as equivalently named function in DAGCombiner. Since
|
|
/// we expand some divisions here, we need to perform this before obscuring.
|
|
bool foldBinOpIntoSelect(BinaryOperator &I) const;
|
|
|
|
bool divHasSpecialOptimization(BinaryOperator &I,
|
|
Value *Num, Value *Den) const;
|
|
int getDivNumBits(BinaryOperator &I,
|
|
Value *Num, Value *Den,
|
|
unsigned AtLeast, bool Signed) const;
|
|
|
|
/// Expands 24 bit div or rem.
|
|
Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
|
|
Value *Num, Value *Den,
|
|
bool IsDiv, bool IsSigned) const;
|
|
|
|
Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
|
|
Value *Num, Value *Den, unsigned NumBits,
|
|
bool IsDiv, bool IsSigned) const;
|
|
|
|
/// Expands 32 bit div or rem.
|
|
Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
|
|
Value *Num, Value *Den) const;
|
|
|
|
Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
|
|
Value *Num, Value *Den) const;
|
|
void expandDivRem64(BinaryOperator &I) const;
|
|
|
|
/// Widen a scalar load.
|
|
///
|
|
/// \details \p Widen scalar load for uniform, small type loads from constant
|
|
// memory / to a full 32-bits and then truncate the input to allow a scalar
|
|
// load instead of a vector load.
|
|
//
|
|
/// \returns True.
|
|
|
|
bool canWidenScalarExtLoad(LoadInst &I) const;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
|
|
|
|
bool visitFDiv(BinaryOperator &I);
|
|
bool visitXor(BinaryOperator &I);
|
|
|
|
bool visitInstruction(Instruction &I) { return false; }
|
|
bool visitBinaryOperator(BinaryOperator &I);
|
|
bool visitLoadInst(LoadInst &I);
|
|
bool visitICmpInst(ICmpInst &I);
|
|
bool visitSelectInst(SelectInst &I);
|
|
|
|
bool visitIntrinsicInst(IntrinsicInst &I);
|
|
bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
|
|
|
|
bool doInitialization(Module &M) override;
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
|
|
|
// FIXME: Division expansion needs to preserve the dominator tree.
|
|
if (!ExpandDiv64InIR)
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
|
|
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
|
|
|
|
if (T->isIntegerTy())
|
|
return T->getIntegerBitWidth();
|
|
return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
|
|
}
|
|
|
|
Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
|
|
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
|
|
|
|
if (T->isIntegerTy())
|
|
return B.getInt32Ty();
|
|
return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
|
|
return I.getOpcode() == Instruction::AShr ||
|
|
I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
|
|
return isa<ICmpInst>(I.getOperand(0)) ?
|
|
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
|
|
if (!Widen16BitOps)
|
|
return false;
|
|
|
|
const IntegerType *IntTy = dyn_cast<IntegerType>(T);
|
|
if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
|
|
return true;
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(T)) {
|
|
// TODO: The set of packed operations is more limited, so may want to
|
|
// promote some anyway.
|
|
if (ST->hasVOP3PInsts())
|
|
return false;
|
|
|
|
return needsPromotionToI32(VT->getElementType());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return true if the op promoted to i32 should have nsw set.
|
|
static bool promotedOpIsNSW(const Instruction &I) {
|
|
switch (I.getOpcode()) {
|
|
case Instruction::Shl:
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
return true;
|
|
case Instruction::Mul:
|
|
return I.hasNoUnsignedWrap();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Return true if the op promoted to i32 should have nuw set.
|
|
static bool promotedOpIsNUW(const Instruction &I) {
|
|
switch (I.getOpcode()) {
|
|
case Instruction::Shl:
|
|
case Instruction::Add:
|
|
case Instruction::Mul:
|
|
return true;
|
|
case Instruction::Sub:
|
|
return I.hasNoUnsignedWrap();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
|
|
Type *Ty = I.getType();
|
|
const DataLayout &DL = Mod->getDataLayout();
|
|
int TySize = DL.getTypeSizeInBits(Ty);
|
|
Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
|
|
|
|
return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
|
|
assert(needsPromotionToI32(I.getType()) &&
|
|
"I does not need promotion to i32");
|
|
|
|
if (I.getOpcode() == Instruction::SDiv ||
|
|
I.getOpcode() == Instruction::UDiv ||
|
|
I.getOpcode() == Instruction::SRem ||
|
|
I.getOpcode() == Instruction::URem)
|
|
return false;
|
|
|
|
IRBuilder<> Builder(&I);
|
|
Builder.SetCurrentDebugLocation(I.getDebugLoc());
|
|
|
|
Type *I32Ty = getI32Ty(Builder, I.getType());
|
|
Value *ExtOp0 = nullptr;
|
|
Value *ExtOp1 = nullptr;
|
|
Value *ExtRes = nullptr;
|
|
Value *TruncRes = nullptr;
|
|
|
|
if (isSigned(I)) {
|
|
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
|
|
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
|
|
} else {
|
|
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
|
|
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
|
|
}
|
|
|
|
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
|
|
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
|
|
if (promotedOpIsNSW(cast<Instruction>(I)))
|
|
Inst->setHasNoSignedWrap();
|
|
|
|
if (promotedOpIsNUW(cast<Instruction>(I)))
|
|
Inst->setHasNoUnsignedWrap();
|
|
|
|
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
|
|
Inst->setIsExact(ExactOp->isExact());
|
|
}
|
|
|
|
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
|
|
|
|
I.replaceAllUsesWith(TruncRes);
|
|
I.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
|
|
assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
|
|
"I does not need promotion to i32");
|
|
|
|
IRBuilder<> Builder(&I);
|
|
Builder.SetCurrentDebugLocation(I.getDebugLoc());
|
|
|
|
Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
|
|
Value *ExtOp0 = nullptr;
|
|
Value *ExtOp1 = nullptr;
|
|
Value *NewICmp = nullptr;
|
|
|
|
if (I.isSigned()) {
|
|
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
|
|
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
|
|
} else {
|
|
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
|
|
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
|
|
}
|
|
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
|
|
|
|
I.replaceAllUsesWith(NewICmp);
|
|
I.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
|
|
assert(needsPromotionToI32(I.getType()) &&
|
|
"I does not need promotion to i32");
|
|
|
|
IRBuilder<> Builder(&I);
|
|
Builder.SetCurrentDebugLocation(I.getDebugLoc());
|
|
|
|
Type *I32Ty = getI32Ty(Builder, I.getType());
|
|
Value *ExtOp1 = nullptr;
|
|
Value *ExtOp2 = nullptr;
|
|
Value *ExtRes = nullptr;
|
|
Value *TruncRes = nullptr;
|
|
|
|
if (isSigned(I)) {
|
|
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
|
|
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
|
|
} else {
|
|
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
|
|
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
|
|
}
|
|
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
|
|
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
|
|
|
|
I.replaceAllUsesWith(TruncRes);
|
|
I.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
|
|
IntrinsicInst &I) const {
|
|
assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
|
|
"I must be bitreverse intrinsic");
|
|
assert(needsPromotionToI32(I.getType()) &&
|
|
"I does not need promotion to i32");
|
|
|
|
IRBuilder<> Builder(&I);
|
|
Builder.SetCurrentDebugLocation(I.getDebugLoc());
|
|
|
|
Type *I32Ty = getI32Ty(Builder, I.getType());
|
|
Function *I32 =
|
|
Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
|
|
Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
|
|
Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
|
|
Value *LShrOp =
|
|
Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
|
|
Value *TruncRes =
|
|
Builder.CreateTrunc(LShrOp, I.getType());
|
|
|
|
I.replaceAllUsesWith(TruncRes);
|
|
I.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
|
|
unsigned ScalarSize) const {
|
|
KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
|
|
return ScalarSize - Known.countMinLeadingZeros();
|
|
}
|
|
|
|
unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
|
|
unsigned ScalarSize) const {
|
|
// In order for this to be a signed 24-bit value, bit 23, must
|
|
// be a sign bit.
|
|
return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
|
|
}
|
|
|
|
static void extractValues(IRBuilder<> &Builder,
|
|
SmallVectorImpl<Value *> &Values, Value *V) {
|
|
auto *VT = dyn_cast<FixedVectorType>(V->getType());
|
|
if (!VT) {
|
|
Values.push_back(V);
|
|
return;
|
|
}
|
|
|
|
for (int I = 0, E = VT->getNumElements(); I != E; ++I)
|
|
Values.push_back(Builder.CreateExtractElement(V, I));
|
|
}
|
|
|
|
static Value *insertValues(IRBuilder<> &Builder,
|
|
Type *Ty,
|
|
SmallVectorImpl<Value *> &Values) {
|
|
if (Values.size() == 1)
|
|
return Values[0];
|
|
|
|
Value *NewVal = UndefValue::get(Ty);
|
|
for (int I = 0, E = Values.size(); I != E; ++I)
|
|
NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
|
|
|
|
return NewVal;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
|
|
if (I.getOpcode() != Instruction::Mul)
|
|
return false;
|
|
|
|
Type *Ty = I.getType();
|
|
unsigned Size = Ty->getScalarSizeInBits();
|
|
if (Size <= 16 && ST->has16BitInsts())
|
|
return false;
|
|
|
|
// Prefer scalar if this could be s_mul_i32
|
|
if (DA->isUniform(&I))
|
|
return false;
|
|
|
|
Value *LHS = I.getOperand(0);
|
|
Value *RHS = I.getOperand(1);
|
|
IRBuilder<> Builder(&I);
|
|
Builder.SetCurrentDebugLocation(I.getDebugLoc());
|
|
|
|
Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
|
|
|
|
unsigned LHSBits = 0, RHSBits = 0;
|
|
|
|
if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS, Size)) <= 24 &&
|
|
(RHSBits = numBitsUnsigned(RHS, Size)) <= 24) {
|
|
// The mul24 instruction yields the low-order 32 bits. If the original
|
|
// result and the destination is wider than 32 bits, the mul24 would
|
|
// truncate the result.
|
|
if (Size > 32 && LHSBits + RHSBits > 32)
|
|
return false;
|
|
|
|
IntrID = Intrinsic::amdgcn_mul_u24;
|
|
} else if (ST->hasMulI24() &&
|
|
(LHSBits = numBitsSigned(LHS, Size)) < 24 &&
|
|
(RHSBits = numBitsSigned(RHS, Size)) < 24) {
|
|
// The original result is positive if its destination is wider than 32 bits
|
|
// and its highest set bit is at bit 31. Generating mul24 and sign-extending
|
|
// it would yield a negative value.
|
|
if (Size > 32 && LHSBits + RHSBits > 30)
|
|
return false;
|
|
|
|
IntrID = Intrinsic::amdgcn_mul_i24;
|
|
} else
|
|
return false;
|
|
|
|
SmallVector<Value *, 4> LHSVals;
|
|
SmallVector<Value *, 4> RHSVals;
|
|
SmallVector<Value *, 4> ResultVals;
|
|
extractValues(Builder, LHSVals, LHS);
|
|
extractValues(Builder, RHSVals, RHS);
|
|
|
|
|
|
IntegerType *I32Ty = Builder.getInt32Ty();
|
|
FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
|
|
for (int I = 0, E = LHSVals.size(); I != E; ++I) {
|
|
Value *LHS, *RHS;
|
|
if (IntrID == Intrinsic::amdgcn_mul_u24) {
|
|
LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
|
|
RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
|
|
} else {
|
|
LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
|
|
RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
|
|
}
|
|
|
|
Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
|
|
|
|
if (IntrID == Intrinsic::amdgcn_mul_u24) {
|
|
ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
|
|
LHSVals[I]->getType()));
|
|
} else {
|
|
ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
|
|
LHSVals[I]->getType()));
|
|
}
|
|
}
|
|
|
|
Value *NewVal = insertValues(Builder, Ty, ResultVals);
|
|
NewVal->takeName(&I);
|
|
I.replaceAllUsesWith(NewVal);
|
|
I.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Find a select instruction, which may have been casted. This is mostly to deal
|
|
// with cases where i16 selects were promoted here to i32.
|
|
static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
|
|
Cast = nullptr;
|
|
if (SelectInst *Sel = dyn_cast<SelectInst>(V))
|
|
return Sel;
|
|
|
|
if ((Cast = dyn_cast<CastInst>(V))) {
|
|
if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
|
|
return Sel;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
|
|
// Don't do this unless the old select is going away. We want to eliminate the
|
|
// binary operator, not replace a binop with a select.
|
|
int SelOpNo = 0;
|
|
|
|
CastInst *CastOp;
|
|
|
|
// TODO: Should probably try to handle some cases with multiple
|
|
// users. Duplicating the select may be profitable for division.
|
|
SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
|
|
if (!Sel || !Sel->hasOneUse()) {
|
|
SelOpNo = 1;
|
|
Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
|
|
}
|
|
|
|
if (!Sel || !Sel->hasOneUse())
|
|
return false;
|
|
|
|
Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
|
|
Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
|
|
Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
|
|
if (!CBO || !CT || !CF)
|
|
return false;
|
|
|
|
if (CastOp) {
|
|
if (!CastOp->hasOneUse())
|
|
return false;
|
|
CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
|
|
CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
|
|
}
|
|
|
|
// TODO: Handle special 0/-1 cases DAG combine does, although we only really
|
|
// need to handle divisions here.
|
|
Constant *FoldedT = SelOpNo ?
|
|
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
|
|
ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
|
|
if (isa<ConstantExpr>(FoldedT))
|
|
return false;
|
|
|
|
Constant *FoldedF = SelOpNo ?
|
|
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
|
|
ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
|
|
if (isa<ConstantExpr>(FoldedF))
|
|
return false;
|
|
|
|
IRBuilder<> Builder(&BO);
|
|
Builder.SetCurrentDebugLocation(BO.getDebugLoc());
|
|
if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
|
|
Builder.setFastMathFlags(FPOp->getFastMathFlags());
|
|
|
|
Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
|
|
FoldedT, FoldedF);
|
|
NewSelect->takeName(&BO);
|
|
BO.replaceAllUsesWith(NewSelect);
|
|
BO.eraseFromParent();
|
|
if (CastOp)
|
|
CastOp->eraseFromParent();
|
|
Sel->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Optimize fdiv with rcp:
|
|
//
|
|
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
|
|
// allowed with unsafe-fp-math or afn.
|
|
//
|
|
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
|
|
static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
|
|
bool RcpIsAccurate, IRBuilder<> &Builder,
|
|
Module *Mod) {
|
|
|
|
if (!AllowInaccurateRcp && !RcpIsAccurate)
|
|
return nullptr;
|
|
|
|
Type *Ty = Den->getType();
|
|
if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
|
|
if (AllowInaccurateRcp || RcpIsAccurate) {
|
|
if (CLHS->isExactlyValue(1.0)) {
|
|
Function *Decl = Intrinsic::getDeclaration(
|
|
Mod, Intrinsic::amdgcn_rcp, Ty);
|
|
|
|
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
|
|
// the CI documentation has a worst case error of 1 ulp.
|
|
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
|
|
// use it as long as we aren't trying to use denormals.
|
|
//
|
|
// v_rcp_f16 and v_rsq_f16 DO support denormals.
|
|
|
|
// NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
|
|
// insert rsq intrinsic here.
|
|
|
|
// 1.0 / x -> rcp(x)
|
|
return Builder.CreateCall(Decl, { Den });
|
|
}
|
|
|
|
// Same as for 1.0, but expand the sign out of the constant.
|
|
if (CLHS->isExactlyValue(-1.0)) {
|
|
Function *Decl = Intrinsic::getDeclaration(
|
|
Mod, Intrinsic::amdgcn_rcp, Ty);
|
|
|
|
// -1.0 / x -> rcp (fneg x)
|
|
Value *FNeg = Builder.CreateFNeg(Den);
|
|
return Builder.CreateCall(Decl, { FNeg });
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AllowInaccurateRcp) {
|
|
Function *Decl = Intrinsic::getDeclaration(
|
|
Mod, Intrinsic::amdgcn_rcp, Ty);
|
|
|
|
// Turn into multiply by the reciprocal.
|
|
// x / y -> x * (1.0 / y)
|
|
Value *Recip = Builder.CreateCall(Decl, { Den });
|
|
return Builder.CreateFMul(Num, Recip);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// optimize with fdiv.fast:
|
|
//
|
|
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
|
|
//
|
|
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
|
|
//
|
|
// NOTE: optimizeWithRcp should be tried first because rcp is the preference.
|
|
static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
|
|
bool HasDenormals, IRBuilder<> &Builder,
|
|
Module *Mod) {
|
|
// fdiv.fast can achieve 2.5 ULP accuracy.
|
|
if (ReqdAccuracy < 2.5f)
|
|
return nullptr;
|
|
|
|
// Only have fdiv.fast for f32.
|
|
Type *Ty = Den->getType();
|
|
if (!Ty->isFloatTy())
|
|
return nullptr;
|
|
|
|
bool NumIsOne = false;
|
|
if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
|
|
if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
|
|
NumIsOne = true;
|
|
}
|
|
|
|
// fdiv does not support denormals. But 1.0/x is always fine to use it.
|
|
if (HasDenormals && !NumIsOne)
|
|
return nullptr;
|
|
|
|
Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
|
|
return Builder.CreateCall(Decl, { Num, Den });
|
|
}
|
|
|
|
// Optimizations is performed based on fpmath, fast math flags as well as
|
|
// denormals to optimize fdiv with either rcp or fdiv.fast.
|
|
//
|
|
// With rcp:
|
|
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
|
|
// allowed with unsafe-fp-math or afn.
|
|
//
|
|
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
|
|
//
|
|
// With fdiv.fast:
|
|
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
|
|
//
|
|
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
|
|
//
|
|
// NOTE: rcp is the preference in cases that both are legal.
|
|
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
|
|
|
|
Type *Ty = FDiv.getType()->getScalarType();
|
|
|
|
// The f64 rcp/rsq approximations are pretty inaccurate. We can do an
|
|
// expansion around them in codegen.
|
|
if (Ty->isDoubleTy())
|
|
return false;
|
|
|
|
// No intrinsic for fdiv16 if target does not support f16.
|
|
if (Ty->isHalfTy() && !ST->has16BitInsts())
|
|
return false;
|
|
|
|
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
|
|
const float ReqdAccuracy = FPOp->getFPAccuracy();
|
|
|
|
// Inaccurate rcp is allowed with unsafe-fp-math or afn.
|
|
FastMathFlags FMF = FPOp->getFastMathFlags();
|
|
const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
|
|
|
|
// rcp_f16 is accurate for !fpmath >= 1.0ulp.
|
|
// rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
|
|
// rcp_f64 is never accurate.
|
|
const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
|
|
(Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
|
|
|
|
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
|
|
Builder.setFastMathFlags(FMF);
|
|
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
|
|
|
|
Value *Num = FDiv.getOperand(0);
|
|
Value *Den = FDiv.getOperand(1);
|
|
|
|
Value *NewFDiv = nullptr;
|
|
if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
|
|
NewFDiv = UndefValue::get(VT);
|
|
|
|
// FIXME: Doesn't do the right thing for cases where the vector is partially
|
|
// constant. This works when the scalarizer pass is run first.
|
|
for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
|
|
Value *NumEltI = Builder.CreateExtractElement(Num, I);
|
|
Value *DenEltI = Builder.CreateExtractElement(Den, I);
|
|
// Try rcp first.
|
|
Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
|
|
RcpIsAccurate, Builder, Mod);
|
|
if (!NewElt) // Try fdiv.fast.
|
|
NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
|
|
HasFP32Denormals, Builder, Mod);
|
|
if (!NewElt) // Keep the original.
|
|
NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
|
|
|
|
NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
|
|
}
|
|
} else { // Scalar FDiv.
|
|
// Try rcp first.
|
|
NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
|
|
Builder, Mod);
|
|
if (!NewFDiv) { // Try fdiv.fast.
|
|
NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
|
|
Builder, Mod);
|
|
}
|
|
}
|
|
|
|
if (NewFDiv) {
|
|
FDiv.replaceAllUsesWith(NewFDiv);
|
|
NewFDiv->takeName(&FDiv);
|
|
FDiv.eraseFromParent();
|
|
}
|
|
|
|
return !!NewFDiv;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) {
|
|
// Match the Xor instruction, its type and its operands
|
|
IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0));
|
|
ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1));
|
|
if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1)
|
|
return visitBinaryOperator(I);
|
|
|
|
// Check if the Call is an intrinsic instruction to amdgcn_class intrinsic
|
|
// has only one use
|
|
if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class ||
|
|
!IntrinsicCall->hasOneUse())
|
|
return visitBinaryOperator(I);
|
|
|
|
// "Not" the second argument of the intrinsic call
|
|
ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1));
|
|
if (!Arg)
|
|
return visitBinaryOperator(I);
|
|
|
|
IntrinsicCall->setOperand(
|
|
1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff));
|
|
I.replaceAllUsesWith(IntrinsicCall);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
static bool hasUnsafeFPMath(const Function &F) {
|
|
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
|
|
return Attr.getValueAsBool();
|
|
}
|
|
|
|
static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
|
|
Value *LHS, Value *RHS) {
|
|
Type *I32Ty = Builder.getInt32Ty();
|
|
Type *I64Ty = Builder.getInt64Ty();
|
|
|
|
Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
|
|
Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
|
|
Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
|
|
Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
|
|
Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
|
|
Hi = Builder.CreateTrunc(Hi, I32Ty);
|
|
return std::make_pair(Lo, Hi);
|
|
}
|
|
|
|
static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
|
|
return getMul64(Builder, LHS, RHS).second;
|
|
}
|
|
|
|
/// Figure out how many bits are really needed for this ddivision. \p AtLeast is
|
|
/// an optimization hint to bypass the second ComputeNumSignBits call if we the
|
|
/// first one is insufficient. Returns -1 on failure.
|
|
int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
|
|
Value *Num, Value *Den,
|
|
unsigned AtLeast, bool IsSigned) const {
|
|
const DataLayout &DL = Mod->getDataLayout();
|
|
unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
|
|
if (LHSSignBits < AtLeast)
|
|
return -1;
|
|
|
|
unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
|
|
if (RHSSignBits < AtLeast)
|
|
return -1;
|
|
|
|
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
|
|
unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
|
|
if (IsSigned)
|
|
++DivBits;
|
|
return DivBits;
|
|
}
|
|
|
|
// The fractional part of a float is enough to accurately represent up to
|
|
// a 24-bit signed integer.
|
|
Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
|
|
BinaryOperator &I,
|
|
Value *Num, Value *Den,
|
|
bool IsDiv, bool IsSigned) const {
|
|
int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
|
|
if (DivBits == -1)
|
|
return nullptr;
|
|
return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
|
|
}
|
|
|
|
Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
|
|
BinaryOperator &I,
|
|
Value *Num, Value *Den,
|
|
unsigned DivBits,
|
|
bool IsDiv, bool IsSigned) const {
|
|
Type *I32Ty = Builder.getInt32Ty();
|
|
Num = Builder.CreateTrunc(Num, I32Ty);
|
|
Den = Builder.CreateTrunc(Den, I32Ty);
|
|
|
|
Type *F32Ty = Builder.getFloatTy();
|
|
ConstantInt *One = Builder.getInt32(1);
|
|
Value *JQ = One;
|
|
|
|
if (IsSigned) {
|
|
// char|short jq = ia ^ ib;
|
|
JQ = Builder.CreateXor(Num, Den);
|
|
|
|
// jq = jq >> (bitsize - 2)
|
|
JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
|
|
|
|
// jq = jq | 0x1
|
|
JQ = Builder.CreateOr(JQ, One);
|
|
}
|
|
|
|
// int ia = (int)LHS;
|
|
Value *IA = Num;
|
|
|
|
// int ib, (int)RHS;
|
|
Value *IB = Den;
|
|
|
|
// float fa = (float)ia;
|
|
Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
|
|
: Builder.CreateUIToFP(IA, F32Ty);
|
|
|
|
// float fb = (float)ib;
|
|
Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
|
|
: Builder.CreateUIToFP(IB,F32Ty);
|
|
|
|
Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
|
|
Builder.getFloatTy());
|
|
Value *RCP = Builder.CreateCall(RcpDecl, { FB });
|
|
Value *FQM = Builder.CreateFMul(FA, RCP);
|
|
|
|
// fq = trunc(fqm);
|
|
CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
|
|
FQ->copyFastMathFlags(Builder.getFastMathFlags());
|
|
|
|
// float fqneg = -fq;
|
|
Value *FQNeg = Builder.CreateFNeg(FQ);
|
|
|
|
// float fr = mad(fqneg, fb, fa);
|
|
auto FMAD = !ST->hasMadMacF32Insts()
|
|
? Intrinsic::fma
|
|
: (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
|
|
Value *FR = Builder.CreateIntrinsic(FMAD,
|
|
{FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
|
|
|
|
// int iq = (int)fq;
|
|
Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
|
|
: Builder.CreateFPToUI(FQ, I32Ty);
|
|
|
|
// fr = fabs(fr);
|
|
FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
|
|
|
|
// fb = fabs(fb);
|
|
FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
|
|
|
|
// int cv = fr >= fb;
|
|
Value *CV = Builder.CreateFCmpOGE(FR, FB);
|
|
|
|
// jq = (cv ? jq : 0);
|
|
JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
|
|
|
|
// dst = iq + jq;
|
|
Value *Div = Builder.CreateAdd(IQ, JQ);
|
|
|
|
Value *Res = Div;
|
|
if (!IsDiv) {
|
|
// Rem needs compensation, it's easier to recompute it
|
|
Value *Rem = Builder.CreateMul(Div, Den);
|
|
Res = Builder.CreateSub(Num, Rem);
|
|
}
|
|
|
|
if (DivBits != 0 && DivBits < 32) {
|
|
// Extend in register from the number of bits this divide really is.
|
|
if (IsSigned) {
|
|
int InRegBits = 32 - DivBits;
|
|
|
|
Res = Builder.CreateShl(Res, InRegBits);
|
|
Res = Builder.CreateAShr(Res, InRegBits);
|
|
} else {
|
|
ConstantInt *TruncMask
|
|
= Builder.getInt32((UINT64_C(1) << DivBits) - 1);
|
|
Res = Builder.CreateAnd(Res, TruncMask);
|
|
}
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
// Try to recognize special cases the DAG will emit special, better expansions
|
|
// than the general expansion we do here.
|
|
|
|
// TODO: It would be better to just directly handle those optimizations here.
|
|
bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
|
|
BinaryOperator &I, Value *Num, Value *Den) const {
|
|
if (Constant *C = dyn_cast<Constant>(Den)) {
|
|
// Arbitrary constants get a better expansion as long as a wider mulhi is
|
|
// legal.
|
|
if (C->getType()->getScalarSizeInBits() <= 32)
|
|
return true;
|
|
|
|
// TODO: Sdiv check for not exact for some reason.
|
|
|
|
// If there's no wider mulhi, there's only a better expansion for powers of
|
|
// two.
|
|
// TODO: Should really know for each vector element.
|
|
if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
|
|
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
|
|
if (BinOpDen->getOpcode() == Instruction::Shl &&
|
|
isa<Constant>(BinOpDen->getOperand(0)) &&
|
|
isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
|
|
0, AC, &I, DT)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
|
|
// Check whether the sign can be determined statically.
|
|
KnownBits Known = computeKnownBits(V, *DL);
|
|
if (Known.isNegative())
|
|
return Constant::getAllOnesValue(V->getType());
|
|
if (Known.isNonNegative())
|
|
return Constant::getNullValue(V->getType());
|
|
return Builder.CreateAShr(V, Builder.getInt32(31));
|
|
}
|
|
|
|
Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
|
|
BinaryOperator &I, Value *X,
|
|
Value *Y) const {
|
|
Instruction::BinaryOps Opc = I.getOpcode();
|
|
assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
|
|
Opc == Instruction::SRem || Opc == Instruction::SDiv);
|
|
|
|
FastMathFlags FMF;
|
|
FMF.setFast();
|
|
Builder.setFastMathFlags(FMF);
|
|
|
|
if (divHasSpecialOptimization(I, X, Y))
|
|
return nullptr; // Keep it for later optimization.
|
|
|
|
bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
|
|
bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
|
|
|
|
Type *Ty = X->getType();
|
|
Type *I32Ty = Builder.getInt32Ty();
|
|
Type *F32Ty = Builder.getFloatTy();
|
|
|
|
if (Ty->getScalarSizeInBits() < 32) {
|
|
if (IsSigned) {
|
|
X = Builder.CreateSExt(X, I32Ty);
|
|
Y = Builder.CreateSExt(Y, I32Ty);
|
|
} else {
|
|
X = Builder.CreateZExt(X, I32Ty);
|
|
Y = Builder.CreateZExt(Y, I32Ty);
|
|
}
|
|
}
|
|
|
|
if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
|
|
return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
|
|
Builder.CreateZExtOrTrunc(Res, Ty);
|
|
}
|
|
|
|
ConstantInt *Zero = Builder.getInt32(0);
|
|
ConstantInt *One = Builder.getInt32(1);
|
|
|
|
Value *Sign = nullptr;
|
|
if (IsSigned) {
|
|
Value *SignX = getSign32(X, Builder, DL);
|
|
Value *SignY = getSign32(Y, Builder, DL);
|
|
// Remainder sign is the same as LHS
|
|
Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
|
|
|
|
X = Builder.CreateAdd(X, SignX);
|
|
Y = Builder.CreateAdd(Y, SignY);
|
|
|
|
X = Builder.CreateXor(X, SignX);
|
|
Y = Builder.CreateXor(Y, SignY);
|
|
}
|
|
|
|
// The algorithm here is based on ideas from "Software Integer Division", Tom
|
|
// Rodeheffer, August 2008.
|
|
//
|
|
// unsigned udiv(unsigned x, unsigned y) {
|
|
// // Initial estimate of inv(y). The constant is less than 2^32 to ensure
|
|
// // that this is a lower bound on inv(y), even if some of the calculations
|
|
// // round up.
|
|
// unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
|
|
//
|
|
// // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
|
|
// // Empirically this is guaranteed to give a "two-y" lower bound on
|
|
// // inv(y).
|
|
// z += umulh(z, -y * z);
|
|
//
|
|
// // Quotient/remainder estimate.
|
|
// unsigned q = umulh(x, z);
|
|
// unsigned r = x - q * y;
|
|
//
|
|
// // Two rounds of quotient/remainder refinement.
|
|
// if (r >= y) {
|
|
// ++q;
|
|
// r -= y;
|
|
// }
|
|
// if (r >= y) {
|
|
// ++q;
|
|
// r -= y;
|
|
// }
|
|
//
|
|
// return q;
|
|
// }
|
|
|
|
// Initial estimate of inv(y).
|
|
Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
|
|
Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
|
|
Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
|
|
Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
|
|
Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
|
|
Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
|
|
|
|
// One round of UNR.
|
|
Value *NegY = Builder.CreateSub(Zero, Y);
|
|
Value *NegYZ = Builder.CreateMul(NegY, Z);
|
|
Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
|
|
|
|
// Quotient/remainder estimate.
|
|
Value *Q = getMulHu(Builder, X, Z);
|
|
Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
|
|
|
|
// First quotient/remainder refinement.
|
|
Value *Cond = Builder.CreateICmpUGE(R, Y);
|
|
if (IsDiv)
|
|
Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
|
|
R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
|
|
|
|
// Second quotient/remainder refinement.
|
|
Cond = Builder.CreateICmpUGE(R, Y);
|
|
Value *Res;
|
|
if (IsDiv)
|
|
Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
|
|
else
|
|
Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
|
|
|
|
if (IsSigned) {
|
|
Res = Builder.CreateXor(Res, Sign);
|
|
Res = Builder.CreateSub(Res, Sign);
|
|
}
|
|
|
|
Res = Builder.CreateTrunc(Res, Ty);
|
|
|
|
return Res;
|
|
}
|
|
|
|
Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
|
|
BinaryOperator &I,
|
|
Value *Num, Value *Den) const {
|
|
if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
|
|
return nullptr; // Keep it for later optimization.
|
|
|
|
Instruction::BinaryOps Opc = I.getOpcode();
|
|
|
|
bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
|
|
bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
|
|
|
|
int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
|
|
if (NumDivBits == -1)
|
|
return nullptr;
|
|
|
|
Value *Narrowed = nullptr;
|
|
if (NumDivBits <= 24) {
|
|
Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
|
|
IsDiv, IsSigned);
|
|
} else if (NumDivBits <= 32) {
|
|
Narrowed = expandDivRem32(Builder, I, Num, Den);
|
|
}
|
|
|
|
if (Narrowed) {
|
|
return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
|
|
Builder.CreateZExt(Narrowed, Num->getType());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
|
|
Instruction::BinaryOps Opc = I.getOpcode();
|
|
// Do the general expansion.
|
|
if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
|
|
expandDivisionUpTo64Bits(&I);
|
|
return;
|
|
}
|
|
|
|
if (Opc == Instruction::URem || Opc == Instruction::SRem) {
|
|
expandRemainderUpTo64Bits(&I);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("not a division");
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
|
|
if (foldBinOpIntoSelect(I))
|
|
return true;
|
|
|
|
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
|
|
DA->isUniform(&I) && promoteUniformOpToI32(I))
|
|
return true;
|
|
|
|
if (UseMul24Intrin && replaceMulWithMul24(I))
|
|
return true;
|
|
|
|
bool Changed = false;
|
|
Instruction::BinaryOps Opc = I.getOpcode();
|
|
Type *Ty = I.getType();
|
|
Value *NewDiv = nullptr;
|
|
unsigned ScalarSize = Ty->getScalarSizeInBits();
|
|
|
|
SmallVector<BinaryOperator *, 8> Div64ToExpand;
|
|
|
|
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
|
|
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
|
|
ScalarSize <= 64 &&
|
|
!DisableIDivExpand) {
|
|
Value *Num = I.getOperand(0);
|
|
Value *Den = I.getOperand(1);
|
|
IRBuilder<> Builder(&I);
|
|
Builder.SetCurrentDebugLocation(I.getDebugLoc());
|
|
|
|
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
|
|
NewDiv = UndefValue::get(VT);
|
|
|
|
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
|
|
Value *NumEltN = Builder.CreateExtractElement(Num, N);
|
|
Value *DenEltN = Builder.CreateExtractElement(Den, N);
|
|
|
|
Value *NewElt;
|
|
if (ScalarSize <= 32) {
|
|
NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
|
|
if (!NewElt)
|
|
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
|
|
} else {
|
|
// See if this 64-bit division can be shrunk to 32/24-bits before
|
|
// producing the general expansion.
|
|
NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
|
|
if (!NewElt) {
|
|
// The general 64-bit expansion introduces control flow and doesn't
|
|
// return the new value. Just insert a scalar copy and defer
|
|
// expanding it.
|
|
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
|
|
Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
|
|
}
|
|
}
|
|
|
|
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
|
|
}
|
|
} else {
|
|
if (ScalarSize <= 32)
|
|
NewDiv = expandDivRem32(Builder, I, Num, Den);
|
|
else {
|
|
NewDiv = shrinkDivRem64(Builder, I, Num, Den);
|
|
if (!NewDiv)
|
|
Div64ToExpand.push_back(&I);
|
|
}
|
|
}
|
|
|
|
if (NewDiv) {
|
|
I.replaceAllUsesWith(NewDiv);
|
|
I.eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (ExpandDiv64InIR) {
|
|
// TODO: We get much worse code in specially handled constant cases.
|
|
for (BinaryOperator *Div : Div64ToExpand) {
|
|
expandDivRem64(*Div);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
|
|
if (!WidenLoads)
|
|
return false;
|
|
|
|
if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
|
|
I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
|
|
canWidenScalarExtLoad(I)) {
|
|
IRBuilder<> Builder(&I);
|
|
Builder.SetCurrentDebugLocation(I.getDebugLoc());
|
|
|
|
Type *I32Ty = Builder.getInt32Ty();
|
|
Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
|
|
Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
|
|
LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
|
|
WidenLoad->copyMetadata(I);
|
|
|
|
// If we have range metadata, we need to convert the type, and not make
|
|
// assumptions about the high bits.
|
|
if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
|
|
ConstantInt *Lower =
|
|
mdconst::extract<ConstantInt>(Range->getOperand(0));
|
|
|
|
if (Lower->isNullValue()) {
|
|
WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
|
|
} else {
|
|
Metadata *LowAndHigh[] = {
|
|
ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
|
|
// Don't make assumptions about the high bits.
|
|
ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
|
|
};
|
|
|
|
WidenLoad->setMetadata(LLVMContext::MD_range,
|
|
MDNode::get(Mod->getContext(), LowAndHigh));
|
|
}
|
|
}
|
|
|
|
int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
|
|
Type *IntNTy = Builder.getIntNTy(TySize);
|
|
Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
|
|
Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
|
|
I.replaceAllUsesWith(ValOrig);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
|
|
bool Changed = false;
|
|
|
|
if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
|
|
DA->isUniform(&I))
|
|
Changed |= promoteUniformOpToI32(I);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
|
|
bool Changed = false;
|
|
|
|
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
|
|
DA->isUniform(&I))
|
|
Changed |= promoteUniformOpToI32(I);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
|
|
switch (I.getIntrinsicID()) {
|
|
case Intrinsic::bitreverse:
|
|
return visitBitreverseIntrinsicInst(I);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
|
|
bool Changed = false;
|
|
|
|
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
|
|
DA->isUniform(&I))
|
|
Changed |= promoteUniformBitreverseToI32(I);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
|
|
Mod = &M;
|
|
DL = &Mod->getDataLayout();
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
|
|
if (!TPC)
|
|
return false;
|
|
|
|
const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
|
|
ST = &TM.getSubtarget<GCNSubtarget>(F);
|
|
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
DA = &getAnalysis<LegacyDivergenceAnalysis>();
|
|
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
|
|
HasUnsafeFPMath = hasUnsafeFPMath(F);
|
|
|
|
AMDGPU::SIModeRegisterDefaults Mode(F);
|
|
HasFP32Denormals = Mode.allFP32Denormals();
|
|
|
|
bool MadeChange = false;
|
|
|
|
Function::iterator NextBB;
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
|
|
BasicBlock *BB = &*FI;
|
|
NextBB = std::next(FI);
|
|
|
|
BasicBlock::iterator Next;
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
|
|
Next = std::next(I);
|
|
|
|
MadeChange |= visit(*I);
|
|
|
|
if (Next != E) { // Control flow changed
|
|
BasicBlock *NextInstBB = Next->getParent();
|
|
if (NextInstBB != BB) {
|
|
BB = NextInstBB;
|
|
E = BB->end();
|
|
FE = F.end();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
|
|
"AMDGPU IR optimizations", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
|
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
|
|
false, false)
|
|
|
|
char AMDGPUCodeGenPrepare::ID = 0;
|
|
|
|
FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
|
|
return new AMDGPUCodeGenPrepare();
|
|
}
|