llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp

1143 lines
44 KiB
C++

//===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
/// code. When passed an MCAsmStreamer it prints assembly and when passed
/// an MCObjectStreamer it outputs binary code.
//
//===----------------------------------------------------------------------===//
//
#include "AMDGPUAsmPrinter.h"
#include "AMDGPU.h"
#include "AMDGPUHSAMetadataStreamer.h"
#include "AMDGPUResourceUsageAnalysis.h"
#include "AMDKernelCodeT.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUInstPrinter.h"
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
#include "R600AsmPrinter.h"
#include "SIMachineFunctionInfo.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
using namespace llvm::AMDGPU;
// This should get the default rounding mode from the kernel. We just set the
// default here, but this could change if the OpenCL rounding mode pragmas are
// used.
//
// The denormal mode here should match what is reported by the OpenCL runtime
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
//
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
// precision, and leaves single precision to flush all and does not report
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
// CL_FP_DENORM for both.
//
// FIXME: It seems some instructions do not support single precision denormals
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
// and sin_f32, cos_f32 on most parts).
// We want to use these instructions, and using fp32 denormals also causes
// instructions to run at the double precision rate for the device so it's
// probably best to just report no single precision denormals.
static uint32_t getFPMode(AMDGPU::SIModeRegisterDefaults Mode) {
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
FP_DENORM_MODE_SP(Mode.fpDenormModeSPValue()) |
FP_DENORM_MODE_DP(Mode.fpDenormModeDPValue());
}
static AsmPrinter *
createAMDGPUAsmPrinterPass(TargetMachine &tm,
std::unique_ptr<MCStreamer> &&Streamer) {
return new AMDGPUAsmPrinter(tm, std::move(Streamer));
}
extern "C" void LLVM_EXTERNAL_VISIBILITY LLVMInitializeAMDGPUAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(),
llvm::createR600AsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(),
createAMDGPUAsmPrinterPass);
}
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)) {
if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
if (isHsaAbiVersion2(getGlobalSTI())) {
HSAMetadataStream.reset(new HSAMD::MetadataStreamerV2());
} else if (isHsaAbiVersion3(getGlobalSTI())) {
HSAMetadataStream.reset(new HSAMD::MetadataStreamerV3());
} else {
HSAMetadataStream.reset(new HSAMD::MetadataStreamerV4());
}
}
}
StringRef AMDGPUAsmPrinter::getPassName() const {
return "AMDGPU Assembly Printer";
}
const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const {
return TM.getMCSubtargetInfo();
}
AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const {
if (!OutStreamer)
return nullptr;
return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer());
}
void AMDGPUAsmPrinter::emitStartOfAsmFile(Module &M) {
// TODO: Which one is called first, emitStartOfAsmFile or
// emitFunctionBodyStart?
if (getTargetStreamer() && !getTargetStreamer()->getTargetID())
initializeTargetID(M);
if (TM.getTargetTriple().getOS() != Triple::AMDHSA &&
TM.getTargetTriple().getOS() != Triple::AMDPAL)
return;
if (isHsaAbiVersion3Or4(getGlobalSTI()))
getTargetStreamer()->EmitDirectiveAMDGCNTarget();
if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
HSAMetadataStream->begin(M, *getTargetStreamer()->getTargetID());
if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
getTargetStreamer()->getPALMetadata()->readFromIR(M);
if (isHsaAbiVersion3Or4(getGlobalSTI()))
return;
// HSA emits NT_AMD_HSA_CODE_OBJECT_VERSION for code objects v2.
if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1);
// HSA and PAL emit NT_AMD_HSA_ISA_VERSION for code objects v2.
IsaVersion Version = getIsaVersion(getGlobalSTI()->getCPU());
getTargetStreamer()->EmitDirectiveHSACodeObjectISAV2(
Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU");
}
void AMDGPUAsmPrinter::emitEndOfAsmFile(Module &M) {
// Following code requires TargetStreamer to be present.
if (!getTargetStreamer())
return;
if (TM.getTargetTriple().getOS() != Triple::AMDHSA ||
isHsaAbiVersion2(getGlobalSTI()))
getTargetStreamer()->EmitISAVersion();
// Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA).
// Emit HSA Metadata (NT_AMD_HSA_METADATA).
if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
HSAMetadataStream->end();
bool Success = HSAMetadataStream->emitTo(*getTargetStreamer());
(void)Success;
assert(Success && "Malformed HSA Metadata");
}
}
bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough(
const MachineBasicBlock *MBB) const {
if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB))
return false;
if (MBB->empty())
return true;
// If this is a block implementing a long branch, an expression relative to
// the start of the block is needed. to the start of the block.
// XXX - Is there a smarter way to check this?
return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64);
}
void AMDGPUAsmPrinter::emitFunctionBodyStart() {
const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
const Function &F = MF->getFunction();
// TODO: Which one is called first, emitStartOfAsmFile or
// emitFunctionBodyStart?
if (getTargetStreamer() && !getTargetStreamer()->getTargetID())
initializeTargetID(*F.getParent());
const auto &FunctionTargetID = STM.getTargetID();
// Make sure function's xnack settings are compatible with module's
// xnack settings.
if (FunctionTargetID.isXnackSupported() &&
FunctionTargetID.getXnackSetting() != IsaInfo::TargetIDSetting::Any &&
FunctionTargetID.getXnackSetting() != getTargetStreamer()->getTargetID()->getXnackSetting()) {
OutContext.reportError({}, "xnack setting of '" + Twine(MF->getName()) +
"' function does not match module xnack setting");
return;
}
// Make sure function's sramecc settings are compatible with module's
// sramecc settings.
if (FunctionTargetID.isSramEccSupported() &&
FunctionTargetID.getSramEccSetting() != IsaInfo::TargetIDSetting::Any &&
FunctionTargetID.getSramEccSetting() != getTargetStreamer()->getTargetID()->getSramEccSetting()) {
OutContext.reportError({}, "sramecc setting of '" + Twine(MF->getName()) +
"' function does not match module sramecc setting");
return;
}
if (!MFI.isEntryFunction())
return;
if ((STM.isMesaKernel(F) || isHsaAbiVersion2(getGlobalSTI())) &&
(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL)) {
amd_kernel_code_t KernelCode;
getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF);
getTargetStreamer()->EmitAMDKernelCodeT(KernelCode);
}
if (STM.isAmdHsaOS())
HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo);
}
void AMDGPUAsmPrinter::emitFunctionBodyEnd() {
const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
if (!MFI.isEntryFunction())
return;
if (TM.getTargetTriple().getOS() != Triple::AMDHSA ||
isHsaAbiVersion2(getGlobalSTI()))
return;
auto &Streamer = getTargetStreamer()->getStreamer();
auto &Context = Streamer.getContext();
auto &ObjectFileInfo = *Context.getObjectFileInfo();
auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection();
Streamer.PushSection();
Streamer.SwitchSection(&ReadOnlySection);
// CP microcode requires the kernel descriptor to be allocated on 64 byte
// alignment.
Streamer.emitValueToAlignment(64, 0, 1, 0);
if (ReadOnlySection.getAlignment() < 64)
ReadOnlySection.setAlignment(Align(64));
const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
SmallString<128> KernelName;
getNameWithPrefix(KernelName, &MF->getFunction());
getTargetStreamer()->EmitAmdhsaKernelDescriptor(
STM, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo),
CurrentProgramInfo.NumVGPRsForWavesPerEU,
CurrentProgramInfo.NumSGPRsForWavesPerEU -
IsaInfo::getNumExtraSGPRs(&STM,
CurrentProgramInfo.VCCUsed,
CurrentProgramInfo.FlatUsed),
CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed);
Streamer.PopSection();
}
void AMDGPUAsmPrinter::emitFunctionEntryLabel() {
if (TM.getTargetTriple().getOS() == Triple::AMDHSA &&
isHsaAbiVersion3Or4(getGlobalSTI())) {
AsmPrinter::emitFunctionEntryLabel();
return;
}
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) {
SmallString<128> SymbolName;
getNameWithPrefix(SymbolName, &MF->getFunction()),
getTargetStreamer()->EmitAMDGPUSymbolType(
SymbolName, ELF::STT_AMDGPU_HSA_KERNEL);
}
if (DumpCodeInstEmitter) {
// Disassemble function name label to text.
DisasmLines.push_back(MF->getName().str() + ":");
DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
HexLines.push_back("");
}
AsmPrinter::emitFunctionEntryLabel();
}
void AMDGPUAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
if (DumpCodeInstEmitter && !isBlockOnlyReachableByFallthrough(&MBB)) {
// Write a line for the basic block label if it is not only fallthrough.
DisasmLines.push_back(
(Twine("BB") + Twine(getFunctionNumber())
+ "_" + Twine(MBB.getNumber()) + ":").str());
DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
HexLines.push_back("");
}
AsmPrinter::emitBasicBlockStart(MBB);
}
void AMDGPUAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
if (GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
if (GV->hasInitializer() && !isa<UndefValue>(GV->getInitializer())) {
OutContext.reportError({},
Twine(GV->getName()) +
": unsupported initializer for address space");
return;
}
// LDS variables aren't emitted in HSA or PAL yet.
const Triple::OSType OS = TM.getTargetTriple().getOS();
if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
return;
MCSymbol *GVSym = getSymbol(GV);
GVSym->redefineIfPossible();
if (GVSym->isDefined() || GVSym->isVariable())
report_fatal_error("symbol '" + Twine(GVSym->getName()) +
"' is already defined");
const DataLayout &DL = GV->getParent()->getDataLayout();
uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
Align Alignment = GV->getAlign().getValueOr(Align(4));
emitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
emitLinkage(GV, GVSym);
if (auto TS = getTargetStreamer())
TS->emitAMDGPULDS(GVSym, Size, Alignment);
return;
}
AsmPrinter::emitGlobalVariable(GV);
}
bool AMDGPUAsmPrinter::doFinalization(Module &M) {
// Pad with s_code_end to help tools and guard against instruction prefetch
// causing stale data in caches. Arguably this should be done by the linker,
// which is why this isn't done for Mesa.
const MCSubtargetInfo &STI = *getGlobalSTI();
if ((AMDGPU::isGFX10Plus(STI) || AMDGPU::isGFX90A(STI)) &&
(STI.getTargetTriple().getOS() == Triple::AMDHSA ||
STI.getTargetTriple().getOS() == Triple::AMDPAL)) {
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
getTargetStreamer()->EmitCodeEnd(STI);
}
return AsmPrinter::doFinalization(M);
}
// Print comments that apply to both callable functions and entry points.
void AMDGPUAsmPrinter::emitCommonFunctionComments(
uint32_t NumVGPR,
Optional<uint32_t> NumAGPR,
uint32_t TotalNumVGPR,
uint32_t NumSGPR,
uint64_t ScratchSize,
uint64_t CodeSize,
const AMDGPUMachineFunction *MFI) {
OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false);
OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false);
OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false);
if (NumAGPR) {
OutStreamer->emitRawComment(" NumAgprs: " + Twine(*NumAGPR), false);
OutStreamer->emitRawComment(" TotalNumVgprs: " + Twine(TotalNumVGPR),
false);
}
OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false);
OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()),
false);
}
uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties(
const MachineFunction &MF) const {
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
uint16_t KernelCodeProperties = 0;
if (MFI.hasPrivateSegmentBuffer()) {
KernelCodeProperties |=
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
}
if (MFI.hasDispatchPtr()) {
KernelCodeProperties |=
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
}
if (MFI.hasQueuePtr()) {
KernelCodeProperties |=
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
}
if (MFI.hasKernargSegmentPtr()) {
KernelCodeProperties |=
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
}
if (MFI.hasDispatchID()) {
KernelCodeProperties |=
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
}
if (MFI.hasFlatScratchInit()) {
KernelCodeProperties |=
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
}
if (MF.getSubtarget<GCNSubtarget>().isWave32()) {
KernelCodeProperties |=
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
}
return KernelCodeProperties;
}
amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor(
const MachineFunction &MF,
const SIProgramInfo &PI) const {
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
const Function &F = MF.getFunction();
amdhsa::kernel_descriptor_t KernelDescriptor;
memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor));
assert(isUInt<32>(PI.ScratchSize));
assert(isUInt<32>(PI.getComputePGMRSrc1()));
assert(isUInt<32>(PI.ComputePGMRSrc2));
KernelDescriptor.group_segment_fixed_size = PI.LDSSize;
KernelDescriptor.private_segment_fixed_size = PI.ScratchSize;
Align MaxKernArgAlign;
KernelDescriptor.kernarg_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign);
KernelDescriptor.compute_pgm_rsrc1 = PI.getComputePGMRSrc1();
KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2;
KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF);
assert(STM.hasGFX90AInsts() || CurrentProgramInfo.ComputePGMRSrc3GFX90A == 0);
if (STM.hasGFX90AInsts())
KernelDescriptor.compute_pgm_rsrc3 =
CurrentProgramInfo.ComputePGMRSrc3GFX90A;
return KernelDescriptor;
}
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
ResourceUsage = &getAnalysis<AMDGPUResourceUsageAnalysis>();
CurrentProgramInfo = SIProgramInfo();
const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
// The starting address of all shader programs must be 256 bytes aligned.
// Regular functions just need the basic required instruction alignment.
MF.setAlignment(MFI->isEntryFunction() ? Align(256) : Align(4));
SetupMachineFunction(MF);
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
MCContext &Context = getObjFileLowering().getContext();
// FIXME: This should be an explicit check for Mesa.
if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) {
MCSectionELF *ConfigSection =
Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
OutStreamer->SwitchSection(ConfigSection);
}
if (MFI->isModuleEntryFunction()) {
getSIProgramInfo(CurrentProgramInfo, MF);
}
if (STM.isAmdPalOS()) {
if (MFI->isEntryFunction())
EmitPALMetadata(MF, CurrentProgramInfo);
else if (MFI->isModuleEntryFunction())
emitPALFunctionMetadata(MF);
} else if (!STM.isAmdHsaOS()) {
EmitProgramInfoSI(MF, CurrentProgramInfo);
}
DumpCodeInstEmitter = nullptr;
if (STM.dumpCode()) {
// For -dumpcode, get the assembler out of the streamer, even if it does
// not really want to let us have it. This only works with -filetype=obj.
bool SaveFlag = OutStreamer->getUseAssemblerInfoForParsing();
OutStreamer->setUseAssemblerInfoForParsing(true);
MCAssembler *Assembler = OutStreamer->getAssemblerPtr();
OutStreamer->setUseAssemblerInfoForParsing(SaveFlag);
if (Assembler)
DumpCodeInstEmitter = Assembler->getEmitterPtr();
}
DisasmLines.clear();
HexLines.clear();
DisasmLineMaxLen = 0;
emitFunctionBody();
if (isVerbose()) {
MCSectionELF *CommentSection =
Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
OutStreamer->SwitchSection(CommentSection);
if (!MFI->isEntryFunction()) {
OutStreamer->emitRawComment(" Function info:", false);
const AMDGPUResourceUsageAnalysis::SIFunctionResourceInfo &Info =
ResourceUsage->getResourceInfo(&MF.getFunction());
emitCommonFunctionComments(
Info.NumVGPR,
STM.hasMAIInsts() ? Info.NumAGPR : Optional<uint32_t>(),
Info.getTotalNumVGPRs(STM),
Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()),
Info.PrivateSegmentSize,
getFunctionCodeSize(MF), MFI);
return false;
}
OutStreamer->emitRawComment(" Kernel info:", false);
emitCommonFunctionComments(CurrentProgramInfo.NumArchVGPR,
STM.hasMAIInsts()
? CurrentProgramInfo.NumAccVGPR
: Optional<uint32_t>(),
CurrentProgramInfo.NumVGPR,
CurrentProgramInfo.NumSGPR,
CurrentProgramInfo.ScratchSize,
getFunctionCodeSize(MF), MFI);
OutStreamer->emitRawComment(
" FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false);
OutStreamer->emitRawComment(
" IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false);
OutStreamer->emitRawComment(
" LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) +
" bytes/workgroup (compile time only)", false);
OutStreamer->emitRawComment(
" SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false);
OutStreamer->emitRawComment(
" VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false);
OutStreamer->emitRawComment(
" NumSGPRsForWavesPerEU: " +
Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false);
OutStreamer->emitRawComment(
" NumVGPRsForWavesPerEU: " +
Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false);
if (STM.hasGFX90AInsts())
OutStreamer->emitRawComment(
" AccumOffset: " +
Twine((CurrentProgramInfo.AccumOffset + 1) * 4), false);
OutStreamer->emitRawComment(
" Occupancy: " +
Twine(CurrentProgramInfo.Occupancy), false);
OutStreamer->emitRawComment(
" WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:SCRATCH_EN: " +
Twine(G_00B84C_SCRATCH_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:USER_SGPR: " +
Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TRAP_HANDLER: " +
Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TGID_X_EN: " +
Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)),
false);
assert(STM.hasGFX90AInsts() ||
CurrentProgramInfo.ComputePGMRSrc3GFX90A == 0);
if (STM.hasGFX90AInsts()) {
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC3_GFX90A:ACCUM_OFFSET: " +
Twine((AMDHSA_BITS_GET(CurrentProgramInfo.ComputePGMRSrc3GFX90A,
amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET))),
false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC3_GFX90A:TG_SPLIT: " +
Twine((AMDHSA_BITS_GET(CurrentProgramInfo.ComputePGMRSrc3GFX90A,
amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT))),
false);
}
}
if (DumpCodeInstEmitter) {
OutStreamer->SwitchSection(
Context.getELFSection(".AMDGPU.disasm", ELF::SHT_PROGBITS, 0));
for (size_t i = 0; i < DisasmLines.size(); ++i) {
std::string Comment = "\n";
if (!HexLines[i].empty()) {
Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
Comment += " ; " + HexLines[i] + "\n";
}
OutStreamer->emitBytes(StringRef(DisasmLines[i]));
OutStreamer->emitBytes(StringRef(Comment));
}
}
return false;
}
// TODO: Fold this into emitFunctionBodyStart.
void AMDGPUAsmPrinter::initializeTargetID(const Module &M) {
// In the beginning all features are either 'Any' or 'NotSupported',
// depending on global target features. This will cover empty modules.
getTargetStreamer()->initializeTargetID(
*getGlobalSTI(), getGlobalSTI()->getFeatureString());
// If module is empty, we are done.
if (M.empty())
return;
// If module is not empty, need to find first 'Off' or 'On' feature
// setting per feature from functions in module.
for (auto &F : M) {
auto &TSTargetID = getTargetStreamer()->getTargetID();
if ((!TSTargetID->isXnackSupported() || TSTargetID->isXnackOnOrOff()) &&
(!TSTargetID->isSramEccSupported() || TSTargetID->isSramEccOnOrOff()))
break;
const GCNSubtarget &STM = TM.getSubtarget<GCNSubtarget>(F);
const IsaInfo::AMDGPUTargetID &STMTargetID = STM.getTargetID();
if (TSTargetID->isXnackSupported())
if (TSTargetID->getXnackSetting() == IsaInfo::TargetIDSetting::Any)
TSTargetID->setXnackSetting(STMTargetID.getXnackSetting());
if (TSTargetID->isSramEccSupported())
if (TSTargetID->getSramEccSetting() == IsaInfo::TargetIDSetting::Any)
TSTargetID->setSramEccSetting(STMTargetID.getSramEccSetting());
}
}
uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const {
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
const SIInstrInfo *TII = STM.getInstrInfo();
uint64_t CodeSize = 0;
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
// TODO: CodeSize should account for multiple functions.
// TODO: Should we count size of debug info?
if (MI.isDebugInstr())
continue;
CodeSize += TII->getInstSizeInBytes(MI);
}
}
return CodeSize;
}
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
const MachineFunction &MF) {
const AMDGPUResourceUsageAnalysis::SIFunctionResourceInfo &Info =
ResourceUsage->getResourceInfo(&MF.getFunction());
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
ProgInfo.NumArchVGPR = Info.NumVGPR;
ProgInfo.NumAccVGPR = Info.NumAGPR;
ProgInfo.NumVGPR = Info.getTotalNumVGPRs(STM);
ProgInfo.AccumOffset = alignTo(std::max(1, Info.NumVGPR), 4) / 4 - 1;
ProgInfo.TgSplit = STM.isTgSplitEnabled();
ProgInfo.NumSGPR = Info.NumExplicitSGPR;
ProgInfo.ScratchSize = Info.PrivateSegmentSize;
ProgInfo.VCCUsed = Info.UsesVCC;
ProgInfo.FlatUsed = Info.UsesFlatScratch;
ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion;
const uint64_t MaxScratchPerWorkitem =
GCNSubtarget::MaxWaveScratchSize / STM.getWavefrontSize();
if (ProgInfo.ScratchSize > MaxScratchPerWorkitem) {
DiagnosticInfoStackSize DiagStackSize(MF.getFunction(),
ProgInfo.ScratchSize,
MaxScratchPerWorkitem, DS_Error);
MF.getFunction().getContext().diagnose(DiagStackSize);
}
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// The calculations related to SGPR/VGPR blocks are
// duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be
// unified.
unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs(
&STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed);
// Check the addressable register limit before we add ExtraSGPRs.
if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
!STM.hasSGPRInitBug()) {
unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
// This can happen due to a compiler bug or when using inline asm.
LLVMContext &Ctx = MF.getFunction().getContext();
DiagnosticInfoResourceLimit Diag(
MF.getFunction(), "addressable scalar registers", ProgInfo.NumSGPR,
MaxAddressableNumSGPRs, DS_Error, DK_ResourceLimit);
Ctx.diagnose(Diag);
ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1;
}
}
// Account for extra SGPRs and VGPRs reserved for debugger use.
ProgInfo.NumSGPR += ExtraSGPRs;
const Function &F = MF.getFunction();
// Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave
// dispatch registers are function args.
unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0;
if (isShader(F.getCallingConv())) {
bool IsPixelShader =
F.getCallingConv() == CallingConv::AMDGPU_PS && !STM.isAmdHsaOS();
// Calculate the number of VGPR registers based on the SPI input registers
uint32_t InputEna = 0;
uint32_t InputAddr = 0;
unsigned LastEna = 0;
if (IsPixelShader) {
// Note for IsPixelShader:
// By this stage, all enabled inputs are tagged in InputAddr as well.
// We will use InputAddr to determine whether the input counts against the
// vgpr total and only use the InputEnable to determine the last input
// that is relevant - if extra arguments are used, then we have to honour
// the InputAddr for any intermediate non-enabled inputs.
InputEna = MFI->getPSInputEnable();
InputAddr = MFI->getPSInputAddr();
// We only need to consider input args up to the last used arg.
assert((InputEna || InputAddr) &&
"PSInputAddr and PSInputEnable should "
"never both be 0 for AMDGPU_PS shaders");
// There are some rare circumstances where InputAddr is non-zero and
// InputEna can be set to 0. In this case we default to setting LastEna
// to 1.
LastEna = InputEna ? findLastSet(InputEna) + 1 : 1;
}
// FIXME: We should be using the number of registers determined during
// calling convention lowering to legalize the types.
const DataLayout &DL = F.getParent()->getDataLayout();
unsigned PSArgCount = 0;
unsigned IntermediateVGPR = 0;
for (auto &Arg : F.args()) {
unsigned NumRegs = (DL.getTypeSizeInBits(Arg.getType()) + 31) / 32;
if (Arg.hasAttribute(Attribute::InReg)) {
WaveDispatchNumSGPR += NumRegs;
} else {
// If this is a PS shader and we're processing the PS Input args (first
// 16 VGPR), use the InputEna and InputAddr bits to define how many
// VGPRs are actually used.
// Any extra VGPR arguments are handled as normal arguments (and
// contribute to the VGPR count whether they're used or not).
if (IsPixelShader && PSArgCount < 16) {
if ((1 << PSArgCount) & InputAddr) {
if (PSArgCount < LastEna)
WaveDispatchNumVGPR += NumRegs;
else
IntermediateVGPR += NumRegs;
}
PSArgCount++;
} else {
// If there are extra arguments we have to include the allocation for
// the non-used (but enabled with InputAddr) input arguments
if (IntermediateVGPR) {
WaveDispatchNumVGPR += IntermediateVGPR;
IntermediateVGPR = 0;
}
WaveDispatchNumVGPR += NumRegs;
}
}
}
ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR);
ProgInfo.NumArchVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR);
ProgInfo.NumVGPR =
Info.getTotalNumVGPRs(STM, Info.NumAGPR, ProgInfo.NumArchVGPR);
}
// Adjust number of registers used to meet default/requested minimum/maximum
// number of waves per execution unit request.
ProgInfo.NumSGPRsForWavesPerEU = std::max(
std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU()));
ProgInfo.NumVGPRsForWavesPerEU = std::max(
std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU()));
if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ||
STM.hasSGPRInitBug()) {
unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
// This can happen due to a compiler bug or when using inline asm to use
// the registers which are usually reserved for vcc etc.
LLVMContext &Ctx = MF.getFunction().getContext();
DiagnosticInfoResourceLimit Diag(MF.getFunction(), "scalar registers",
ProgInfo.NumSGPR, MaxAddressableNumSGPRs,
DS_Error, DK_ResourceLimit);
Ctx.diagnose(Diag);
ProgInfo.NumSGPR = MaxAddressableNumSGPRs;
ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs;
}
}
if (STM.hasSGPRInitBug()) {
ProgInfo.NumSGPR =
AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
ProgInfo.NumSGPRsForWavesPerEU =
AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
}
if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) {
LLVMContext &Ctx = MF.getFunction().getContext();
DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs",
MFI->getNumUserSGPRs(),
STM.getMaxNumUserSGPRs(), DS_Error);
Ctx.diagnose(Diag);
}
if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
LLVMContext &Ctx = MF.getFunction().getContext();
DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory",
MFI->getLDSSize(),
STM.getLocalMemorySize(), DS_Error);
Ctx.diagnose(Diag);
}
ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks(
&STM, ProgInfo.NumSGPRsForWavesPerEU);
ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks(
&STM, ProgInfo.NumVGPRsForWavesPerEU);
const SIModeRegisterDefaults Mode = MFI->getMode();
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
// register.
ProgInfo.FloatMode = getFPMode(Mode);
ProgInfo.IEEEMode = Mode.IEEE;
// Make clamp modifier on NaN input returns 0.
ProgInfo.DX10Clamp = Mode.DX10Clamp;
unsigned LDSAlignShift;
if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
// LDS is allocated in 64 dword blocks.
LDSAlignShift = 8;
} else {
// LDS is allocated in 128 dword blocks.
LDSAlignShift = 9;
}
unsigned LDSSpillSize =
MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize();
ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
ProgInfo.LDSBlocks =
alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
// Scratch is allocated in 256 dword blocks.
unsigned ScratchAlignShift = 10;
// We need to program the hardware with the amount of scratch memory that
// is used by the entire wave. ProgInfo.ScratchSize is the amount of
// scratch memory used per thread.
ProgInfo.ScratchBlocks =
alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
1ULL << ScratchAlignShift) >>
ScratchAlignShift;
if (getIsaVersion(getGlobalSTI()->getCPU()).Major >= 10) {
ProgInfo.WgpMode = STM.isCuModeEnabled() ? 0 : 1;
ProgInfo.MemOrdered = 1;
}
// 0 = X, 1 = XY, 2 = XYZ
unsigned TIDIGCompCnt = 0;
if (MFI->hasWorkItemIDZ())
TIDIGCompCnt = 2;
else if (MFI->hasWorkItemIDY())
TIDIGCompCnt = 1;
ProgInfo.ComputePGMRSrc2 =
S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
// For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP.
S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) |
S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
S_00B84C_EXCP_EN_MSB(0) |
// For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP.
S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) |
S_00B84C_EXCP_EN(0);
if (STM.hasGFX90AInsts()) {
AMDHSA_BITS_SET(ProgInfo.ComputePGMRSrc3GFX90A,
amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET,
ProgInfo.AccumOffset);
AMDHSA_BITS_SET(ProgInfo.ComputePGMRSrc3GFX90A,
amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
ProgInfo.TgSplit);
}
ProgInfo.Occupancy = STM.computeOccupancy(MF.getFunction(), ProgInfo.LDSSize,
ProgInfo.NumSGPRsForWavesPerEU,
ProgInfo.NumVGPRsForWavesPerEU);
}
static unsigned getRsrcReg(CallingConv::ID CallConv) {
switch (CallConv) {
default: LLVM_FALLTHROUGH;
case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS;
case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS;
case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES;
case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
}
}
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
const SIProgramInfo &CurrentProgramInfo) {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv());
if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
OutStreamer->emitInt32(R_00B848_COMPUTE_PGM_RSRC1);
OutStreamer->emitInt32(CurrentProgramInfo.getComputePGMRSrc1());
OutStreamer->emitInt32(R_00B84C_COMPUTE_PGM_RSRC2);
OutStreamer->emitInt32(CurrentProgramInfo.ComputePGMRSrc2);
OutStreamer->emitInt32(R_00B860_COMPUTE_TMPRING_SIZE);
OutStreamer->emitInt32(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks));
// TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
// 0" comment but I don't see a corresponding field in the register spec.
} else {
OutStreamer->emitInt32(RsrcReg);
OutStreamer->emitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4);
OutStreamer->emitInt32(R_0286E8_SPI_TMPRING_SIZE);
OutStreamer->emitIntValue(
S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
}
if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
OutStreamer->emitInt32(R_00B02C_SPI_SHADER_PGM_RSRC2_PS);
OutStreamer->emitInt32(
S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks));
OutStreamer->emitInt32(R_0286CC_SPI_PS_INPUT_ENA);
OutStreamer->emitInt32(MFI->getPSInputEnable());
OutStreamer->emitInt32(R_0286D0_SPI_PS_INPUT_ADDR);
OutStreamer->emitInt32(MFI->getPSInputAddr());
}
OutStreamer->emitInt32(R_SPILLED_SGPRS);
OutStreamer->emitInt32(MFI->getNumSpilledSGPRs());
OutStreamer->emitInt32(R_SPILLED_VGPRS);
OutStreamer->emitInt32(MFI->getNumSpilledVGPRs());
}
// This is the equivalent of EmitProgramInfoSI above, but for when the OS type
// is AMDPAL. It stores each compute/SPI register setting and other PAL
// metadata items into the PALMD::Metadata, combining with any provided by the
// frontend as LLVM metadata. Once all functions are written, the PAL metadata
// is then written as a single block in the .note section.
void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF,
const SIProgramInfo &CurrentProgramInfo) {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
auto CC = MF.getFunction().getCallingConv();
auto MD = getTargetStreamer()->getPALMetadata();
MD->setEntryPoint(CC, MF.getFunction().getName());
MD->setNumUsedVgprs(CC, CurrentProgramInfo.NumVGPRsForWavesPerEU);
MD->setNumUsedSgprs(CC, CurrentProgramInfo.NumSGPRsForWavesPerEU);
MD->setRsrc1(CC, CurrentProgramInfo.getPGMRSrc1(CC));
if (AMDGPU::isCompute(CC)) {
MD->setRsrc2(CC, CurrentProgramInfo.ComputePGMRSrc2);
} else {
if (CurrentProgramInfo.ScratchBlocks > 0)
MD->setRsrc2(CC, S_00B84C_SCRATCH_EN(1));
}
// ScratchSize is in bytes, 16 aligned.
MD->setScratchSize(CC, alignTo(CurrentProgramInfo.ScratchSize, 16));
if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
MD->setRsrc2(CC, S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks));
MD->setSpiPsInputEna(MFI->getPSInputEnable());
MD->setSpiPsInputAddr(MFI->getPSInputAddr());
}
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
if (STM.isWave32())
MD->setWave32(MF.getFunction().getCallingConv());
}
void AMDGPUAsmPrinter::emitPALFunctionMetadata(const MachineFunction &MF) {
auto *MD = getTargetStreamer()->getPALMetadata();
const MachineFrameInfo &MFI = MF.getFrameInfo();
MD->setFunctionScratchSize(MF, MFI.getStackSize());
// Set compute registers
MD->setRsrc1(CallingConv::AMDGPU_CS,
CurrentProgramInfo.getPGMRSrc1(CallingConv::AMDGPU_CS));
MD->setRsrc2(CallingConv::AMDGPU_CS, CurrentProgramInfo.ComputePGMRSrc2);
// Set optional info
MD->setFunctionLdsSize(MF, CurrentProgramInfo.LDSSize);
MD->setFunctionNumUsedVgprs(MF, CurrentProgramInfo.NumVGPRsForWavesPerEU);
MD->setFunctionNumUsedSgprs(MF, CurrentProgramInfo.NumSGPRsForWavesPerEU);
}
// This is supposed to be log2(Size)
static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
switch (Size) {
case 4:
return AMD_ELEMENT_4_BYTES;
case 8:
return AMD_ELEMENT_8_BYTES;
case 16:
return AMD_ELEMENT_16_BYTES;
default:
llvm_unreachable("invalid private_element_size");
}
}
void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
const SIProgramInfo &CurrentProgramInfo,
const MachineFunction &MF) const {
const Function &F = MF.getFunction();
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL);
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
AMDGPU::initDefaultAMDKernelCodeT(Out, &STM);
Out.compute_pgm_resource_registers =
CurrentProgramInfo.getComputePGMRSrc1() |
(CurrentProgramInfo.ComputePGMRSrc2 << 32);
Out.code_properties |= AMD_CODE_PROPERTY_IS_PTR64;
if (CurrentProgramInfo.DynamicCallStack)
Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK;
AMD_HSA_BITS_SET(Out.code_properties,
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
getElementByteSizeValue(STM.getMaxPrivateElementSize(true)));
if (MFI->hasPrivateSegmentBuffer()) {
Out.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
}
if (MFI->hasDispatchPtr())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
if (MFI->hasQueuePtr())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
if (MFI->hasKernargSegmentPtr())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
if (MFI->hasDispatchID())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
if (MFI->hasFlatScratchInit())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
if (MFI->hasDispatchPtr())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
if (STM.isXNACKEnabled())
Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
Align MaxKernArgAlign;
Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign);
Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR;
Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR;
Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize;
Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize;
// kernarg_segment_alignment is specified as log of the alignment.
// The minimum alignment is 16.
Out.kernarg_segment_alignment = Log2(std::max(Align(16), MaxKernArgAlign));
}
bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode, raw_ostream &O) {
// First try the generic code, which knows about modifiers like 'c' and 'n'.
if (!AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O))
return false;
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
case 'r':
break;
default:
return true;
}
}
// TODO: Should be able to support other operand types like globals.
const MachineOperand &MO = MI->getOperand(OpNo);
if (MO.isReg()) {
AMDGPUInstPrinter::printRegOperand(MO.getReg(), O,
*MF->getSubtarget().getRegisterInfo());
return false;
} else if (MO.isImm()) {
int64_t Val = MO.getImm();
if (AMDGPU::isInlinableIntLiteral(Val)) {
O << Val;
} else if (isUInt<16>(Val)) {
O << format("0x%" PRIx16, static_cast<uint16_t>(Val));
} else if (isUInt<32>(Val)) {
O << format("0x%" PRIx32, static_cast<uint32_t>(Val));
} else {
O << format("0x%" PRIx64, static_cast<uint64_t>(Val));
}
return false;
}
return true;
}
void AMDGPUAsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AMDGPUResourceUsageAnalysis>();
AU.addPreserved<AMDGPUResourceUsageAnalysis>();
AsmPrinter::getAnalysisUsage(AU);
}