llvm-project/clang-tools-extra/clangd/Quality.cpp

109 lines
3.5 KiB
C++

//===--- Quality.cpp --------------------------------------------*- C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
#include "Quality.h"
#include "index/Index.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
namespace clang {
namespace clangd {
using namespace llvm;
void SymbolQualitySignals::merge(const CodeCompletionResult &SemaCCResult) {
SemaCCPriority = SemaCCResult.Priority;
if (SemaCCResult.Availability == CXAvailability_Deprecated)
Deprecated = true;
}
void SymbolQualitySignals::merge(const Symbol &IndexResult) {
References = std::max(IndexResult.References, References);
}
float SymbolQualitySignals::evaluate() const {
float Score = 1;
// This avoids a sharp gradient for tail symbols, and also neatly avoids the
// question of whether 0 references means a bad symbol or missing data.
if (References >= 3)
Score *= std::log(References);
if (SemaCCPriority)
// Map onto a 0-2 interval, so we don't reward/penalize non-Sema results.
// Priority 80 is a really bad score.
Score *= 2 - std::min<float>(80, SemaCCPriority) / 40;
if (Deprecated)
Score *= 0.1;
return Score;
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolQualitySignals &S) {
OS << formatv("=== Symbol quality: {0}\n", S.evaluate());
if (S.SemaCCPriority)
OS << formatv("\tSemaCCPriority: {0}\n", S.SemaCCPriority);
OS << formatv("\tReferences: {0}\n", S.References);
OS << formatv("\tDeprecated: {0}\n", S.Deprecated);
return OS;
}
void SymbolRelevanceSignals::merge(const CodeCompletionResult &SemaCCResult) {
if (SemaCCResult.Availability == CXAvailability_NotAvailable ||
SemaCCResult.Availability == CXAvailability_NotAccessible)
Forbidden = true;
}
float SymbolRelevanceSignals::evaluate() const {
if (Forbidden)
return 0;
return NameMatch;
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolRelevanceSignals &S) {
OS << formatv("=== Symbol relevance: {0}\n", S.evaluate());
OS << formatv("\tName match: {0}\n", S.NameMatch);
OS << formatv("\tForbidden: {0}\n", S.Forbidden);
return OS;
}
float evaluateSymbolAndRelevance(float SymbolQuality, float SymbolRelevance) {
return SymbolQuality * SymbolRelevance;
}
// Produces an integer that sorts in the same order as F.
// That is: a < b <==> encodeFloat(a) < encodeFloat(b).
static uint32_t encodeFloat(float F) {
static_assert(std::numeric_limits<float>::is_iec559, "");
constexpr uint32_t TopBit = ~(~uint32_t{0} >> 1);
// Get the bits of the float. Endianness is the same as for integers.
uint32_t U = FloatToBits(F);
// IEEE 754 floats compare like sign-magnitude integers.
if (U & TopBit) // Negative float.
return 0 - U; // Map onto the low half of integers, order reversed.
return U + TopBit; // Positive floats map onto the high half of integers.
}
std::string sortText(float Score, llvm::StringRef Name) {
// We convert -Score to an integer, and hex-encode for readability.
// Example: [0.5, "foo"] -> "41000000foo"
std::string S;
llvm::raw_string_ostream OS(S);
write_hex(OS, encodeFloat(-Score), llvm::HexPrintStyle::Lower,
/*Width=*/2 * sizeof(Score));
OS << Name;
OS.flush();
return S;
}
} // namespace clangd
} // namespace clang