llvm-project/llvm/lib/Target/AArch64/AArch64FastISel.cpp

2706 lines
87 KiB
C++

//===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the AArch64-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// AArch64GenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
namespace {
class AArch64FastISel : public FastISel {
class Address {
public:
typedef enum {
RegBase,
FrameIndexBase
} BaseKind;
private:
BaseKind Kind;
union {
unsigned Reg;
int FI;
} Base;
int64_t Offset;
const GlobalValue *GV;
public:
Address() : Kind(RegBase), Offset(0), GV(nullptr) { Base.Reg = 0; }
void setKind(BaseKind K) { Kind = K; }
BaseKind getKind() const { return Kind; }
bool isRegBase() const { return Kind == RegBase; }
bool isFIBase() const { return Kind == FrameIndexBase; }
void setReg(unsigned Reg) {
assert(isRegBase() && "Invalid base register access!");
Base.Reg = Reg;
}
unsigned getReg() const {
assert(isRegBase() && "Invalid base register access!");
return Base.Reg;
}
void setFI(unsigned FI) {
assert(isFIBase() && "Invalid base frame index access!");
Base.FI = FI;
}
unsigned getFI() const {
assert(isFIBase() && "Invalid base frame index access!");
return Base.FI;
}
void setOffset(int64_t O) { Offset = O; }
int64_t getOffset() { return Offset; }
void setGlobalValue(const GlobalValue *G) { GV = G; }
const GlobalValue *getGlobalValue() { return GV; }
bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
};
/// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
const AArch64Subtarget *Subtarget;
LLVMContext *Context;
bool FastLowerArguments() override;
bool FastLowerCall(CallLoweringInfo &CLI) override;
bool FastLowerIntrinsicCall(const IntrinsicInst *II) override;
private:
// Selection routines.
bool SelectLoad(const Instruction *I);
bool SelectStore(const Instruction *I);
bool SelectBranch(const Instruction *I);
bool SelectIndirectBr(const Instruction *I);
bool SelectCmp(const Instruction *I);
bool SelectSelect(const Instruction *I);
bool SelectFPExt(const Instruction *I);
bool SelectFPTrunc(const Instruction *I);
bool SelectFPToInt(const Instruction *I, bool Signed);
bool SelectIntToFP(const Instruction *I, bool Signed);
bool SelectRem(const Instruction *I, unsigned ISDOpcode);
bool SelectRet(const Instruction *I);
bool SelectTrunc(const Instruction *I);
bool SelectIntExt(const Instruction *I);
bool SelectMul(const Instruction *I);
bool SelectShift(const Instruction *I, bool IsLeftShift, bool IsArithmetic);
bool SelectBitCast(const Instruction *I);
// Utility helper routines.
bool isTypeLegal(Type *Ty, MVT &VT);
bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
bool ComputeAddress(const Value *Obj, Address &Addr);
bool ComputeCallAddress(const Value *V, Address &Addr);
bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
bool UseUnscaled);
void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
unsigned Flags, MachineMemOperand *MMO,
bool UseUnscaled);
bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
unsigned Alignment);
bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
const Value *Cond);
// Emit functions.
bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
MachineMemOperand *MMO = nullptr, bool UseUnscaled = false);
bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
MachineMemOperand *MMO = nullptr, bool UseUnscaled = false);
unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
unsigned Emit_MUL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned Emit_SMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned Emit_UMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned Emit_LSL_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Imm);
unsigned Emit_LSR_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Imm);
unsigned Emit_ASR_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Imm);
unsigned AArch64MaterializeInt(const ConstantInt *CI, MVT VT);
unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT);
unsigned AArch64MaterializeGV(const GlobalValue *GV);
// Call handling routines.
private:
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
bool ProcessCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
unsigned &NumBytes);
bool FinishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
public:
// Backend specific FastISel code.
unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
unsigned TargetMaterializeConstant(const Constant *C) override;
explicit AArch64FastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo)
: FastISel(funcInfo, libInfo) {
Subtarget = &TM.getSubtarget<AArch64Subtarget>();
Context = &funcInfo.Fn->getContext();
}
bool TargetSelectInstruction(const Instruction *I) override;
#include "AArch64GenFastISel.inc"
};
} // end anonymous namespace
#include "AArch64GenCallingConv.inc"
CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
if (CC == CallingConv::WebKit_JS)
return CC_AArch64_WebKit_JS;
return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
}
unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
"Alloca should always return a pointer.");
// Don't handle dynamic allocas.
if (!FuncInfo.StaticAllocaMap.count(AI))
return 0;
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addFrameIndex(SI->second)
.addImm(0)
.addImm(0);
return ResultReg;
}
return 0;
}
unsigned AArch64FastISel::AArch64MaterializeInt(const ConstantInt *CI, MVT VT) {
if (VT > MVT::i64)
return 0;
return FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
}
unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
if (VT != MVT::f32 && VT != MVT::f64)
return 0;
const APFloat Val = CFP->getValueAPF();
bool Is64Bit = (VT == MVT::f64);
// This checks to see if we can use FMOV instructions to materialize
// a constant, otherwise we have to materialize via the constant pool.
if (TLI.isFPImmLegal(Val, VT)) {
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
// Positive zero (+0.0) has to be materialized with a fmov from the zero
// register, because the immediate version of fmov cannot encode zero.
if (Val.isPosZero()) {
unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
unsigned Opc = Is64Bit ? AArch64::FMOVDr : AArch64::FMOVSr;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(ZReg, getKillRegState(true));
return ResultReg;
}
int Imm = Is64Bit ? AArch64_AM::getFP64Imm(Val)
: AArch64_AM::getFP32Imm(Val);
unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addImm(Imm);
return ResultReg;
}
// Materialize via constant pool. MachineConstantPool wants an explicit
// alignment.
unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
if (Align == 0)
Align = DL.getTypeAllocSize(CFP->getType());
unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(ADRPReg)
.addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
return ResultReg;
}
unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
// We can't handle thread-local variables quickly yet.
if (GV->isThreadLocal())
return 0;
// MachO still uses GOT for large code-model accesses, but ELF requires
// movz/movk sequences, which FastISel doesn't handle yet.
if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
return 0;
unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
EVT DestEVT = TLI.getValueType(GV->getType(), true);
if (!DestEVT.isSimple())
return 0;
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
unsigned ResultReg;
if (OpFlags & AArch64II::MO_GOT) {
// ADRP + LDRX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
ResultReg)
.addReg(ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
AArch64II::MO_NC);
} else {
// ADRP + ADDX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addReg(ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
.addImm(0);
}
return ResultReg;
}
unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!CEVT.isSimple())
return 0;
MVT VT = CEVT.getSimpleVT();
if (const auto *CI = dyn_cast<ConstantInt>(C))
return AArch64MaterializeInt(CI, VT);
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return AArch64MaterializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return AArch64MaterializeGV(GV);
return 0;
}
// Computes the address to get to an object.
bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
// Don't walk into other basic blocks unless the object is an alloca from
// another block, otherwise it may not have a virtual register assigned.
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
Opcode = I->getOpcode();
U = I;
}
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
Opcode = C->getOpcode();
U = C;
}
if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
if (Ty->getAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
switch (Opcode) {
default:
break;
case Instruction::BitCast: {
// Look through bitcasts.
return ComputeAddress(U->getOperand(0), Addr);
}
case Instruction::IntToPtr: {
// Look past no-op inttoptrs.
if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
return ComputeAddress(U->getOperand(0), Addr);
break;
}
case Instruction::PtrToInt: {
// Look past no-op ptrtoints.
if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
return ComputeAddress(U->getOperand(0), Addr);
break;
}
case Instruction::GetElementPtr: {
Address SavedAddr = Addr;
uint64_t TmpOffset = Addr.getOffset();
// Iterate through the GEP folding the constants into offsets where
// we can.
gep_type_iterator GTI = gep_type_begin(U);
for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
++i, ++GTI) {
const Value *Op = *i;
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
TmpOffset += SL->getElementOffset(Idx);
} else {
uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
for (;;) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
// Constant-offset addressing.
TmpOffset += CI->getSExtValue() * S;
break;
}
if (canFoldAddIntoGEP(U, Op)) {
// A compatible add with a constant operand. Fold the constant.
ConstantInt *CI =
cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
TmpOffset += CI->getSExtValue() * S;
// Iterate on the other operand.
Op = cast<AddOperator>(Op)->getOperand(0);
continue;
}
// Unsupported
goto unsupported_gep;
}
}
}
// Try to grab the base operand now.
Addr.setOffset(TmpOffset);
if (ComputeAddress(U->getOperand(0), Addr))
return true;
// We failed, restore everything and try the other options.
Addr = SavedAddr;
unsupported_gep:
break;
}
case Instruction::Alloca: {
const AllocaInst *AI = cast<AllocaInst>(Obj);
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
Addr.setKind(Address::FrameIndexBase);
Addr.setFI(SI->second);
return true;
}
break;
}
case Instruction::Add:
// Adds of constants are common and easy enough.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Addr.setOffset(Addr.getOffset() + (uint64_t)CI->getSExtValue());
return ComputeAddress(U->getOperand(0), Addr);
}
break;
}
// Try to get this in a register if nothing else has worked.
if (!Addr.isValid())
Addr.setReg(getRegForValue(Obj));
return Addr.isValid();
}
bool AArch64FastISel::ComputeCallAddress(const Value *V, Address &Addr) {
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
bool InMBB = true;
if (const auto *I = dyn_cast<Instruction>(V)) {
Opcode = I->getOpcode();
U = I;
InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
} else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
Opcode = C->getOpcode();
U = C;
}
switch (Opcode) {
default: break;
case Instruction::BitCast:
// Look past bitcasts if its operand is in the same BB.
if (InMBB)
return ComputeCallAddress(U->getOperand(0), Addr);
break;
case Instruction::IntToPtr:
// Look past no-op inttoptrs if its operand is in the same BB.
if (InMBB &&
TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
return ComputeCallAddress(U->getOperand(0), Addr);
break;
case Instruction::PtrToInt:
// Look past no-op ptrtoints if its operand is in the same BB.
if (InMBB &&
TLI.getValueType(U->getType()) == TLI.getPointerTy())
return ComputeCallAddress(U->getOperand(0), Addr);
break;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Addr.setGlobalValue(GV);
return true;
}
// If all else fails, try to materialize the value in a register.
if (!Addr.getGlobalValue()) {
Addr.setReg(getRegForValue(V));
return Addr.getReg() != 0;
}
return false;
}
bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
// Only handle simple types.
if (evt == MVT::Other || !evt.isSimple())
return false;
VT = evt.getSimpleVT();
// This is a legal type, but it's not something we handle in fast-isel.
if (VT == MVT::f128)
return false;
// Handle all other legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
if (isTypeLegal(Ty, VT))
return true;
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now. For stores, this reflects truncation.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
int64_t ScaleFactor, bool UseUnscaled) {
bool needsLowering = false;
int64_t Offset = Addr.getOffset();
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f32:
case MVT::f64:
if (!UseUnscaled)
// Using scaled, 12-bit, unsigned immediate offsets.
needsLowering = ((Offset & 0xfff) != Offset);
else
// Using unscaled, 9-bit, signed immediate offsets.
needsLowering = (Offset > 256 || Offset < -256);
break;
}
//If this is a stack pointer and the offset needs to be simplified then put
// the alloca address into a register, set the base type back to register and
// continue. This should almost never happen.
if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addFrameIndex(Addr.getFI())
.addImm(0)
.addImm(0);
Addr.setKind(Address::RegBase);
Addr.setReg(ResultReg);
}
// Since the offset is too large for the load/store instruction get the
// reg+offset into a register.
if (needsLowering) {
uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
UnscaledOffset, MVT::i64);
if (ResultReg == 0)
return false;
Addr.setReg(ResultReg);
Addr.setOffset(0);
}
return true;
}
void AArch64FastISel::AddLoadStoreOperands(Address &Addr,
const MachineInstrBuilder &MIB,
unsigned Flags,
MachineMemOperand *MMO,
bool UseUnscaled) {
int64_t Offset = Addr.getOffset();
// Frame base works a bit differently. Handle it separately.
if (Addr.getKind() == Address::FrameIndexBase) {
int FI = Addr.getFI();
// FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
// and alignment should be based on the VT.
MMO = FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(FI, Offset), Flags,
MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
// Now add the rest of the operands.
MIB.addFrameIndex(FI).addImm(Offset);
} else {
// Now add the rest of the operands.
MIB.addReg(Addr.getReg());
MIB.addImm(Offset);
}
if (MMO)
MIB.addMemOperand(MMO);
}
bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
MachineMemOperand *MMO, bool UseUnscaled) {
// Negative offsets require unscaled, 9-bit, signed immediate offsets.
// Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
if (!UseUnscaled && Addr.getOffset() < 0)
UseUnscaled = true;
unsigned Opc;
const TargetRegisterClass *RC;
bool VTIsi1 = false;
int64_t ScaleFactor = 0;
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
VTIsi1 = true;
// Intentional fall-through.
case MVT::i8:
Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui;
RC = &AArch64::GPR32RegClass;
ScaleFactor = 1;
break;
case MVT::i16:
Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui;
RC = &AArch64::GPR32RegClass;
ScaleFactor = 2;
break;
case MVT::i32:
Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui;
RC = &AArch64::GPR32RegClass;
ScaleFactor = 4;
break;
case MVT::i64:
Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui;
RC = &AArch64::GPR64RegClass;
ScaleFactor = 8;
break;
case MVT::f32:
Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui;
RC = TLI.getRegClassFor(VT);
ScaleFactor = 4;
break;
case MVT::f64:
Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui;
RC = TLI.getRegClassFor(VT);
ScaleFactor = 8;
break;
}
// Scale the offset.
if (!UseUnscaled) {
int64_t Offset = Addr.getOffset();
if (Offset & (ScaleFactor - 1))
// Retry using an unscaled, 9-bit, signed immediate offset.
return EmitLoad(VT, ResultReg, Addr, MMO, /*UseUnscaled*/ true);
Addr.setOffset(Offset / ScaleFactor);
}
// Simplify this down to something we can handle.
if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
return false;
// Create the base instruction, then add the operands.
ResultReg = createResultReg(RC);
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg);
AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, MMO, UseUnscaled);
// Loading an i1 requires special handling.
if (VTIsi1) {
MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass);
unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
ANDReg)
.addReg(ResultReg)
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
ResultReg = ANDReg;
}
return true;
}
bool AArch64FastISel::SelectLoad(const Instruction *I) {
MVT VT;
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
return false;
// See if we can handle this address.
Address Addr;
if (!ComputeAddress(I->getOperand(0), Addr))
return false;
unsigned ResultReg;
if (!EmitLoad(VT, ResultReg, Addr, createMachineMemOperandFor(I)))
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
MachineMemOperand *MMO, bool UseUnscaled) {
// Negative offsets require unscaled, 9-bit, signed immediate offsets.
// Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
if (!UseUnscaled && Addr.getOffset() < 0)
UseUnscaled = true;
unsigned StrOpc;
bool VTIsi1 = false;
int64_t ScaleFactor = 0;
// Using scaled, 12-bit, unsigned immediate offsets.
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
VTIsi1 = true;
case MVT::i8:
StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui;
ScaleFactor = 1;
break;
case MVT::i16:
StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui;
ScaleFactor = 2;
break;
case MVT::i32:
StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui;
ScaleFactor = 4;
break;
case MVT::i64:
StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui;
ScaleFactor = 8;
break;
case MVT::f32:
StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui;
ScaleFactor = 4;
break;
case MVT::f64:
StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui;
ScaleFactor = 8;
break;
}
// Scale the offset.
if (!UseUnscaled) {
int64_t Offset = Addr.getOffset();
if (Offset & (ScaleFactor - 1))
// Retry using an unscaled, 9-bit, signed immediate offset.
return EmitStore(VT, SrcReg, Addr, MMO, /*UseUnscaled*/ true);
Addr.setOffset(Offset / ScaleFactor);
}
// Simplify this down to something we can handle.
if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
return false;
// Storing an i1 requires special handling.
if (VTIsi1) {
MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
ANDReg)
.addReg(SrcReg)
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
SrcReg = ANDReg;
}
// Create the base instruction, then add the operands.
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(StrOpc)).addReg(SrcReg);
AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, MMO, UseUnscaled);
return true;
}
bool AArch64FastISel::SelectStore(const Instruction *I) {
MVT VT;
Value *Op0 = I->getOperand(0);
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
cast<StoreInst>(I)->isAtomic())
return false;
// Get the value to be stored into a register.
unsigned SrcReg = getRegForValue(Op0);
if (SrcReg == 0)
return false;
// See if we can handle this address.
Address Addr;
if (!ComputeAddress(I->getOperand(1), Addr))
return false;
if (!EmitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
return false;
return true;
}
static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
switch (Pred) {
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_UEQ:
default:
// AL is our "false" for now. The other two need more compares.
return AArch64CC::AL;
case CmpInst::ICMP_EQ:
case CmpInst::FCMP_OEQ:
return AArch64CC::EQ;
case CmpInst::ICMP_SGT:
case CmpInst::FCMP_OGT:
return AArch64CC::GT;
case CmpInst::ICMP_SGE:
case CmpInst::FCMP_OGE:
return AArch64CC::GE;
case CmpInst::ICMP_UGT:
case CmpInst::FCMP_UGT:
return AArch64CC::HI;
case CmpInst::FCMP_OLT:
return AArch64CC::MI;
case CmpInst::ICMP_ULE:
case CmpInst::FCMP_OLE:
return AArch64CC::LS;
case CmpInst::FCMP_ORD:
return AArch64CC::VC;
case CmpInst::FCMP_UNO:
return AArch64CC::VS;
case CmpInst::FCMP_UGE:
return AArch64CC::PL;
case CmpInst::ICMP_SLT:
case CmpInst::FCMP_ULT:
return AArch64CC::LT;
case CmpInst::ICMP_SLE:
case CmpInst::FCMP_ULE:
return AArch64CC::LE;
case CmpInst::FCMP_UNE:
case CmpInst::ICMP_NE:
return AArch64CC::NE;
case CmpInst::ICMP_UGE:
return AArch64CC::HS;
case CmpInst::ICMP_ULT:
return AArch64CC::LO;
}
}
bool AArch64FastISel::SelectBranch(const Instruction *I) {
const BranchInst *BI = cast<BranchInst>(I);
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
AArch64CC::CondCode CC = AArch64CC::NE;
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
// We may not handle every CC for now.
CC = getCompareCC(CI->getPredicate());
if (CC == AArch64CC::AL)
return false;
// Emit the cmp.
if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
// Emit the branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
FastEmitBranch(FBB, DbgLoc);
return true;
}
} else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
MVT SrcVT;
if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
(isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
unsigned CondReg = getRegForValue(TI->getOperand(0));
if (CondReg == 0)
return false;
// Issue an extract_subreg to get the lower 32-bits.
if (SrcVT == MVT::i64)
CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
AArch64::sub_32);
MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::ANDWri), ANDReg)
.addReg(CondReg)
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBSWri))
.addReg(ANDReg)
.addReg(ANDReg)
.addImm(0)
.addImm(0);
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CC = AArch64CC::EQ;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
FastEmitBranch(FBB, DbgLoc);
return true;
}
} else if (const ConstantInt *CI =
dyn_cast<ConstantInt>(BI->getCondition())) {
uint64_t Imm = CI->getZExtValue();
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
.addMBB(Target);
// Obtain the branch weight and add the target to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
Target->getBasicBlock());
FuncInfo.MBB->addSuccessor(Target, BranchWeight);
return true;
} else if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
// Fake request the condition, otherwise the intrinsic might be completely
// optimized away.
unsigned CondReg = getRegForValue(BI->getCondition());
if (!CondReg)
return false;
// Emit the branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
FastEmitBranch(FBB, DbgLoc);
return true;
}
unsigned CondReg = getRegForValue(BI->getCondition());
if (CondReg == 0)
return false;
// We've been divorced from our compare! Our block was split, and
// now our compare lives in a predecessor block. We musn't
// re-compare here, as the children of the compare aren't guaranteed
// live across the block boundary (we *could* check for this).
// Regardless, the compare has been done in the predecessor block,
// and it left a value for us in a virtual register. Ergo, we test
// the one-bit value left in the virtual register.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri),
AArch64::WZR)
.addReg(CondReg)
.addImm(0)
.addImm(0);
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CC = AArch64CC::EQ;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
// Obtain the branch weight and add the TrueBB to the successor list.
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
TBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
FastEmitBranch(FBB, DbgLoc);
return true;
}
bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
const IndirectBrInst *BI = cast<IndirectBrInst>(I);
unsigned AddrReg = getRegForValue(BI->getOperand(0));
if (AddrReg == 0)
return false;
// Emit the indirect branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR))
.addReg(AddrReg);
// Make sure the CFG is up-to-date.
for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
return true;
}
bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
Type *Ty = Src1Value->getType();
EVT SrcEVT = TLI.getValueType(Ty, true);
if (!SrcEVT.isSimple())
return false;
MVT SrcVT = SrcEVT.getSimpleVT();
// Check to see if the 2nd operand is a constant that we can encode directly
// in the compare.
uint64_t Imm;
bool UseImm = false;
bool isNegativeImm = false;
if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
SrcVT == MVT::i8 || SrcVT == MVT::i1) {
const APInt &CIVal = ConstInt->getValue();
Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
if (CIVal.isNegative()) {
isNegativeImm = true;
Imm = -Imm;
}
// FIXME: We can handle more immediates using shifts.
UseImm = ((Imm & 0xfff) == Imm);
}
} else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
if (ConstFP->isZero() && !ConstFP->isNegative())
UseImm = true;
}
unsigned ZReg;
unsigned CmpOpc;
bool isICmp = true;
bool needsExt = false;
switch (SrcVT.SimpleTy) {
default:
return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
needsExt = true;
// Intentional fall-through.
case MVT::i32:
ZReg = AArch64::WZR;
if (UseImm)
CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri;
else
CmpOpc = AArch64::SUBSWrr;
break;
case MVT::i64:
ZReg = AArch64::XZR;
if (UseImm)
CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri;
else
CmpOpc = AArch64::SUBSXrr;
break;
case MVT::f32:
isICmp = false;
CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr;
break;
case MVT::f64:
isICmp = false;
CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr;
break;
}
unsigned SrcReg1 = getRegForValue(Src1Value);
if (SrcReg1 == 0)
return false;
unsigned SrcReg2;
if (!UseImm) {
SrcReg2 = getRegForValue(Src2Value);
if (SrcReg2 == 0)
return false;
}
// We have i1, i8, or i16, we need to either zero extend or sign extend.
if (needsExt) {
SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
if (SrcReg1 == 0)
return false;
if (!UseImm) {
SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
if (SrcReg2 == 0)
return false;
}
}
if (isICmp) {
if (UseImm)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
.addReg(ZReg)
.addReg(SrcReg1)
.addImm(Imm)
.addImm(0);
else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
.addReg(ZReg)
.addReg(SrcReg1)
.addReg(SrcReg2);
} else {
if (UseImm)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
.addReg(SrcReg1);
else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
.addReg(SrcReg1)
.addReg(SrcReg2);
}
return true;
}
bool AArch64FastISel::SelectCmp(const Instruction *I) {
const CmpInst *CI = cast<CmpInst>(I);
// We may not handle every CC for now.
AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
if (CC == AArch64CC::AL)
return false;
// Emit the cmp.
if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
// Now set a register based on the comparison.
AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
ResultReg)
.addReg(AArch64::WZR)
.addReg(AArch64::WZR)
.addImm(invertedCC);
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::SelectSelect(const Instruction *I) {
const SelectInst *SI = cast<SelectInst>(I);
EVT DestEVT = TLI.getValueType(SI->getType(), true);
if (!DestEVT.isSimple())
return false;
MVT DestVT = DestEVT.getSimpleVT();
if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
DestVT != MVT::f64)
return false;
unsigned SelectOpc;
switch (DestVT.SimpleTy) {
default: return false;
case MVT::i32: SelectOpc = AArch64::CSELWr; break;
case MVT::i64: SelectOpc = AArch64::CSELXr; break;
case MVT::f32: SelectOpc = AArch64::FCSELSrrr; break;
case MVT::f64: SelectOpc = AArch64::FCSELDrrr; break;
}
const Value *Cond = SI->getCondition();
bool NeedTest = true;
AArch64CC::CondCode CC = AArch64CC::NE;
if (foldXALUIntrinsic(CC, I, Cond))
NeedTest = false;
unsigned CondReg = getRegForValue(Cond);
if (!CondReg)
return false;
bool CondIsKill = hasTrivialKill(Cond);
if (NeedTest) {
MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
ANDReg)
.addReg(CondReg, getKillRegState(CondIsKill))
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri))
.addReg(ANDReg)
.addReg(ANDReg)
.addImm(0)
.addImm(0);
}
unsigned TrueReg = getRegForValue(SI->getTrueValue());
bool TrueIsKill = hasTrivialKill(SI->getTrueValue());
unsigned FalseReg = getRegForValue(SI->getFalseValue());
bool FalseIsKill = hasTrivialKill(SI->getFalseValue());
if (!TrueReg || !FalseReg)
return false;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
ResultReg)
.addReg(TrueReg, getKillRegState(TrueIsKill))
.addReg(FalseReg, getKillRegState(FalseIsKill))
.addImm(CC);
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::SelectFPExt(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
return false;
unsigned Op = getRegForValue(V);
if (Op == 0)
return false;
unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
ResultReg).addReg(Op);
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
return false;
unsigned Op = getRegForValue(V);
if (Op == 0)
return false;
unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
ResultReg).addReg(Op);
UpdateValueMap(I, ResultReg);
return true;
}
// FPToUI and FPToSI
bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
unsigned SrcReg = getRegForValue(I->getOperand(0));
if (SrcReg == 0)
return false;
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
if (SrcVT == MVT::f128)
return false;
unsigned Opc;
if (SrcVT == MVT::f64) {
if (Signed)
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
else
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
} else {
if (Signed)
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
else
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
}
unsigned ResultReg = createResultReg(
DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg);
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
"Unexpected value type.");
unsigned SrcReg = getRegForValue(I->getOperand(0));
if (SrcReg == 0)
return false;
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
// Handle sign-extension.
if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
SrcReg =
EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
if (SrcReg == 0)
return false;
}
MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass
: &AArch64::GPR32RegClass);
unsigned Opc;
if (SrcVT == MVT::i64) {
if (Signed)
Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
else
Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
} else {
if (Signed)
Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
else
Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
}
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg);
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::FastLowerArguments() {
if (!FuncInfo.CanLowerReturn)
return false;
const Function *F = FuncInfo.Fn;
if (F->isVarArg())
return false;
CallingConv::ID CC = F->getCallingConv();
if (CC != CallingConv::C)
return false;
// Only handle simple cases like i1/i8/i16/i32/i64/f32/f64 of up to 8 GPR and
// FPR each.
unsigned GPRCnt = 0;
unsigned FPRCnt = 0;
unsigned Idx = 0;
for (auto const &Arg : F->args()) {
// The first argument is at index 1.
++Idx;
if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
F->getAttributes().hasAttribute(Idx, Attribute::Nest))
return false;
Type *ArgTy = Arg.getType();
if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
return false;
EVT ArgVT = TLI.getValueType(ArgTy);
if (!ArgVT.isSimple()) return false;
switch (ArgVT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
++GPRCnt;
break;
case MVT::f16:
case MVT::f32:
case MVT::f64:
++FPRCnt;
break;
}
if (GPRCnt > 8 || FPRCnt > 8)
return false;
}
static const MCPhysReg Registers[5][8] = {
{ AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
AArch64::W5, AArch64::W6, AArch64::W7 },
{ AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
AArch64::X5, AArch64::X6, AArch64::X7 },
{ AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
AArch64::H5, AArch64::H6, AArch64::H7 },
{ AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
AArch64::S5, AArch64::S6, AArch64::S7 },
{ AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
AArch64::D5, AArch64::D6, AArch64::D7 }
};
unsigned GPRIdx = 0;
unsigned FPRIdx = 0;
for (auto const &Arg : F->args()) {
MVT VT = TLI.getSimpleValueType(Arg.getType());
unsigned SrcReg;
switch (VT.SimpleTy) {
default: llvm_unreachable("Unexpected value type.");
case MVT::i1:
case MVT::i8:
case MVT::i16: VT = MVT::i32; // fall-through
case MVT::i32: SrcReg = Registers[0][GPRIdx++]; break;
case MVT::i64: SrcReg = Registers[1][GPRIdx++]; break;
case MVT::f16: SrcReg = Registers[2][FPRIdx++]; break;
case MVT::f32: SrcReg = Registers[3][FPRIdx++]; break;
case MVT::f64: SrcReg = Registers[4][FPRIdx++]; break;
}
// Skip unused arguments.
if (Arg.use_empty()) {
UpdateValueMap(&Arg, 0);
continue;
}
const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
// FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
// Without this, EmitLiveInCopies may eliminate the livein if its only
// use is a bitcast (which isn't turned into an instruction).
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(DstReg, getKillRegState(true));
UpdateValueMap(&Arg, ResultReg);
}
return true;
}
bool AArch64FastISel::ProcessCallArgs(CallLoweringInfo &CLI,
SmallVectorImpl<MVT> &OutVTs,
unsigned &NumBytes) {
CallingConv::ID CC = CLI.CallConv;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
NumBytes = CCInfo.getNextStackOffset();
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
.addImm(NumBytes);
// Process the args.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
const Value *ArgVal = CLI.OutVals[VA.getValNo()];
MVT ArgVT = OutVTs[VA.getValNo()];
unsigned ArgReg = getRegForValue(ArgVal);
if (!ArgReg)
return false;
// Handle arg promotion: SExt, ZExt, AExt.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::SExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
ArgReg = EmitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
if (!ArgReg)
return false;
break;
}
case CCValAssign::AExt:
// Intentional fall-through.
case CCValAssign::ZExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
ArgReg = EmitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
if (!ArgReg)
return false;
break;
}
default:
llvm_unreachable("Unknown arg promotion!");
}
// Now copy/store arg to correct locations.
if (VA.isRegLoc() && !VA.needsCustom()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
CLI.OutRegs.push_back(VA.getLocReg());
} else if (VA.needsCustom()) {
// FIXME: Handle custom args.
return false;
} else {
assert(VA.isMemLoc() && "Assuming store on stack.");
// Don't emit stores for undef values.
if (isa<UndefValue>(ArgVal))
continue;
// Need to store on the stack.
unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
unsigned BEAlign = 0;
if (ArgSize < 8 && !Subtarget->isLittleEndian())
BEAlign = 8 - ArgSize;
Address Addr;
Addr.setKind(Address::RegBase);
Addr.setReg(AArch64::SP);
Addr.setOffset(VA.getLocMemOffset() + BEAlign);
unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getStack(Addr.getOffset()),
MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
if (!EmitStore(ArgVT, ArgReg, Addr, MMO))
return false;
}
}
return true;
}
bool AArch64FastISel::FinishCall(CallLoweringInfo &CLI, MVT RetVT,
unsigned NumBytes) {
CallingConv::ID CC = CLI.CallConv;
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
.addImm(NumBytes).addImm(0);
// Now the return value.
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
// Only handle a single return value.
if (RVLocs.size() != 1)
return false;
// Copy all of the result registers out of their specified physreg.
MVT CopyVT = RVLocs[0].getValVT();
unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(RVLocs[0].getLocReg());
CLI.InRegs.push_back(RVLocs[0].getLocReg());
CLI.ResultReg = ResultReg;
CLI.NumResultRegs = 1;
}
return true;
}
bool AArch64FastISel::FastLowerCall(CallLoweringInfo &CLI) {
CallingConv::ID CC = CLI.CallConv;
bool IsTailCall = CLI.IsTailCall;
bool IsVarArg = CLI.IsVarArg;
const Value *Callee = CLI.Callee;
const char *SymName = CLI.SymName;
// Allow SelectionDAG isel to handle tail calls.
if (IsTailCall)
return false;
CodeModel::Model CM = TM.getCodeModel();
// Only support the small and large code model.
if (CM != CodeModel::Small && CM != CodeModel::Large)
return false;
// FIXME: Add large code model support for ELF.
if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
return false;
// Let SDISel handle vararg functions.
if (IsVarArg)
return false;
// FIXME: Only handle *simple* calls for now.
MVT RetVT;
if (CLI.RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(CLI.RetTy, RetVT))
return false;
for (auto Flag : CLI.OutFlags)
if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
return false;
// Set up the argument vectors.
SmallVector<MVT, 16> OutVTs;
OutVTs.reserve(CLI.OutVals.size());
for (auto *Val : CLI.OutVals) {
MVT VT;
if (!isTypeLegal(Val->getType(), VT) &&
!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
return false;
// We don't handle vector parameters yet.
if (VT.isVector() || VT.getSizeInBits() > 64)
return false;
OutVTs.push_back(VT);
}
Address Addr;
if (!ComputeCallAddress(Callee, Addr))
return false;
// Handle the arguments now that we've gotten them.
unsigned NumBytes;
if (!ProcessCallArgs(CLI, OutVTs, NumBytes))
return false;
// Issue the call.
MachineInstrBuilder MIB;
if (CM == CodeModel::Small) {
unsigned CallOpc = Addr.getReg() ? AArch64::BLR : AArch64::BL;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
if (SymName)
MIB.addExternalSymbol(SymName, 0);
else if (Addr.getGlobalValue())
MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
else if (Addr.getReg())
MIB.addReg(Addr.getReg());
else
return false;
} else {
unsigned CallReg = 0;
if (SymName) {
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGE);
CallReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
CallReg)
.addReg(ADRPReg)
.addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
AArch64II::MO_NC);
} else if (Addr.getGlobalValue()) {
CallReg = AArch64MaterializeGV(Addr.getGlobalValue());
} else if (Addr.getReg())
CallReg = Addr.getReg();
if (!CallReg)
return false;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::BLR)).addReg(CallReg);
}
// Add implicit physical register uses to the call.
for (auto Reg : CLI.OutRegs)
MIB.addReg(Reg, RegState::Implicit);
// Add a register mask with the call-preserved registers.
// Proper defs for return values will be added by setPhysRegsDeadExcept().
MIB.addRegMask(TRI.getCallPreservedMask(CC));
CLI.Call = MIB;
// Finish off the call including any return values.
return FinishCall(CLI, RetVT, NumBytes);
}
bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
if (Alignment)
return Len / Alignment <= 4;
else
return Len < 32;
}
bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
uint64_t Len, unsigned Alignment) {
// Make sure we don't bloat code by inlining very large memcpy's.
if (!IsMemCpySmall(Len, Alignment))
return false;
int64_t UnscaledOffset = 0;
Address OrigDest = Dest;
Address OrigSrc = Src;
while (Len) {
MVT VT;
if (!Alignment || Alignment >= 8) {
if (Len >= 8)
VT = MVT::i64;
else if (Len >= 4)
VT = MVT::i32;
else if (Len >= 2)
VT = MVT::i16;
else {
VT = MVT::i8;
}
} else {
// Bound based on alignment.
if (Len >= 4 && Alignment == 4)
VT = MVT::i32;
else if (Len >= 2 && Alignment == 2)
VT = MVT::i16;
else {
VT = MVT::i8;
}
}
bool RV;
unsigned ResultReg;
RV = EmitLoad(VT, ResultReg, Src);
if (!RV)
return false;
RV = EmitStore(VT, ResultReg, Dest);
if (!RV)
return false;
int64_t Size = VT.getSizeInBits() / 8;
Len -= Size;
UnscaledOffset += Size;
// We need to recompute the unscaled offset for each iteration.
Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
}
return true;
}
/// \brief Check if it is possible to fold the condition from the XALU intrinsic
/// into the user. The condition code will only be updated on success.
bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
const Instruction *I,
const Value *Cond) {
if (!isa<ExtractValueInst>(Cond))
return false;
const auto *EV = cast<ExtractValueInst>(Cond);
if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
return false;
const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
MVT RetVT;
const Function *Callee = II->getCalledFunction();
Type *RetTy =
cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
if (!isTypeLegal(RetTy, RetVT))
return false;
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return false;
AArch64CC::CondCode TmpCC;
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow: TmpCC = AArch64CC::VS; break;
case Intrinsic::uadd_with_overflow: TmpCC = AArch64CC::HS; break;
case Intrinsic::usub_with_overflow: TmpCC = AArch64CC::LO; break;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: TmpCC = AArch64CC::NE; break;
}
// Check if both instructions are in the same basic block.
if (II->getParent() != I->getParent())
return false;
// Make sure nothing is in the way
BasicBlock::const_iterator Start = I;
BasicBlock::const_iterator End = II;
for (auto Itr = std::prev(Start); Itr != End; --Itr) {
// We only expect extractvalue instructions between the intrinsic and the
// instruction to be selected.
if (!isa<ExtractValueInst>(Itr))
return false;
// Check that the extractvalue operand comes from the intrinsic.
const auto *EVI = cast<ExtractValueInst>(Itr);
if (EVI->getAggregateOperand() != II)
return false;
}
CC = TmpCC;
return true;
}
bool AArch64FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
// FIXME: Handle more intrinsics.
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::frameaddress: {
MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
MFI->setFrameAddressIsTaken(true);
const AArch64RegisterInfo *RegInfo =
static_cast<const AArch64RegisterInfo *>(
TM.getSubtargetImpl()->getRegisterInfo());
unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
unsigned SrcReg = FramePtr;
// Recursively load frame address
// ldr x0, [fp]
// ldr x0, [x0]
// ldr x0, [x0]
// ...
unsigned DestReg;
unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
while (Depth--) {
DestReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::LDRXui), DestReg)
.addReg(SrcReg).addImm(0);
SrcReg = DestReg;
}
UpdateValueMap(II, SrcReg);
return true;
}
case Intrinsic::memcpy:
case Intrinsic::memmove: {
const auto *MTI = cast<MemTransferInst>(II);
// Don't handle volatile.
if (MTI->isVolatile())
return false;
// Disable inlining for memmove before calls to ComputeAddress. Otherwise,
// we would emit dead code because we don't currently handle memmoves.
bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
// Small memcpy's are common enough that we want to do them without a call
// if possible.
uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
unsigned Alignment = MTI->getAlignment();
if (IsMemCpySmall(Len, Alignment)) {
Address Dest, Src;
if (!ComputeAddress(MTI->getRawDest(), Dest) ||
!ComputeAddress(MTI->getRawSource(), Src))
return false;
if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
return true;
}
}
if (!MTI->getLength()->getType()->isIntegerTy(64))
return false;
if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
return LowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
}
case Intrinsic::memset: {
const MemSetInst *MSI = cast<MemSetInst>(II);
// Don't handle volatile.
if (MSI->isVolatile())
return false;
if (!MSI->getLength()->getType()->isIntegerTy(64))
return false;
if (MSI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
return LowerCallTo(II, "memset", II->getNumArgOperands() - 2);
}
case Intrinsic::trap: {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
.addImm(1);
return true;
}
case Intrinsic::sqrt: {
Type *RetTy = II->getCalledFunction()->getReturnType();
MVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
unsigned Op0Reg = getRegForValue(II->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(II->getOperand(0));
unsigned ResultReg = FastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill);
if (!ResultReg)
return false;
UpdateValueMap(II, ResultReg);
return true;
}
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
// This implements the basic lowering of the xalu with overflow intrinsics.
const Function *Callee = II->getCalledFunction();
auto *Ty = cast<StructType>(Callee->getReturnType());
Type *RetTy = Ty->getTypeAtIndex(0U);
Type *CondTy = Ty->getTypeAtIndex(1);
MVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
if (VT != MVT::i32 && VT != MVT::i64)
return false;
const Value *LHS = II->getArgOperand(0);
const Value *RHS = II->getArgOperand(1);
// Canonicalize immediate to the RHS.
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
isCommutativeIntrinsic(II))
std::swap(LHS, RHS);
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return false;
bool LHSIsKill = hasTrivialKill(LHS);
// Check if the immediate can be encoded in the instruction and if we should
// invert the instruction (adds -> subs) to handle negative immediates.
bool UseImm = false;
bool UseInverse = false;
uint64_t Imm = 0;
if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
if (C->isNegative()) {
UseInverse = true;
Imm = -(C->getSExtValue());
} else
Imm = C->getZExtValue();
if (isUInt<12>(Imm))
UseImm = true;
UseInverse = UseImm && UseInverse;
}
static const unsigned OpcTable[2][2][2] = {
{ {AArch64::ADDSWrr, AArch64::ADDSXrr},
{AArch64::ADDSWri, AArch64::ADDSXri} },
{ {AArch64::SUBSWrr, AArch64::SUBSXrr},
{AArch64::SUBSWri, AArch64::SUBSXri} }
};
unsigned Opc = 0;
unsigned MulReg = 0;
unsigned RHSReg = 0;
bool RHSIsKill = false;
AArch64CC::CondCode CC = AArch64CC::Invalid;
bool Is64Bit = VT == MVT::i64;
switch (II->getIntrinsicID()) {
default: llvm_unreachable("Unexpected intrinsic!");
case Intrinsic::sadd_with_overflow:
Opc = OpcTable[UseInverse][UseImm][Is64Bit]; CC = AArch64CC::VS; break;
case Intrinsic::uadd_with_overflow:
Opc = OpcTable[UseInverse][UseImm][Is64Bit]; CC = AArch64CC::HS; break;
case Intrinsic::ssub_with_overflow:
Opc = OpcTable[!UseInverse][UseImm][Is64Bit]; CC = AArch64CC::VS; break;
case Intrinsic::usub_with_overflow:
Opc = OpcTable[!UseInverse][UseImm][Is64Bit]; CC = AArch64CC::LO; break;
case Intrinsic::smul_with_overflow: {
CC = AArch64CC::NE;
RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
RHSIsKill = hasTrivialKill(RHS);
if (VT == MVT::i32) {
MulReg = Emit_SMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
unsigned ShiftReg = Emit_LSR_ri(MVT::i64, MulReg, false, 32);
MulReg = FastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
AArch64::sub_32);
ShiftReg = FastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true,
AArch64::sub_32);
unsigned CmpReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBSWrs), CmpReg)
.addReg(ShiftReg, getKillRegState(true))
.addReg(MulReg, getKillRegState(false))
.addImm(159); // 159 <-> asr #31
} else {
assert(VT == MVT::i64 && "Unexpected value type.");
MulReg = Emit_MUL_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
unsigned SMULHReg = FastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill,
RHSReg, RHSIsKill);
unsigned CmpReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBSXrs), CmpReg)
.addReg(SMULHReg, getKillRegState(true))
.addReg(MulReg, getKillRegState(false))
.addImm(191); // 191 <-> asr #63
}
break;
}
case Intrinsic::umul_with_overflow: {
CC = AArch64CC::NE;
RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
RHSIsKill = hasTrivialKill(RHS);
if (VT == MVT::i32) {
MulReg = Emit_UMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
unsigned CmpReg = createResultReg(TLI.getRegClassFor(MVT::i64));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBSXrs), CmpReg)
.addReg(AArch64::XZR, getKillRegState(true))
.addReg(MulReg, getKillRegState(false))
.addImm(96); // 96 <-> lsr #32
MulReg = FastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
AArch64::sub_32);
} else {
assert(VT == MVT::i64 && "Unexpected value type.");
MulReg = Emit_MUL_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
unsigned UMULHReg = FastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill,
RHSReg, RHSIsKill);
unsigned CmpReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBSXrr), CmpReg)
.addReg(AArch64::XZR, getKillRegState(true))
.addReg(UMULHReg, getKillRegState(false));
}
break;
}
}
if (!UseImm) {
RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
RHSIsKill = hasTrivialKill(RHS);
}
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
if (Opc) {
MachineInstrBuilder MIB;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill));
if (UseImm) {
MIB.addImm(Imm);
MIB.addImm(0);
} else
MIB.addReg(RHSReg, getKillRegState(RHSIsKill));
}
else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(MulReg);
unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
ResultReg2)
.addReg(AArch64::WZR, getKillRegState(true))
.addReg(AArch64::WZR, getKillRegState(true))
.addImm(getInvertedCondCode(CC));
UpdateValueMap(II, ResultReg, 2);
return true;
}
}
return false;
}
bool AArch64FastISel::SelectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
const Function &F = *I->getParent()->getParent();
if (!FuncInfo.CanLowerReturn)
return false;
if (F.isVarArg())
return false;
// Build a list of return value registers.
SmallVector<unsigned, 4> RetRegs;
if (Ret->getNumOperands() > 0) {
CallingConv::ID CC = F.getCallingConv();
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
CCInfo.AnalyzeReturn(Outs, RetCC);
// Only handle a single return value for now.
if (ValLocs.size() != 1)
return false;
CCValAssign &VA = ValLocs[0];
const Value *RV = Ret->getOperand(0);
// Don't bother handling odd stuff for now.
if (VA.getLocInfo() != CCValAssign::Full)
return false;
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
unsigned Reg = getRegForValue(RV);
if (Reg == 0)
return false;
unsigned SrcReg = Reg + VA.getValNo();
unsigned DestReg = VA.getLocReg();
// Avoid a cross-class copy. This is very unlikely.
if (!MRI.getRegClass(SrcReg)->contains(DestReg))
return false;
EVT RVEVT = TLI.getValueType(RV->getType());
if (!RVEVT.isSimple())
return false;
// Vectors (of > 1 lane) in big endian need tricky handling.
if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1)
return false;
MVT RVVT = RVEVT.getSimpleVT();
if (RVVT == MVT::f128)
return false;
MVT DestVT = VA.getValVT();
// Special handling for extended integers.
if (RVVT != DestVT) {
if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
return false;
if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
return false;
bool isZExt = Outs[0].Flags.isZExt();
SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
if (SrcReg == 0)
return false;
}
// Make the copy.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
// Add register to return instruction.
RetRegs.push_back(VA.getLocReg());
}
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::RET_ReallyLR));
for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
MIB.addReg(RetRegs[i], RegState::Implicit);
return true;
}
bool AArch64FastISel::SelectTrunc(const Instruction *I) {
Type *DestTy = I->getType();
Value *Op = I->getOperand(0);
Type *SrcTy = Op->getType();
EVT SrcEVT = TLI.getValueType(SrcTy, true);
EVT DestEVT = TLI.getValueType(DestTy, true);
if (!SrcEVT.isSimple())
return false;
if (!DestEVT.isSimple())
return false;
MVT SrcVT = SrcEVT.getSimpleVT();
MVT DestVT = DestEVT.getSimpleVT();
if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
SrcVT != MVT::i8)
return false;
if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
DestVT != MVT::i1)
return false;
unsigned SrcReg = getRegForValue(Op);
if (!SrcReg)
return false;
// If we're truncating from i64 to a smaller non-legal type then generate an
// AND. Otherwise, we know the high bits are undefined and a truncate doesn't
// generate any code.
if (SrcVT == MVT::i64) {
uint64_t Mask = 0;
switch (DestVT.SimpleTy) {
default:
// Trunc i64 to i32 is handled by the target-independent fast-isel.
return false;
case MVT::i1:
Mask = 0x1;
break;
case MVT::i8:
Mask = 0xff;
break;
case MVT::i16:
Mask = 0xffff;
break;
}
// Issue an extract_subreg to get the lower 32-bits.
unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
AArch64::sub_32);
MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass);
// Create the AND instruction which performs the actual truncation.
unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
ANDReg)
.addReg(Reg32)
.addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32));
SrcReg = ANDReg;
}
UpdateValueMap(I, SrcReg);
return true;
}
unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
DestVT == MVT::i64) &&
"Unexpected value type.");
// Handle i8 and i16 as i32.
if (DestVT == MVT::i8 || DestVT == MVT::i16)
DestVT = MVT::i32;
if (isZExt) {
MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
ResultReg)
.addReg(SrcReg)
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
if (DestVT == MVT::i64) {
// We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
// upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Reg64)
.addImm(0)
.addReg(ResultReg)
.addImm(AArch64::sub_32);
ResultReg = Reg64;
}
return ResultReg;
} else {
if (DestVT == MVT::i64) {
// FIXME: We're SExt i1 to i64.
return 0;
}
unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri),
ResultReg)
.addReg(SrcReg)
.addImm(0)
.addImm(0);
return ResultReg;
}
}
unsigned AArch64FastISel::Emit_MUL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
unsigned Opc, ZReg;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8:
case MVT::i16:
case MVT::i32:
RetVT = MVT::i32;
Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break;
case MVT::i64:
Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break;
}
// Create the base instruction, then add the operands.
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill))
.addReg(Op1, getKillRegState(Op1IsKill))
.addReg(ZReg, getKillRegState(true));
return ResultReg;
}
unsigned AArch64FastISel::Emit_SMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
if (RetVT != MVT::i64)
return 0;
// Create the base instruction, then add the operands.
unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SMADDLrrr),
ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill))
.addReg(Op1, getKillRegState(Op1IsKill))
.addReg(AArch64::XZR, getKillRegState(true));
return ResultReg;
}
unsigned AArch64FastISel::Emit_UMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
if (RetVT != MVT::i64)
return 0;
// Create the base instruction, then add the operands.
unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::UMADDLrrr),
ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill))
.addReg(Op1, getKillRegState(Op1IsKill))
.addReg(AArch64::XZR, getKillRegState(true));
return ResultReg;
}
unsigned AArch64FastISel::Emit_LSL_ri(MVT RetVT, unsigned Op0, bool Op0IsKill,
uint64_t Shift) {
unsigned Opc, ImmR, ImmS;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8:
Opc = AArch64::UBFMWri; ImmR = -Shift % 32; ImmS = 7 - Shift; break;
case MVT::i16:
Opc = AArch64::UBFMWri; ImmR = -Shift % 32; ImmS = 15 - Shift; break;
case MVT::i32:
Opc = AArch64::UBFMWri; ImmR = -Shift % 32; ImmS = 31 - Shift; break;
case MVT::i64:
Opc = AArch64::UBFMXri; ImmR = -Shift % 64; ImmS = 63 - Shift; break;
}
RetVT.SimpleTy = std::max(MVT::i32, RetVT.SimpleTy);
return FastEmitInst_rii(Opc, TLI.getRegClassFor(RetVT), Op0, Op0IsKill, ImmR,
ImmS);
}
unsigned AArch64FastISel::Emit_LSR_ri(MVT RetVT, unsigned Op0, bool Op0IsKill,
uint64_t Shift) {
unsigned Opc, ImmS;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8: Opc = AArch64::UBFMWri; ImmS = 7; break;
case MVT::i16: Opc = AArch64::UBFMWri; ImmS = 15; break;
case MVT::i32: Opc = AArch64::UBFMWri; ImmS = 31; break;
case MVT::i64: Opc = AArch64::UBFMXri; ImmS = 63; break;
}
RetVT.SimpleTy = std::max(MVT::i32, RetVT.SimpleTy);
return FastEmitInst_rii(Opc, TLI.getRegClassFor(RetVT), Op0, Op0IsKill, Shift,
ImmS);
}
unsigned AArch64FastISel::Emit_ASR_ri(MVT RetVT, unsigned Op0, bool Op0IsKill,
uint64_t Shift) {
unsigned Opc, ImmS;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8: Opc = AArch64::SBFMWri; ImmS = 7; break;
case MVT::i16: Opc = AArch64::SBFMWri; ImmS = 15; break;
case MVT::i32: Opc = AArch64::SBFMWri; ImmS = 31; break;
case MVT::i64: Opc = AArch64::SBFMXri; ImmS = 63; break;
}
RetVT.SimpleTy = std::max(MVT::i32, RetVT.SimpleTy);
return FastEmitInst_rii(Opc, TLI.getRegClassFor(RetVT), Op0, Op0IsKill, Shift,
ImmS);
}
unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
bool isZExt) {
assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
// FastISel does not have plumbing to deal with extensions where the SrcVT or
// DestVT are odd things, so test to make sure that they are both types we can
// handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
// bail out to SelectionDAG.
if (((DestVT != MVT::i8) && (DestVT != MVT::i16) &&
(DestVT != MVT::i32) && (DestVT != MVT::i64)) ||
((SrcVT != MVT::i1) && (SrcVT != MVT::i8) &&
(SrcVT != MVT::i16) && (SrcVT != MVT::i32)))
return 0;
unsigned Opc;
unsigned Imm = 0;
switch (SrcVT.SimpleTy) {
default:
return 0;
case MVT::i1:
return Emiti1Ext(SrcReg, DestVT, isZExt);
case MVT::i8:
if (DestVT == MVT::i64)
Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 7;
break;
case MVT::i16:
if (DestVT == MVT::i64)
Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 15;
break;
case MVT::i32:
assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
Imm = 31;
break;
}
// Handle i8 and i16 as i32.
if (DestVT == MVT::i8 || DestVT == MVT::i16)
DestVT = MVT::i32;
else if (DestVT == MVT::i64) {
unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Src64)
.addImm(0)
.addReg(SrcReg)
.addImm(AArch64::sub_32);
SrcReg = Src64;
}
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg)
.addImm(0)
.addImm(Imm);
return ResultReg;
}
bool AArch64FastISel::SelectIntExt(const Instruction *I) {
// On ARM, in general, integer casts don't involve legal types; this code
// handles promotable integers. The high bits for a type smaller than
// the register size are assumed to be undefined.
Type *DestTy = I->getType();
Value *Src = I->getOperand(0);
Type *SrcTy = Src->getType();
bool isZExt = isa<ZExtInst>(I);
unsigned SrcReg = getRegForValue(Src);
if (!SrcReg)
return false;
EVT SrcEVT = TLI.getValueType(SrcTy, true);
EVT DestEVT = TLI.getValueType(DestTy, true);
if (!SrcEVT.isSimple())
return false;
if (!DestEVT.isSimple())
return false;
MVT SrcVT = SrcEVT.getSimpleVT();
MVT DestVT = DestEVT.getSimpleVT();
unsigned ResultReg = 0;
// Check if it is an argument and if it is already zero/sign-extended.
if (const auto *Arg = dyn_cast<Argument>(Src)) {
if ((isZExt && Arg->hasZExtAttr()) || (!isZExt && Arg->hasSExtAttr())) {
if (DestVT == MVT::i64) {
ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), ResultReg)
.addImm(0)
.addReg(SrcReg)
.addImm(AArch64::sub_32);
} else
ResultReg = SrcReg;
}
}
if (!ResultReg)
ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
if (!ResultReg)
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
EVT DestEVT = TLI.getValueType(I->getType(), true);
if (!DestEVT.isSimple())
return false;
MVT DestVT = DestEVT.getSimpleVT();
if (DestVT != MVT::i64 && DestVT != MVT::i32)
return false;
unsigned DivOpc;
bool is64bit = (DestVT == MVT::i64);
switch (ISDOpcode) {
default:
return false;
case ISD::SREM:
DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
break;
case ISD::UREM:
DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
break;
}
unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
unsigned Src1Reg = getRegForValue(I->getOperand(1));
if (!Src1Reg)
return false;
unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg)
.addReg(Src0Reg)
.addReg(Src1Reg);
// The remainder is computed as numerator - (quotient * denominator) using the
// MSUB instruction.
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
.addReg(QuotReg)
.addReg(Src1Reg)
.addReg(Src0Reg);
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::SelectMul(const Instruction *I) {
EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
if (!SrcEVT.isSimple())
return false;
MVT SrcVT = SrcEVT.getSimpleVT();
// Must be simple value type. Don't handle vectors.
if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
SrcVT != MVT::i8)
return false;
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Src1Reg = getRegForValue(I->getOperand(1));
if (!Src1Reg)
return false;
bool Src1IsKill = hasTrivialKill(I->getOperand(1));
unsigned ResultReg =
Emit_MUL_rr(SrcVT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill);
if (!ResultReg)
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::SelectShift(const Instruction *I, bool IsLeftShift,
bool IsArithmetic) {
EVT RetEVT = TLI.getValueType(I->getType(), true);
if (!RetEVT.isSimple())
return false;
MVT RetVT = RetEVT.getSimpleVT();
if (!isa<ConstantInt>(I->getOperand(1)))
return false;
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
uint64_t ShiftVal = cast<ConstantInt>(I->getOperand(1))->getZExtValue();
unsigned ResultReg;
if (IsLeftShift)
ResultReg = Emit_LSL_ri(RetVT, Op0Reg, Op0IsKill, ShiftVal);
else {
if (IsArithmetic)
ResultReg = Emit_ASR_ri(RetVT, Op0Reg, Op0IsKill, ShiftVal);
else
ResultReg = Emit_LSR_ri(RetVT, Op0Reg, Op0IsKill, ShiftVal);
}
if (!ResultReg)
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::SelectBitCast(const Instruction *I) {
MVT RetVT, SrcVT;
if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT))
return false;
if (!isTypeLegal(I->getType(), RetVT))
return false;
unsigned Opc;
if (RetVT == MVT::f32 && SrcVT == MVT::i32)
Opc = AArch64::FMOVWSr;
else if (RetVT == MVT::f64 && SrcVT == MVT::i64)
Opc = AArch64::FMOVXDr;
else if (RetVT == MVT::i32 && SrcVT == MVT::f32)
Opc = AArch64::FMOVSWr;
else if (RetVT == MVT::i64 && SrcVT == MVT::f64)
Opc = AArch64::FMOVDXr;
else
return false;
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
unsigned ResultReg = FastEmitInst_r(Opc, TLI.getRegClassFor(RetVT),
Op0Reg, Op0IsKill);
if (!ResultReg)
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
default:
break;
case Instruction::Load:
return SelectLoad(I);
case Instruction::Store:
return SelectStore(I);
case Instruction::Br:
return SelectBranch(I);
case Instruction::IndirectBr:
return SelectIndirectBr(I);
case Instruction::FCmp:
case Instruction::ICmp:
return SelectCmp(I);
case Instruction::Select:
return SelectSelect(I);
case Instruction::FPExt:
return SelectFPExt(I);
case Instruction::FPTrunc:
return SelectFPTrunc(I);
case Instruction::FPToSI:
return SelectFPToInt(I, /*Signed=*/true);
case Instruction::FPToUI:
return SelectFPToInt(I, /*Signed=*/false);
case Instruction::SIToFP:
return SelectIntToFP(I, /*Signed=*/true);
case Instruction::UIToFP:
return SelectIntToFP(I, /*Signed=*/false);
case Instruction::SRem:
return SelectRem(I, ISD::SREM);
case Instruction::URem:
return SelectRem(I, ISD::UREM);
case Instruction::Ret:
return SelectRet(I);
case Instruction::Trunc:
return SelectTrunc(I);
case Instruction::ZExt:
case Instruction::SExt:
return SelectIntExt(I);
// FIXME: All of these should really be handled by the target-independent
// selector -> improve FastISel tblgen.
case Instruction::Mul:
return SelectMul(I);
case Instruction::Shl:
return SelectShift(I, /*IsLeftShift=*/true, /*IsArithmetic=*/false);
case Instruction::LShr:
return SelectShift(I, /*IsLeftShift=*/false, /*IsArithmetic=*/false);
case Instruction::AShr:
return SelectShift(I, /*IsLeftShift=*/false, /*IsArithmetic=*/true);
case Instruction::BitCast:
return SelectBitCast(I);
}
return false;
// Silence warnings.
(void)&CC_AArch64_DarwinPCS_VarArg;
}
namespace llvm {
llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) {
return new AArch64FastISel(funcInfo, libInfo);
}
}