llvm-project/llvm/lib/Target/Hexagon/HexagonISelDAGToDAGHVX.cpp

1974 lines
60 KiB
C++

//===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonISelDAGToDAG.h"
#include "HexagonISelLowering.h"
#include "HexagonTargetMachine.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <deque>
#include <map>
#include <set>
#include <utility>
#include <vector>
#define DEBUG_TYPE "hexagon-isel"
using namespace llvm;
// --------------------------------------------------------------------
// Implementation of permutation networks.
// Implementation of the node routing through butterfly networks:
// - Forward delta.
// - Reverse delta.
// - Benes.
//
//
// Forward delta network consists of log(N) steps, where N is the number
// of inputs. In each step, an input can stay in place, or it can get
// routed to another position[1]. The step after that consists of two
// networks, each half in size in terms of the number of nodes. In those
// terms, in the given step, an input can go to either the upper or the
// lower network in the next step.
//
// [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
// positions as long as there is no conflict.
// Here's a delta network for 8 inputs, only the switching routes are
// shown:
//
// Steps:
// |- 1 ---------------|- 2 -----|- 3 -|
//
// Inp[0] *** *** *** *** Out[0]
// \ / \ / \ /
// \ / \ / X
// \ / \ / / \
// Inp[1] *** \ / *** X *** *** Out[1]
// \ \ / / \ / \ /
// \ \ / / X X
// \ \ / / / \ / \
// Inp[2] *** \ \ / / *** X *** *** Out[2]
// \ \ X / / / \ \ /
// \ \ / \ / / / \ X
// \ X X / / \ / \
// Inp[3] *** \ / \ / \ / *** *** *** Out[3]
// \ X X X /
// \ / \ / \ / \ /
// X X X X
// / \ / \ / \ / \
// / X X X \
// Inp[4] *** / \ / \ / \ *** *** *** Out[4]
// / X X \ \ / \ /
// / / \ / \ \ \ / X
// / / X \ \ \ / / \
// Inp[5] *** / / \ \ *** X *** *** Out[5]
// / / \ \ \ / \ /
// / / \ \ X X
// / / \ \ / \ / \
// Inp[6] *** / \ *** X *** *** Out[6]
// / \ / \ \ /
// / \ / \ X
// / \ / \ / \
// Inp[7] *** *** *** *** Out[7]
//
//
// Reverse delta network is same as delta network, with the steps in
// the opposite order.
//
//
// Benes network is a forward delta network immediately followed by
// a reverse delta network.
// Graph coloring utility used to partition nodes into two groups:
// they will correspond to nodes routed to the upper and lower networks.
struct Coloring {
enum : uint8_t {
None = 0,
Red,
Black
};
using Node = int;
using MapType = std::map<Node,uint8_t>;
static constexpr Node Ignore = Node(-1);
Coloring(ArrayRef<Node> Ord) : Order(Ord) {
build();
if (!color())
Colors.clear();
}
const MapType &colors() const {
return Colors;
}
uint8_t other(uint8_t Color) {
if (Color == None)
return Red;
return Color == Red ? Black : Red;
}
void dump() const;
private:
ArrayRef<Node> Order;
MapType Colors;
std::set<Node> Needed;
using NodeSet = std::set<Node>;
std::map<Node,NodeSet> Edges;
Node conj(Node Pos) {
Node Num = Order.size();
return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
}
uint8_t getColor(Node N) {
auto F = Colors.find(N);
return F != Colors.end() ? F->second : (uint8_t)None;
}
std::pair<bool,uint8_t> getUniqueColor(const NodeSet &Nodes);
void build();
bool color();
};
std::pair<bool,uint8_t> Coloring::getUniqueColor(const NodeSet &Nodes) {
uint8_t Color = None;
for (Node N : Nodes) {
uint8_t ColorN = getColor(N);
if (ColorN == None)
continue;
if (Color == None)
Color = ColorN;
else if (Color != None && Color != ColorN)
return { false, None };
}
return { true, Color };
}
void Coloring::build() {
// Add Order[P] and Order[conj(P)] to Edges.
for (unsigned P = 0; P != Order.size(); ++P) {
Node I = Order[P];
if (I != Ignore) {
Needed.insert(I);
Node PC = Order[conj(P)];
if (PC != Ignore && PC != I)
Edges[I].insert(PC);
}
}
// Add I and conj(I) to Edges.
for (unsigned I = 0; I != Order.size(); ++I) {
if (!Needed.count(I))
continue;
Node C = conj(I);
// This will create an entry in the edge table, even if I is not
// connected to any other node. This is necessary, because it still
// needs to be colored.
NodeSet &Is = Edges[I];
if (Needed.count(C))
Is.insert(C);
}
}
bool Coloring::color() {
SetVector<Node> FirstQ;
auto Enqueue = [this,&FirstQ] (Node N) {
SetVector<Node> Q;
Q.insert(N);
for (unsigned I = 0; I != Q.size(); ++I) {
NodeSet &Ns = Edges[Q[I]];
Q.insert(Ns.begin(), Ns.end());
}
FirstQ.insert(Q.begin(), Q.end());
};
for (Node N : Needed)
Enqueue(N);
for (Node N : FirstQ) {
if (Colors.count(N))
continue;
NodeSet &Ns = Edges[N];
auto P = getUniqueColor(Ns);
if (!P.first)
return false;
Colors[N] = other(P.second);
}
// First, color nodes that don't have any dups.
for (auto E : Edges) {
Node N = E.first;
if (!Needed.count(conj(N)) || Colors.count(N))
continue;
auto P = getUniqueColor(E.second);
if (!P.first)
return false;
Colors[N] = other(P.second);
}
// Now, nodes that are still uncolored. Since the graph can be modified
// in this step, create a work queue.
std::vector<Node> WorkQ;
for (auto E : Edges) {
Node N = E.first;
if (!Colors.count(N))
WorkQ.push_back(N);
}
for (unsigned I = 0; I < WorkQ.size(); ++I) {
Node N = WorkQ[I];
NodeSet &Ns = Edges[N];
auto P = getUniqueColor(Ns);
if (P.first) {
Colors[N] = other(P.second);
continue;
}
// Coloring failed. Split this node.
Node C = conj(N);
uint8_t ColorN = other(None);
uint8_t ColorC = other(ColorN);
NodeSet &Cs = Edges[C];
NodeSet CopyNs = Ns;
for (Node M : CopyNs) {
uint8_t ColorM = getColor(M);
if (ColorM == ColorC) {
// Connect M with C, disconnect M from N.
Cs.insert(M);
Edges[M].insert(C);
Ns.erase(M);
Edges[M].erase(N);
}
}
Colors[N] = ColorN;
Colors[C] = ColorC;
}
// Explicitly assign "None" all all uncolored nodes.
for (unsigned I = 0; I != Order.size(); ++I)
if (Colors.count(I) == 0)
Colors[I] = None;
return true;
}
LLVM_DUMP_METHOD
void Coloring::dump() const {
dbgs() << "{ Order: {";
for (unsigned I = 0; I != Order.size(); ++I) {
Node P = Order[I];
if (P != Ignore)
dbgs() << ' ' << P;
else
dbgs() << " -";
}
dbgs() << " }\n";
dbgs() << " Needed: {";
for (Node N : Needed)
dbgs() << ' ' << N;
dbgs() << " }\n";
dbgs() << " Edges: {\n";
for (auto E : Edges) {
dbgs() << " " << E.first << " -> {";
for (auto N : E.second)
dbgs() << ' ' << N;
dbgs() << " }\n";
}
dbgs() << " }\n";
static const char *const Names[] = { "None", "Red", "Black" };
dbgs() << " Colors: {\n";
for (auto C : Colors)
dbgs() << " " << C.first << " -> " << Names[C.second] << "\n";
dbgs() << " }\n}\n";
}
// Base class of for reordering networks. They don't strictly need to be
// permutations, as outputs with repeated occurrences of an input element
// are allowed.
struct PermNetwork {
using Controls = std::vector<uint8_t>;
using ElemType = int;
static constexpr ElemType Ignore = ElemType(-1);
enum : uint8_t {
None,
Pass,
Switch
};
enum : uint8_t {
Forward,
Reverse
};
PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
Order.assign(Ord.data(), Ord.data()+Ord.size());
Log = 0;
unsigned S = Order.size();
while (S >>= 1)
++Log;
Table.resize(Order.size());
for (RowType &Row : Table)
Row.resize(Mult*Log, None);
}
void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
unsigned Size = Order.size();
V.resize(Size);
for (unsigned I = 0; I != Size; ++I) {
unsigned W = 0;
for (unsigned L = 0; L != Log; ++L) {
unsigned C = ctl(I, StartAt+L) == Switch;
if (Dir == Forward)
W |= C << (Log-1-L);
else
W |= C << L;
}
assert(isUInt<8>(W));
V[I] = uint8_t(W);
}
}
uint8_t ctl(ElemType Pos, unsigned Step) const {
return Table[Pos][Step];
}
unsigned size() const {
return Order.size();
}
unsigned steps() const {
return Log;
}
protected:
unsigned Log;
std::vector<ElemType> Order;
using RowType = std::vector<uint8_t>;
std::vector<RowType> Table;
};
struct ForwardDeltaNetwork : public PermNetwork {
ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
bool run(Controls &V) {
if (!route(Order.data(), Table.data(), size(), 0))
return false;
getControls(V, 0, Forward);
return true;
}
private:
bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
};
struct ReverseDeltaNetwork : public PermNetwork {
ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
bool run(Controls &V) {
if (!route(Order.data(), Table.data(), size(), 0))
return false;
getControls(V, 0, Reverse);
return true;
}
private:
bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
};
struct BenesNetwork : public PermNetwork {
BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
bool run(Controls &F, Controls &R) {
if (!route(Order.data(), Table.data(), size(), 0))
return false;
getControls(F, 0, Forward);
getControls(R, Log, Reverse);
return true;
}
private:
bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
};
bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
unsigned Step) {
bool UseUp = false, UseDown = false;
ElemType Num = Size;
// Cannot use coloring here, because coloring is used to determine
// the "big" switch, i.e. the one that changes halves, and in a forward
// network, a color can be simultaneously routed to both halves in the
// step we're working on.
for (ElemType J = 0; J != Num; ++J) {
ElemType I = P[J];
// I is the position in the input,
// J is the position in the output.
if (I == Ignore)
continue;
uint8_t S;
if (I < Num/2)
S = (J < Num/2) ? Pass : Switch;
else
S = (J < Num/2) ? Switch : Pass;
// U is the element in the table that needs to be updated.
ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
if (U < Num/2)
UseUp = true;
else
UseDown = true;
if (T[U][Step] != S && T[U][Step] != None)
return false;
T[U][Step] = S;
}
for (ElemType J = 0; J != Num; ++J)
if (P[J] != Ignore && P[J] >= Num/2)
P[J] -= Num/2;
if (Step+1 < Log) {
if (UseUp && !route(P, T, Size/2, Step+1))
return false;
if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
return false;
}
return true;
}
bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
unsigned Step) {
unsigned Pets = Log-1 - Step;
bool UseUp = false, UseDown = false;
ElemType Num = Size;
// In this step half-switching occurs, so coloring can be used.
Coloring G({P,Size});
const Coloring::MapType &M = G.colors();
if (M.empty())
return false;
uint8_t ColorUp = Coloring::None;
for (ElemType J = 0; J != Num; ++J) {
ElemType I = P[J];
// I is the position in the input,
// J is the position in the output.
if (I == Ignore)
continue;
uint8_t C = M.at(I);
if (C == Coloring::None)
continue;
// During "Step", inputs cannot switch halves, so if the "up" color
// is still unknown, make sure that it is selected in such a way that
// "I" will stay in the same half.
bool InpUp = I < Num/2;
if (ColorUp == Coloring::None)
ColorUp = InpUp ? C : G.other(C);
if ((C == ColorUp) != InpUp) {
// If I should go to a different half than where is it now, give up.
return false;
}
uint8_t S;
if (InpUp) {
S = (J < Num/2) ? Pass : Switch;
UseUp = true;
} else {
S = (J < Num/2) ? Switch : Pass;
UseDown = true;
}
T[J][Pets] = S;
}
// Reorder the working permutation according to the computed switch table
// for the last step (i.e. Pets).
for (ElemType J = 0, E = Size / 2; J != E; ++J) {
ElemType PJ = P[J]; // Current values of P[J]
ElemType PC = P[J+Size/2]; // and P[conj(J)]
ElemType QJ = PJ; // New values of P[J]
ElemType QC = PC; // and P[conj(J)]
if (T[J][Pets] == Switch)
QC = PJ;
if (T[J+Size/2][Pets] == Switch)
QJ = PC;
P[J] = QJ;
P[J+Size/2] = QC;
}
for (ElemType J = 0; J != Num; ++J)
if (P[J] != Ignore && P[J] >= Num/2)
P[J] -= Num/2;
if (Step+1 < Log) {
if (UseUp && !route(P, T, Size/2, Step+1))
return false;
if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
return false;
}
return true;
}
bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
unsigned Step) {
Coloring G({P,Size});
const Coloring::MapType &M = G.colors();
if (M.empty())
return false;
ElemType Num = Size;
unsigned Pets = 2*Log-1 - Step;
bool UseUp = false, UseDown = false;
// Both assignments, i.e. Red->Up and Red->Down are valid, but they will
// result in different controls. Let's pick the one where the first
// control will be "Pass".
uint8_t ColorUp = Coloring::None;
for (ElemType J = 0; J != Num; ++J) {
ElemType I = P[J];
if (I == Ignore)
continue;
uint8_t C = M.at(I);
if (C == Coloring::None)
continue;
if (ColorUp == Coloring::None) {
ColorUp = (I < Num/2) ? Coloring::Red : Coloring::Black;
}
unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
if (C == ColorUp) {
if (I < Num/2)
T[I][Step] = Pass;
else
T[CI][Step] = Switch;
T[J][Pets] = (J < Num/2) ? Pass : Switch;
UseUp = true;
} else { // Down
if (I < Num/2)
T[CI][Step] = Switch;
else
T[I][Step] = Pass;
T[J][Pets] = (J < Num/2) ? Switch : Pass;
UseDown = true;
}
}
// Reorder the working permutation according to the computed switch table
// for the last step (i.e. Pets).
for (ElemType J = 0; J != Num/2; ++J) {
ElemType PJ = P[J]; // Current values of P[J]
ElemType PC = P[J+Num/2]; // and P[conj(J)]
ElemType QJ = PJ; // New values of P[J]
ElemType QC = PC; // and P[conj(J)]
if (T[J][Pets] == Switch)
QC = PJ;
if (T[J+Num/2][Pets] == Switch)
QJ = PC;
P[J] = QJ;
P[J+Num/2] = QC;
}
for (ElemType J = 0; J != Num; ++J)
if (P[J] != Ignore && P[J] >= Num/2)
P[J] -= Num/2;
if (Step+1 < Log) {
if (UseUp && !route(P, T, Size/2, Step+1))
return false;
if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
return false;
}
return true;
}
// --------------------------------------------------------------------
// Support for building selection results (output instructions that are
// parts of the final selection).
struct OpRef {
OpRef(SDValue V) : OpV(V) {}
bool isValue() const { return OpV.getNode() != nullptr; }
bool isValid() const { return isValue() || !(OpN & Invalid); }
static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
static OpRef fail() { return OpRef(Invalid); }
static OpRef lo(const OpRef &R) {
assert(!R.isValue());
return OpRef(R.OpN & (Undef | Index | LoHalf));
}
static OpRef hi(const OpRef &R) {
assert(!R.isValue());
return OpRef(R.OpN & (Undef | Index | HiHalf));
}
static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
// Direct value.
SDValue OpV = SDValue();
// Reference to the operand of the input node:
// If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
// operand index:
// If bit 30 is set, it's the high half of the operand.
// If bit 29 is set, it's the low half of the operand.
unsigned OpN = 0;
enum : unsigned {
Invalid = 0x10000000,
LoHalf = 0x20000000,
HiHalf = 0x40000000,
Whole = LoHalf | HiHalf,
Undef = 0x80000000,
Index = 0x0FFFFFFF, // Mask of the index value.
IndexBits = 28,
};
void print(raw_ostream &OS, const SelectionDAG &G) const;
private:
OpRef(unsigned N) : OpN(N) {}
};
struct NodeTemplate {
NodeTemplate() = default;
unsigned Opc = 0;
MVT Ty = MVT::Other;
std::vector<OpRef> Ops;
void print(raw_ostream &OS, const SelectionDAG &G) const;
};
struct ResultStack {
ResultStack(SDNode *Inp)
: InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
SDNode *InpNode;
MVT InpTy;
unsigned push(const NodeTemplate &Res) {
List.push_back(Res);
return List.size()-1;
}
unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
NodeTemplate Res;
Res.Opc = Opc;
Res.Ty = Ty;
Res.Ops = Ops;
return push(Res);
}
bool empty() const { return List.empty(); }
unsigned size() const { return List.size(); }
unsigned top() const { return size()-1; }
const NodeTemplate &operator[](unsigned I) const { return List[I]; }
unsigned reset(unsigned NewTop) {
List.resize(NewTop+1);
return NewTop;
}
using BaseType = std::vector<NodeTemplate>;
BaseType::iterator begin() { return List.begin(); }
BaseType::iterator end() { return List.end(); }
BaseType::const_iterator begin() const { return List.begin(); }
BaseType::const_iterator end() const { return List.end(); }
BaseType List;
void print(raw_ostream &OS, const SelectionDAG &G) const;
};
void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
if (isValue()) {
OpV.getNode()->print(OS, &G);
return;
}
if (OpN & Invalid) {
OS << "invalid";
return;
}
if (OpN & Undef) {
OS << "undef";
return;
}
if ((OpN & Whole) != Whole) {
assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
if (OpN & LoHalf)
OS << "lo ";
else
OS << "hi ";
}
OS << '#' << SignExtend32(OpN & Index, IndexBits);
}
void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
OS << format("%8s", EVT(Ty).getEVTString().c_str()) << " "
<< TII.getName(Opc);
bool Comma = false;
for (const auto &R : Ops) {
if (Comma)
OS << ',';
Comma = true;
OS << ' ';
R.print(OS, G);
}
}
void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
OS << "Input node:\n";
#ifndef NDEBUG
InpNode->dumpr(&G);
#endif
OS << "Result templates:\n";
for (unsigned I = 0, E = List.size(); I != E; ++I) {
OS << '[' << I << "] ";
List[I].print(OS, G);
OS << '\n';
}
}
struct ShuffleMask {
ShuffleMask(ArrayRef<int> M) : Mask(M) {
for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
int M = Mask[I];
if (M == -1)
continue;
MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
}
}
ArrayRef<int> Mask;
int MinSrc = -1, MaxSrc = -1;
ShuffleMask lo() const {
size_t H = Mask.size()/2;
return ShuffleMask({Mask.data(), H});
}
ShuffleMask hi() const {
size_t H = Mask.size()/2;
return ShuffleMask({Mask.data()+H, H});
}
};
// --------------------------------------------------------------------
// The HvxSelector class.
static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
}
static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
return static_cast<const HexagonSubtarget&>(G.getSubtarget());
}
namespace llvm {
struct HvxSelector {
const HexagonTargetLowering &Lower;
HexagonDAGToDAGISel &ISel;
SelectionDAG &DAG;
const HexagonSubtarget &HST;
const unsigned HwLen;
HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
: Lower(getHexagonLowering(G)), ISel(HS), DAG(G),
HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
MVT getSingleVT(MVT ElemTy) const {
unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8);
return MVT::getVectorVT(ElemTy, NumElems);
}
MVT getPairVT(MVT ElemTy) const {
unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8);
return MVT::getVectorVT(ElemTy, NumElems);
}
void selectShuffle(SDNode *N);
void selectRor(SDNode *N);
private:
void materialize(const ResultStack &Results);
SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
enum : unsigned {
None,
PackMux,
};
OpRef concat(OpRef Va, OpRef Vb, ResultStack &Results);
OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
MutableArrayRef<int> NewMask, unsigned Options = None);
OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
MutableArrayRef<int> NewMask);
OpRef zerous(ShuffleMask SM, OpRef Va, ResultStack &Results);
OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
ResultStack &Results);
OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
ResultStack &Results);
OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
bool selectVectorConstants(SDNode *N);
bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
SDValue Va, SDValue Vb, SDNode *N);
};
}
// Return a submask of A that is shorter than A by |C| elements:
// - if C > 0, return a submask of A that starts at position C,
// - if C <= 0, return a submask of A that starts at 0 (reduce A by |C|).
static ArrayRef<int> subm(ArrayRef<int> A, int C) {
if (C > 0)
return { A.data()+C, A.size()-C };
return { A.data(), A.size()+C };
}
static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
MutableArrayRef<int> MaskR) {
unsigned VecLen = Mask.size();
assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
for (unsigned I = 0; I != VecLen; ++I) {
int M = Mask[I];
if (M < 0) {
MaskL[I] = MaskR[I] = -1;
} else if (unsigned(M) < VecLen) {
MaskL[I] = M;
MaskR[I] = -1;
} else {
MaskL[I] = -1;
MaskR[I] = M-VecLen;
}
}
}
static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
unsigned MaxLen) {
assert(A.size() > 0 && A.size() >= MaxLen);
int F = A[0];
int E = F;
for (unsigned I = 1; I != MaxLen; ++I) {
if (A[I] - E != Inc)
return { F, I };
E = A[I];
}
return { F, MaxLen };
}
static bool isUndef(ArrayRef<int> Mask) {
for (int Idx : Mask)
if (Idx != -1)
return false;
return true;
}
static bool isIdentity(ArrayRef<int> Mask) {
unsigned Size = Mask.size();
return findStrip(Mask, 1, Size) == std::make_pair(0, Size);
}
static bool isPermutation(ArrayRef<int> Mask) {
// Check by adding all numbers only works if there is no overflow.
assert(Mask.size() < 0x00007FFF && "Sanity failure");
int Sum = 0;
for (int Idx : Mask) {
if (Idx == -1)
return false;
Sum += Idx;
}
int N = Mask.size();
return 2*Sum == N*(N-1);
}
bool HvxSelector::selectVectorConstants(SDNode *N) {
// Constant vectors are generated as loads from constant pools.
// Since they are generated during the selection process, the main
// selection algorithm is not aware of them. Select them directly
// here.
if (!N->isMachineOpcode() && N->getOpcode() == ISD::LOAD) {
SDValue Addr = cast<LoadSDNode>(N)->getBasePtr();
unsigned AddrOpc = Addr.getOpcode();
if (AddrOpc == HexagonISD::AT_PCREL || AddrOpc == HexagonISD::CP) {
if (Addr.getOperand(0).getOpcode() == ISD::TargetConstantPool) {
ISel.Select(N);
return true;
}
}
}
bool Selected = false;
for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
Selected = selectVectorConstants(N->getOperand(I).getNode()) || Selected;
return Selected;
}
void HvxSelector::materialize(const ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {
dbgs() << "Materializing\n";
Results.print(dbgs(), DAG);
});
if (Results.empty())
return;
const SDLoc &dl(Results.InpNode);
std::vector<SDValue> Output;
for (unsigned I = 0, E = Results.size(); I != E; ++I) {
const NodeTemplate &Node = Results[I];
std::vector<SDValue> Ops;
for (const OpRef &R : Node.Ops) {
assert(R.isValid());
if (R.isValue()) {
Ops.push_back(R.OpV);
continue;
}
if (R.OpN & OpRef::Undef) {
MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
continue;
}
// R is an index of a result.
unsigned Part = R.OpN & OpRef::Whole;
int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
if (Idx < 0)
Idx += I;
assert(Idx >= 0 && unsigned(Idx) < Output.size());
SDValue Op = Output[Idx];
MVT OpTy = Op.getValueType().getSimpleVT();
if (Part != OpRef::Whole) {
assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
if (Op.getOpcode() == HexagonISD::VCOMBINE) {
Op = (Part == OpRef::HiHalf) ? Op.getOperand(0) : Op.getOperand(1);
} else {
MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
OpTy.getVectorNumElements()/2);
unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
: Hexagon::vsub_hi;
Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
}
}
Ops.push_back(Op);
} // for (Node : Results)
assert(Node.Ty != MVT::Other);
SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
? Ops.front().getNode()
: DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
Output.push_back(SDValue(ResN, 0));
}
SDNode *OutN = Output.back().getNode();
SDNode *InpN = Results.InpNode;
DEBUG_WITH_TYPE("isel", {
dbgs() << "Generated node:\n";
OutN->dumpr(&DAG);
});
ISel.ReplaceNode(InpN, OutN);
selectVectorConstants(OutN);
DAG.RemoveDeadNodes();
}
OpRef HvxSelector::concat(OpRef Lo, OpRef Hi, ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
const SDLoc &dl(Results.InpNode);
Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
DAG.getTargetConstant(Hexagon::HvxWRRegClassID, dl, MVT::i32),
Lo, DAG.getTargetConstant(Hexagon::vsub_lo, dl, MVT::i32),
Hi, DAG.getTargetConstant(Hexagon::vsub_hi, dl, MVT::i32),
});
return OpRef::res(Results.top());
}
// Va, Vb are single vectors, SM can be arbitrarily long.
OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
ResultStack &Results, MutableArrayRef<int> NewMask,
unsigned Options) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
if (!Va.isValid() || !Vb.isValid())
return OpRef::fail();
int VecLen = SM.Mask.size();
MVT Ty = getSingleVT(MVT::i8);
if (SM.MaxSrc - SM.MinSrc < int(HwLen)) {
if (SM.MaxSrc < int(HwLen)) {
memcpy(NewMask.data(), SM.Mask.data(), sizeof(int)*VecLen);
return Va;
}
if (SM.MinSrc >= int(HwLen)) {
for (int I = 0; I != VecLen; ++I) {
int M = SM.Mask[I];
if (M != -1)
M -= HwLen;
NewMask[I] = M;
}
return Vb;
}
const SDLoc &dl(Results.InpNode);
SDValue S = DAG.getTargetConstant(SM.MinSrc, dl, MVT::i32);
if (isUInt<3>(SM.MinSrc)) {
Results.push(Hexagon::V6_valignbi, Ty, {Vb, Va, S});
} else {
Results.push(Hexagon::A2_tfrsi, MVT::i32, {S});
unsigned Top = Results.top();
Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(Top)});
}
for (int I = 0; I != VecLen; ++I) {
int M = SM.Mask[I];
if (M != -1)
M -= SM.MinSrc;
NewMask[I] = M;
}
return OpRef::res(Results.top());
}
if (Options & PackMux) {
// If elements picked from Va and Vb have all different (source) indexes
// (relative to the start of the argument), do a mux, and update the mask.
BitVector Picked(HwLen);
SmallVector<uint8_t,128> MuxBytes(HwLen);
bool CanMux = true;
for (int I = 0; I != VecLen; ++I) {
int M = SM.Mask[I];
if (M == -1)
continue;
if (M >= int(HwLen))
M -= HwLen;
else
MuxBytes[M] = 0xFF;
if (Picked[M]) {
CanMux = false;
break;
}
NewMask[I] = M;
}
if (CanMux)
return vmuxs(MuxBytes, Va, Vb, Results);
}
return OpRef::fail();
}
OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
ResultStack &Results, MutableArrayRef<int> NewMask) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
unsigned HalfMask = 0;
unsigned LogHw = Log2_32(HwLen);
for (int M : SM.Mask) {
if (M == -1)
continue;
HalfMask |= (1u << (M >> LogHw));
}
if (HalfMask == 0)
return OpRef::undef(getPairVT(MVT::i8));
// If more than two halves are used, bail.
// TODO: be more aggressive here?
if (countPopulation(HalfMask) > 2)
return OpRef::fail();
MVT HalfTy = getSingleVT(MVT::i8);
OpRef Inp[2] = { Va, Vb };
OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
uint8_t HalfIdx[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
unsigned Idx = 0;
for (unsigned I = 0; I != 4; ++I) {
if ((HalfMask & (1u << I)) == 0)
continue;
assert(Idx < 2);
OpRef Op = Inp[I/2];
Out[Idx] = (I & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
HalfIdx[I] = Idx++;
}
int VecLen = SM.Mask.size();
for (int I = 0; I != VecLen; ++I) {
int M = SM.Mask[I];
if (M >= 0) {
uint8_t Idx = HalfIdx[M >> LogHw];
assert(Idx == 0 || Idx == 1);
M = (M & (HwLen-1)) + HwLen*Idx;
}
NewMask[I] = M;
}
return concat(Out[0], Out[1], Results);
}
OpRef HvxSelector::zerous(ShuffleMask SM, OpRef Va, ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
int VecLen = SM.Mask.size();
SmallVector<uint8_t,128> UsedBytes(VecLen);
bool HasUnused = false;
for (int I = 0; I != VecLen; ++I) {
if (SM.Mask[I] != -1)
UsedBytes[I] = 0xFF;
else
HasUnused = true;
}
if (!HasUnused)
return Va;
SDValue B = getVectorConstant(UsedBytes, SDLoc(Results.InpNode));
Results.push(Hexagon::V6_vand, getSingleVT(MVT::i8), {Va, OpRef(B)});
return OpRef::res(Results.top());
}
OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
MVT ByteTy = getSingleVT(MVT::i8);
MVT BoolTy = MVT::getVectorVT(MVT::i1, 8*HwLen); // XXX
const SDLoc &dl(Results.InpNode);
SDValue B = getVectorConstant(Bytes, dl);
Results.push(Hexagon::V6_vd0, ByteTy, {});
Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Va, Vb});
return OpRef::res(Results.top());
}
OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
size_t S = Bytes.size() / 2;
OpRef L = vmuxs({Bytes.data(), S}, OpRef::lo(Va), OpRef::lo(Vb), Results);
OpRef H = vmuxs({Bytes.data()+S, S}, OpRef::hi(Va), OpRef::hi(Vb), Results);
return concat(L, H, Results);
}
OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
unsigned VecLen = SM.Mask.size();
assert(HwLen == VecLen);
(void)VecLen;
assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
if (isIdentity(SM.Mask))
return Va;
if (isUndef(SM.Mask))
return OpRef::undef(getSingleVT(MVT::i8));
OpRef P = perfect(SM, Va, Results);
if (P.isValid())
return P;
return butterfly(SM, Va, Results);
}
OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
OpRef C = contracting(SM, Va, Vb, Results);
if (C.isValid())
return C;
int VecLen = SM.Mask.size();
SmallVector<int,128> NewMask(VecLen);
OpRef P = packs(SM, Va, Vb, Results, NewMask);
if (P.isValid())
return shuffs1(ShuffleMask(NewMask), P, Results);
SmallVector<int,128> MaskL(VecLen), MaskR(VecLen);
splitMask(SM.Mask, MaskL, MaskR);
OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
if (!L.isValid() || !R.isValid())
return OpRef::fail();
SmallVector<uint8_t,128> Bytes(VecLen);
for (int I = 0; I != VecLen; ++I) {
if (MaskL[I] != -1)
Bytes[I] = 0xFF;
}
return vmuxs(Bytes, L, R, Results);
}
OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
int VecLen = SM.Mask.size();
SmallVector<int,128> PackedMask(VecLen);
OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
if (P.isValid()) {
ShuffleMask PM(PackedMask);
OpRef E = expanding(PM, P, Results);
if (E.isValid())
return E;
OpRef L = shuffs1(PM.lo(), P, Results);
OpRef H = shuffs1(PM.hi(), P, Results);
if (L.isValid() && H.isValid())
return concat(L, H, Results);
}
OpRef R = perfect(SM, Va, Results);
if (R.isValid())
return R;
// TODO commute the mask and try the opposite order of the halves.
OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
if (L.isValid() && H.isValid())
return concat(L, H, Results);
return OpRef::fail();
}
OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
int VecLen = SM.Mask.size();
SmallVector<int,256> PackedMask(VecLen);
OpRef P = packp(SM, Va, Vb, Results, PackedMask);
if (P.isValid())
return shuffp1(ShuffleMask(PackedMask), P, Results);
SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
if (!L.isValid() || !R.isValid())
return OpRef::fail();
// Mux the results.
SmallVector<uint8_t,256> Bytes(VecLen);
for (int I = 0; I != VecLen; ++I) {
if (MaskL[I] != -1)
Bytes[I] = 0xFF;
}
return vmuxp(Bytes, L, R, Results);
}
bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
MVT ResTy, SDValue Va, SDValue Vb,
SDNode *N) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
MVT ElemTy = ResTy.getVectorElementType();
assert(ElemTy == MVT::i8);
unsigned VecLen = Mask.size();
bool HavePairs = (2*HwLen == VecLen);
MVT SingleTy = getSingleVT(MVT::i8);
SmallVector<SDValue,128> Ops;
for (int I : Mask) {
if (I < 0) {
Ops.push_back(ISel.selectUndef(dl, ElemTy));
continue;
}
SDValue Vec;
unsigned M = I;
if (M < VecLen) {
Vec = Va;
} else {
Vec = Vb;
M -= VecLen;
}
if (HavePairs) {
if (M < HwLen) {
Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
} else {
Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
M -= HwLen;
}
}
SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ElemTy, {Vec, Idx});
SDValue L = Lower.LowerOperation(Ex, DAG);
assert(L.getNode());
Ops.push_back(L);
}
SDValue LV;
if (2*HwLen == VecLen) {
SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
SDValue L0 = Lower.LowerOperation(B0, DAG);
SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
SDValue L1 = Lower.LowerOperation(B1, DAG);
// XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
// functions may expect to be called only for illegal operations, so
// make sure that they are not called for legal ones. Develop a better
// mechanism for dealing with this.
LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
} else {
SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
LV = Lower.LowerOperation(BV, DAG);
}
assert(!N->use_empty());
ISel.ReplaceNode(N, LV.getNode());
DAG.RemoveDeadNodes();
std::deque<SDNode*> SubNodes;
SubNodes.push_back(LV.getNode());
for (unsigned I = 0; I != SubNodes.size(); ++I) {
for (SDValue Op : SubNodes[I]->ops())
SubNodes.push_back(Op.getNode());
}
while (!SubNodes.empty()) {
SDNode *S = SubNodes.front();
SubNodes.pop_front();
if (S->use_empty())
continue;
// This isn't great, but users need to be selected before any nodes that
// they use. (The reason is to match larger patterns, and avoid nodes that
// cannot be matched on their own, e.g. ValueType, TokenFactor, etc.).
bool PendingUser = llvm::any_of(S->uses(), [&SubNodes](const SDNode *U) {
return llvm::any_of(SubNodes, [U](const SDNode *T) {
return T == U;
});
});
if (PendingUser)
SubNodes.push_back(S);
else
ISel.Select(S);
}
DAG.RemoveDeadNodes();
return true;
}
OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
if (!Va.isValid() || !Vb.isValid())
return OpRef::fail();
// Contracting shuffles, i.e. instructions that always discard some bytes
// from the operand vectors.
//
// V6_vshuff{e,o}b
// V6_vdealb4w
// V6_vpack{e,o}{b,h}
int VecLen = SM.Mask.size();
std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
MVT ResTy = getSingleVT(MVT::i8);
// The following shuffles only work for bytes and halfwords. This requires
// the strip length to be 1 or 2.
if (Strip.second != 1 && Strip.second != 2)
return OpRef::fail();
// The patterns for the shuffles, in terms of the starting offsets of the
// consecutive strips (L = length of the strip, N = VecLen):
//
// vpacke: 0, 2L, 4L ... N+0, N+2L, N+4L ... L = 1 or 2
// vpacko: L, 3L, 5L ... N+L, N+3L, N+5L ... L = 1 or 2
//
// vshuffe: 0, N+0, 2L, N+2L, 4L ... L = 1 or 2
// vshuffo: L, N+L, 3L, N+3L, 5L ... L = 1 or 2
//
// vdealb4w: 0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
// The value of the element in the mask following the strip will decide
// what kind of a shuffle this can be.
int NextInMask = SM.Mask[Strip.second];
// Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
// for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
// satisfy this.
if (NextInMask < VecLen) {
// vpack{e,o} or vdealb4w
if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) {
int N = VecLen;
// Check if this is vdealb4w (L=1).
for (int I = 0; I != N/4; ++I)
if (SM.Mask[I] != 4*I)
return OpRef::fail();
for (int I = 0; I != N/4; ++I)
if (SM.Mask[I+N/4] != 2 + 4*I)
return OpRef::fail();
for (int I = 0; I != N/4; ++I)
if (SM.Mask[I+N/2] != N + 4*I)
return OpRef::fail();
for (int I = 0; I != N/4; ++I)
if (SM.Mask[I+3*N/4] != N+2 + 4*I)
return OpRef::fail();
// Matched mask for vdealb4w.
Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va});
return OpRef::res(Results.top());
}
// Check if this is vpack{e,o}.
int N = VecLen;
int L = Strip.second;
// Check if the first strip starts at 0 or at L.
if (Strip.first != 0 && Strip.first != L)
return OpRef::fail();
// Examine the rest of the mask.
for (int I = L; I < N; I += L) {
auto S = findStrip(subm(SM.Mask,I), 1, N-I);
// Check whether the mask element at the beginning of each strip
// increases by 2L each time.
if (S.first - Strip.first != 2*I)
return OpRef::fail();
// Check whether each strip is of the same length.
if (S.second != unsigned(L))
return OpRef::fail();
}
// Strip.first == 0 => vpacke
// Strip.first == L => vpacko
assert(Strip.first == 0 || Strip.first == L);
using namespace Hexagon;
NodeTemplate Res;
Res.Opc = Strip.second == 1 // Number of bytes.
? (Strip.first == 0 ? V6_vpackeb : V6_vpackob)
: (Strip.first == 0 ? V6_vpackeh : V6_vpackoh);
Res.Ty = ResTy;
Res.Ops = { Vb, Va };
Results.push(Res);
return OpRef::res(Results.top());
}
// Check if this is vshuff{e,o}.
int N = VecLen;
int L = Strip.second;
std::pair<int,unsigned> PrevS = Strip;
bool Flip = false;
for (int I = L; I < N; I += L) {
auto S = findStrip(subm(SM.Mask,I), 1, N-I);
if (S.second != PrevS.second)
return OpRef::fail();
int Diff = Flip ? PrevS.first - S.first + 2*L
: S.first - PrevS.first;
if (Diff != N)
return OpRef::fail();
Flip ^= true;
PrevS = S;
}
// Strip.first == 0 => vshuffe
// Strip.first == L => vshuffo
assert(Strip.first == 0 || Strip.first == L);
using namespace Hexagon;
NodeTemplate Res;
Res.Opc = Strip.second == 1 // Number of bytes.
? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob)
: (Strip.first == 0 ? V6_vshufeh : V6_vshufoh);
Res.Ty = ResTy;
Res.Ops = { Vb, Va };
Results.push(Res);
return OpRef::res(Results.top());
}
OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
// Expanding shuffles (using all elements and inserting into larger vector):
//
// V6_vunpacku{b,h} [*]
//
// [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
//
// Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
// they are not shuffles.
//
// The argument is a single vector.
int VecLen = SM.Mask.size();
assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
// The patterns for the unpacks, in terms of the starting offsets of the
// consecutive strips (L = length of the strip, N = VecLen):
//
// vunpacku: 0, -1, L, -1, 2L, -1 ...
if (Strip.first != 0)
return OpRef::fail();
// The vunpackus only handle byte and half-word.
if (Strip.second != 1 && Strip.second != 2)
return OpRef::fail();
int N = VecLen;
int L = Strip.second;
// First, check the non-ignored strips.
for (int I = 2*L; I < 2*N; I += 2*L) {
auto S = findStrip(subm(SM.Mask,I), 1, N-I);
if (S.second != unsigned(L))
return OpRef::fail();
if (2*S.first != I)
return OpRef::fail();
}
// Check the -1s.
for (int I = L; I < 2*N; I += 2*L) {
auto S = findStrip(subm(SM.Mask,I), 0, N-I);
if (S.first != -1 || S.second != unsigned(L))
return OpRef::fail();
}
unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
: Hexagon::V6_vunpackuh;
Results.push(Opc, getPairVT(MVT::i8), {Va});
return OpRef::res(Results.top());
}
OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
// V6_vdeal{b,h}
// V6_vshuff{b,h}
// V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2})
// V6_vshuffvdd (V6_vshuff)
// V6_dealvdd (V6_vdeal)
int VecLen = SM.Mask.size();
assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
unsigned LogLen = Log2_32(VecLen);
unsigned HwLog = Log2_32(HwLen);
// The result length must be the same as the length of a single vector,
// or a vector pair.
assert(LogLen == HwLog || LogLen == HwLog+1);
bool Extend = (LogLen == HwLog);
if (!isPermutation(SM.Mask))
return OpRef::fail();
SmallVector<unsigned,8> Perm(LogLen);
// Check if this could be a perfect shuffle, or a combination of perfect
// shuffles.
//
// Consider this permutation (using hex digits to make the ASCII diagrams
// easier to read):
// { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
// This is a "deal" operation: divide the input into two halves, and
// create the output by picking elements by alternating between these two
// halves:
// 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*]
// 8 9 A B C D E F
//
// Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
// a somwehat different mechanism that could be used to perform shuffle/
// deal operations: a 2x2 transpose.
// Consider the halves of inputs again, they can be interpreted as a 2x8
// matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
// together. Now, when considering 2 elements at a time, it will be a 2x4
// matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
// 01 23 45 67
// 89 AB CD EF
// With groups of 4, this will become a single 2x2 matrix, and so on.
//
// The 2x2 transpose instruction works by transposing each of the 2x2
// matrices (or "sub-matrices"), given a specific group size. For example,
// if the group size is 1 (i.e. each element is its own group), there
// will be four transposes of the four 2x2 matrices that form the 2x8.
// For example, with the inputs as above, the result will be:
// 0 8 2 A 4 C 6 E
// 1 9 3 B 5 D 7 F
// Now, this result can be tranposed again, but with the group size of 2:
// 08 19 4C 5D
// 2A 3B 6E 7F
// If we then transpose that result, but with the group size of 4, we get:
// 0819 2A3B
// 4C5D 6E7F
// If we concatenate these two rows, it will be
// 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
// which is the same as the "deal" [*] above.
//
// In general, a "deal" of individual elements is a series of 2x2 transposes,
// with changing group size. HVX has two instructions:
// Vdd = V6_vdealvdd Vu, Vv, Rt
// Vdd = V6_shufvdd Vu, Vv, Rt
// that perform exactly that. The register Rt controls which transposes are
// going to happen: a bit at position n (counting from 0) indicates that a
// transpose with a group size of 2^n will take place. If multiple bits are
// set, multiple transposes will happen: vdealvdd will perform them starting
// with the largest group size, vshuffvdd will do them in the reverse order.
//
// The main observation is that each 2x2 transpose corresponds to swapping
// columns of bits in the binary representation of the values.
//
// The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
// in a given column. The * denote the columns that will be swapped.
// The transpose with the group size 2^n corresponds to swapping columns
// 3 (the highest log) and log2(n):
//
// 3 2 1 0 0 2 1 3 0 2 3 1
// * * * * * *
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0
// 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1
// 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1
// 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0
// 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0
// 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1
// 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1
// 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0
// 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0
// A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1
// B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1
// C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0
// D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0
// E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1
// F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1
auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) {
unsigned X = Mask[0] ^ Mask[Num/2];
// Check that the first half has the X's bits clear.
if ((Mask[0] & X) != 0)
return 0u;
for (unsigned I = 1; I != Num/2; ++I) {
if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X)
return 0u;
if ((Mask[I] & X) != 0)
return 0u;
}
return X;
};
// Create a vector of log2's for each column: Perm[i] corresponds to
// the i-th bit (lsb is 0).
assert(VecLen > 2);
for (unsigned I = VecLen; I >= 2; I >>= 1) {
// Examine the initial segment of Mask of size I.
unsigned X = XorPow2(SM.Mask, I);
if (!isPowerOf2_32(X))
return OpRef::fail();
// Check the other segments of Mask.
for (int J = 0; J < VecLen; J += I) {
if (XorPow2(subm(SM.Mask, -J), I) != X)
return OpRef::fail();
}
Perm[Log2_32(X)] = Log2_32(I)-1;
}
// Once we have Perm, represent it as cycles. Denote the maximum log2
// (equal to log2(VecLen)-1) as M. The cycle containing M can then be
// written as (M a1 a2 a3 ... an). That cycle can be broken up into
// simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
// order being from left to right. Any (contiguous) segment where the
// values ai, ai+1...aj are either all increasing or all decreasing,
// can be implemented via a single vshuffvdd/vdealvdd respectively.
//
// If there is a cycle (a1 a2 ... an) that does not involve M, it can
// be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
// then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
// can be used to generate a sequence of vshuffvdd/vdealvdd.
//
// Example:
// Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
// as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
// (4 0 1)(4 0)(4 2 3)(4 2).
// It can then be expanded into swaps as
// (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
// and broken up into "increasing" segments as
// [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
// This is equivalent to
// (4 0 1)(4 0 2 3)(4 2),
// which can be implemented as 3 vshufvdd instructions.
using CycleType = SmallVector<unsigned,8>;
std::set<CycleType> Cycles;
std::set<unsigned> All;
for (unsigned I : Perm)
All.insert(I);
// If the cycle contains LogLen-1, move it to the front of the cycle.
// Otherwise, return the cycle unchanged.
auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
unsigned LogPos, N = C.size();
for (LogPos = 0; LogPos != N; ++LogPos)
if (C[LogPos] == LogLen-1)
break;
if (LogPos == N)
return C;
CycleType NewC(C.begin()+LogPos, C.end());
NewC.append(C.begin(), C.begin()+LogPos);
return NewC;
};
auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
// Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
// for bytes zero is included, for halfwords is not.
if (Cs.size() != 1)
return 0u;
const CycleType &C = *Cs.begin();
if (C[0] != Len-1)
return 0u;
int D = Len - C.size();
if (D != 0 && D != 1)
return 0u;
bool IsDeal = true, IsShuff = true;
for (unsigned I = 1; I != Len-D; ++I) {
if (C[I] != Len-1-I)
IsDeal = false;
if (C[I] != I-(1-D)) // I-1, I
IsShuff = false;
}
// At most one, IsDeal or IsShuff, can be non-zero.
assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh };
static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh };
return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
};
while (!All.empty()) {
unsigned A = *All.begin();
All.erase(A);
CycleType C;
C.push_back(A);
for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
C.push_back(B);
All.erase(B);
}
if (C.size() <= 1)
continue;
Cycles.insert(canonicalize(C));
}
MVT SingleTy = getSingleVT(MVT::i8);
MVT PairTy = getPairVT(MVT::i8);
// Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
if (unsigned(VecLen) == HwLen) {
if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
Results.push(SingleOpc, SingleTy, {Va});
return OpRef::res(Results.top());
}
}
SmallVector<unsigned,8> SwapElems;
if (HwLen == unsigned(VecLen))
SwapElems.push_back(LogLen-1);
for (const CycleType &C : Cycles) {
unsigned First = (C[0] == LogLen-1) ? 1 : 0;
SwapElems.append(C.begin()+First, C.end());
if (First == 0)
SwapElems.push_back(C[0]);
}
const SDLoc &dl(Results.InpNode);
OpRef Arg = !Extend ? Va
: concat(Va, OpRef::undef(SingleTy), Results);
for (unsigned I = 0, E = SwapElems.size(); I != E; ) {
bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1];
unsigned S = (1u << SwapElems[I]);
if (I < E-1) {
while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1]))
S |= 1u << SwapElems[I];
// The above loop will not add a bit for the final SwapElems[I+1],
// so add it here.
S |= 1u << SwapElems[I];
}
++I;
NodeTemplate Res;
Results.push(Hexagon::A2_tfrsi, MVT::i32,
{ DAG.getTargetConstant(S, dl, MVT::i32) });
Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
Res.Ty = PairTy;
Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) };
Results.push(Res);
Arg = OpRef::res(Results.top());
}
return !Extend ? Arg : OpRef::lo(Arg);
}
OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
// Butterfly shuffles.
//
// V6_vdelta
// V6_vrdelta
// V6_vror
// The assumption here is that all elements picked by Mask are in the
// first operand to the vector_shuffle. This assumption is enforced
// by the caller.
MVT ResTy = getSingleVT(MVT::i8);
PermNetwork::Controls FC, RC;
const SDLoc &dl(Results.InpNode);
int VecLen = SM.Mask.size();
for (int M : SM.Mask) {
if (M != -1 && M >= VecLen)
return OpRef::fail();
}
// Try the deltas/benes for both single vectors and vector pairs.
ForwardDeltaNetwork FN(SM.Mask);
if (FN.run(FC)) {
SDValue Ctl = getVectorConstant(FC, dl);
Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
return OpRef::res(Results.top());
}
// Try reverse delta.
ReverseDeltaNetwork RN(SM.Mask);
if (RN.run(RC)) {
SDValue Ctl = getVectorConstant(RC, dl);
Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
return OpRef::res(Results.top());
}
// Do Benes.
BenesNetwork BN(SM.Mask);
if (BN.run(FC, RC)) {
SDValue CtlF = getVectorConstant(FC, dl);
SDValue CtlR = getVectorConstant(RC, dl);
Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
Results.push(Hexagon::V6_vrdelta, ResTy,
{OpRef::res(-1), OpRef(CtlR)});
return OpRef::res(Results.top());
}
return OpRef::fail();
}
SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
const SDLoc &dl) {
SmallVector<SDValue, 128> Elems;
for (uint8_t C : Data)
Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
SDValue LV = Lower.LowerOperation(BV, DAG);
DAG.RemoveDeadNode(BV.getNode());
return LV;
}
void HvxSelector::selectShuffle(SDNode *N) {
DEBUG_WITH_TYPE("isel", {
dbgs() << "Starting " << __func__ << " on node:\n";
N->dump(&DAG);
});
MVT ResTy = N->getValueType(0).getSimpleVT();
// Assume that vector shuffles operate on vectors of bytes.
assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
auto *SN = cast<ShuffleVectorSDNode>(N);
std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
// This shouldn't really be necessary. Is it?
for (int &Idx : Mask)
if (Idx != -1 && Idx < 0)
Idx = -1;
unsigned VecLen = Mask.size();
bool HavePairs = (2*HwLen == VecLen);
assert(ResTy.getSizeInBits() / 8 == VecLen);
// Vd = vector_shuffle Va, Vb, Mask
//
bool UseLeft = false, UseRight = false;
for (unsigned I = 0; I != VecLen; ++I) {
if (Mask[I] == -1)
continue;
unsigned Idx = Mask[I];
assert(Idx < 2*VecLen);
if (Idx < VecLen)
UseLeft = true;
else
UseRight = true;
}
DEBUG_WITH_TYPE("isel", {
dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
<< UseLeft << " UseRight=" << UseRight << " HavePairs="
<< HavePairs << '\n';
});
// If the mask is all -1's, generate "undef".
if (!UseLeft && !UseRight) {
ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
DAG.RemoveDeadNode(N);
return;
}
SDValue Vec0 = N->getOperand(0);
SDValue Vec1 = N->getOperand(1);
ResultStack Results(SN);
Results.push(TargetOpcode::COPY, ResTy, {Vec0});
Results.push(TargetOpcode::COPY, ResTy, {Vec1});
OpRef Va = OpRef::res(Results.top()-1);
OpRef Vb = OpRef::res(Results.top());
OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
: shuffp2(ShuffleMask(Mask), Va, Vb, Results);
bool Done = Res.isValid();
if (Done) {
// Make sure that Res is on the stack before materializing.
Results.push(TargetOpcode::COPY, ResTy, {Res});
materialize(Results);
} else {
Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
}
if (!Done) {
#ifndef NDEBUG
dbgs() << "Unhandled shuffle:\n";
SN->dumpr(&DAG);
#endif
llvm_unreachable("Failed to select vector shuffle");
}
}
void HvxSelector::selectRor(SDNode *N) {
// If this is a rotation by less than 8, use V6_valignbi.
MVT Ty = N->getValueType(0).getSimpleVT();
const SDLoc &dl(N);
SDValue VecV = N->getOperand(0);
SDValue RotV = N->getOperand(1);
SDNode *NewN = nullptr;
if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
unsigned S = CN->getZExtValue();
if (S % HST.getVectorLength() == 0) {
NewN = VecV.getNode();
} else if (isUInt<3>(S)) {
SDValue C = DAG.getTargetConstant(S, dl, MVT::i32);
NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
{VecV, VecV, C});
}
}
if (!NewN)
NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
ISel.ReplaceNode(N, NewN);
DAG.RemoveDeadNode(N);
}
void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
HvxSelector(*this, *CurDAG).selectShuffle(N);
}
void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
HvxSelector(*this, *CurDAG).selectRor(N);
}