llvm-project/compiler-rt/lib/scudo/scudo_allocator.cpp

697 lines
26 KiB
C++

//===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// Scudo Hardened Allocator implementation.
/// It uses the sanitizer_common allocator as a base and aims at mitigating
/// heap corruption vulnerabilities. It provides a checksum-guarded chunk
/// header, a delayed free list, and additional sanity checks.
///
//===----------------------------------------------------------------------===//
#include "scudo_allocator.h"
#include "scudo_utils.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_quarantine.h"
#include <limits.h>
#include <pthread.h>
#include <cstring>
namespace __scudo {
#if SANITIZER_CAN_USE_ALLOCATOR64
const uptr AllocatorSpace = ~0ULL;
const uptr AllocatorSize = 0x40000000000ULL;
typedef DefaultSizeClassMap SizeClassMap;
struct AP {
static const uptr kSpaceBeg = AllocatorSpace;
static const uptr kSpaceSize = AllocatorSize;
static const uptr kMetadataSize = 0;
typedef __scudo::SizeClassMap SizeClassMap;
typedef NoOpMapUnmapCallback MapUnmapCallback;
static const uptr kFlags =
SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
};
typedef SizeClassAllocator64<AP> PrimaryAllocator;
#else
// Currently, the 32-bit Sanitizer allocator has not yet benefited from all the
// security improvements brought to the 64-bit one. This makes the 32-bit
// version of Scudo slightly less toughened.
static const uptr RegionSizeLog = 20;
static const uptr NumRegions = SANITIZER_MMAP_RANGE_SIZE >> RegionSizeLog;
# if SANITIZER_WORDSIZE == 32
typedef FlatByteMap<NumRegions> ByteMap;
# elif SANITIZER_WORDSIZE == 64
typedef TwoLevelByteMap<(NumRegions >> 12), 1 << 12> ByteMap;
# endif // SANITIZER_WORDSIZE
typedef DefaultSizeClassMap SizeClassMap;
typedef SizeClassAllocator32<0, SANITIZER_MMAP_RANGE_SIZE, 0, SizeClassMap,
RegionSizeLog, ByteMap> PrimaryAllocator;
#endif // SANITIZER_CAN_USE_ALLOCATOR64
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef ScudoLargeMmapAllocator SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator>
ScudoAllocator;
static ScudoAllocator &getAllocator();
static thread_local Xorshift128Plus Prng;
// Global static cookie, initialized at start-up.
static uptr Cookie;
// We default to software CRC32 if the alternatives are not supported, either
// at compilation or at runtime.
static atomic_uint8_t HashAlgorithm = { CRC32Software };
SANITIZER_WEAK_ATTRIBUTE u32 computeHardwareCRC32(u32 Crc, uptr Data);
INLINE u32 computeCRC32(u32 Crc, uptr Data, u8 HashType) {
// If SSE4.2 is defined here, it was enabled everywhere, as opposed to only
// for scudo_crc32.cpp. This means that other SSE instructions were likely
// emitted at other places, and as a result there is no reason to not use
// the hardware version of the CRC32.
#if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
return computeHardwareCRC32(Crc, Data);
#else
if (computeHardwareCRC32 && HashType == CRC32Hardware)
return computeHardwareCRC32(Crc, Data);
else
return computeSoftwareCRC32(Crc, Data);
#endif // defined(__SSE4_2__)
}
struct ScudoChunk : UnpackedHeader {
// We can't use the offset member of the chunk itself, as we would double
// fetch it without any warranty that it wouldn't have been tampered. To
// prevent this, we work with a local copy of the header.
void *getAllocBeg(UnpackedHeader *Header) {
return reinterpret_cast<void *>(
reinterpret_cast<uptr>(this) - (Header->Offset << MinAlignmentLog));
}
// Returns the usable size for a chunk, meaning the amount of bytes from the
// beginning of the user data to the end of the backend allocated chunk.
uptr getUsableSize(UnpackedHeader *Header) {
uptr Size = getAllocator().GetActuallyAllocatedSize(getAllocBeg(Header));
if (Size == 0)
return Size;
return Size - AlignedChunkHeaderSize - (Header->Offset << MinAlignmentLog);
}
// Compute the checksum of the Chunk pointer and its ChunkHeader.
u16 computeChecksum(UnpackedHeader *Header) const {
UnpackedHeader ZeroChecksumHeader = *Header;
ZeroChecksumHeader.Checksum = 0;
uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
u8 HashType = atomic_load_relaxed(&HashAlgorithm);
u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(this), HashType);
for (uptr i = 0; i < ARRAY_SIZE(HeaderHolder); i++)
Crc = computeCRC32(Crc, HeaderHolder[i], HashType);
return static_cast<u16>(Crc);
}
// Checks the validity of a chunk by verifying its checksum.
bool isValid() {
UnpackedHeader NewUnpackedHeader;
const AtomicPackedHeader *AtomicHeader =
reinterpret_cast<const AtomicPackedHeader *>(this);
PackedHeader NewPackedHeader = atomic_load_relaxed(AtomicHeader);
NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
return (NewUnpackedHeader.Checksum == computeChecksum(&NewUnpackedHeader));
}
// Loads and unpacks the header, verifying the checksum in the process.
void loadHeader(UnpackedHeader *NewUnpackedHeader) const {
const AtomicPackedHeader *AtomicHeader =
reinterpret_cast<const AtomicPackedHeader *>(this);
PackedHeader NewPackedHeader = atomic_load_relaxed(AtomicHeader);
*NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
if (NewUnpackedHeader->Checksum != computeChecksum(NewUnpackedHeader)) {
dieWithMessage("ERROR: corrupted chunk header at address %p\n", this);
}
}
// Packs and stores the header, computing the checksum in the process.
void storeHeader(UnpackedHeader *NewUnpackedHeader) {
NewUnpackedHeader->Checksum = computeChecksum(NewUnpackedHeader);
PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
AtomicPackedHeader *AtomicHeader =
reinterpret_cast<AtomicPackedHeader *>(this);
atomic_store_relaxed(AtomicHeader, NewPackedHeader);
}
// Packs and stores the header, computing the checksum in the process. We
// compare the current header with the expected provided one to ensure that
// we are not being raced by a corruption occurring in another thread.
void compareExchangeHeader(UnpackedHeader *NewUnpackedHeader,
UnpackedHeader *OldUnpackedHeader) {
NewUnpackedHeader->Checksum = computeChecksum(NewUnpackedHeader);
PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
AtomicPackedHeader *AtomicHeader =
reinterpret_cast<AtomicPackedHeader *>(this);
if (!atomic_compare_exchange_strong(AtomicHeader,
&OldPackedHeader,
NewPackedHeader,
memory_order_relaxed)) {
dieWithMessage("ERROR: race on chunk header at address %p\n", this);
}
}
};
static bool ScudoInitIsRunning = false;
static pthread_once_t GlobalInited = PTHREAD_ONCE_INIT;
static pthread_key_t PThreadKey;
static thread_local bool ThreadInited = false;
static thread_local bool ThreadTornDown = false;
static thread_local AllocatorCache Cache;
static void teardownThread(void *p) {
uptr v = reinterpret_cast<uptr>(p);
// The glibc POSIX thread-local-storage deallocation routine calls user
// provided destructors in a loop of PTHREAD_DESTRUCTOR_ITERATIONS.
// We want to be called last since other destructors might call free and the
// like, so we wait until PTHREAD_DESTRUCTOR_ITERATIONS before draining the
// quarantine and swallowing the cache.
if (v < PTHREAD_DESTRUCTOR_ITERATIONS) {
pthread_setspecific(PThreadKey, reinterpret_cast<void *>(v + 1));
return;
}
drainQuarantine();
getAllocator().DestroyCache(&Cache);
ThreadTornDown = true;
}
static void initInternal() {
SanitizerToolName = "Scudo";
CHECK(!ScudoInitIsRunning && "Scudo init calls itself!");
ScudoInitIsRunning = true;
// Check is SSE4.2 is supported, if so, opt for the CRC32 hardware version.
if (testCPUFeature(CRC32CPUFeature)) {
atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
}
initFlags();
AllocatorOptions Options;
Options.setFrom(getFlags(), common_flags());
initAllocator(Options);
MaybeStartBackgroudThread();
ScudoInitIsRunning = false;
}
static void initGlobal() {
pthread_key_create(&PThreadKey, teardownThread);
initInternal();
}
static void NOINLINE initThread() {
pthread_once(&GlobalInited, initGlobal);
pthread_setspecific(PThreadKey, reinterpret_cast<void *>(1));
getAllocator().InitCache(&Cache);
ThreadInited = true;
}
struct QuarantineCallback {
explicit QuarantineCallback(AllocatorCache *Cache)
: Cache_(Cache) {}
// Chunk recycling function, returns a quarantined chunk to the backend.
void Recycle(ScudoChunk *Chunk) {
UnpackedHeader Header;
Chunk->loadHeader(&Header);
if (Header.State != ChunkQuarantine) {
dieWithMessage("ERROR: invalid chunk state when recycling address %p\n",
Chunk);
}
void *Ptr = Chunk->getAllocBeg(&Header);
getAllocator().Deallocate(Cache_, Ptr);
}
/// Internal quarantine allocation and deallocation functions.
void *Allocate(uptr Size) {
// The internal quarantine memory cannot be protected by us. But the only
// structures allocated are QuarantineBatch, that are 8KB for x64. So we
// will use mmap for those, and given that Deallocate doesn't pass a size
// in, we enforce the size of the allocation to be sizeof(QuarantineBatch).
// TODO(kostyak): switching to mmap impacts greatly performances, we have
// to find another solution
// CHECK_EQ(Size, sizeof(QuarantineBatch));
// return MmapOrDie(Size, "QuarantineBatch");
return getAllocator().Allocate(Cache_, Size, 1, false);
}
void Deallocate(void *Ptr) {
// UnmapOrDie(Ptr, sizeof(QuarantineBatch));
getAllocator().Deallocate(Cache_, Ptr);
}
AllocatorCache *Cache_;
};
typedef Quarantine<QuarantineCallback, ScudoChunk> ScudoQuarantine;
typedef ScudoQuarantine::Cache QuarantineCache;
static thread_local QuarantineCache ThreadQuarantineCache;
void AllocatorOptions::setFrom(const Flags *f, const CommonFlags *cf) {
MayReturnNull = cf->allocator_may_return_null;
ReleaseToOSIntervalMs = cf->allocator_release_to_os_interval_ms;
QuarantineSizeMb = f->QuarantineSizeMb;
ThreadLocalQuarantineSizeKb = f->ThreadLocalQuarantineSizeKb;
DeallocationTypeMismatch = f->DeallocationTypeMismatch;
DeleteSizeMismatch = f->DeleteSizeMismatch;
ZeroContents = f->ZeroContents;
}
void AllocatorOptions::copyTo(Flags *f, CommonFlags *cf) const {
cf->allocator_may_return_null = MayReturnNull;
cf->allocator_release_to_os_interval_ms = ReleaseToOSIntervalMs;
f->QuarantineSizeMb = QuarantineSizeMb;
f->ThreadLocalQuarantineSizeKb = ThreadLocalQuarantineSizeKb;
f->DeallocationTypeMismatch = DeallocationTypeMismatch;
f->DeleteSizeMismatch = DeleteSizeMismatch;
f->ZeroContents = ZeroContents;
}
struct Allocator {
static const uptr MaxAllowedMallocSize =
FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
ScudoAllocator BackendAllocator;
ScudoQuarantine AllocatorQuarantine;
// The fallback caches are used when the thread local caches have been
// 'detroyed' on thread tear-down. They are protected by a Mutex as they can
// be accessed by different threads.
StaticSpinMutex FallbackMutex;
AllocatorCache FallbackAllocatorCache;
QuarantineCache FallbackQuarantineCache;
bool DeallocationTypeMismatch;
bool ZeroContents;
bool DeleteSizeMismatch;
explicit Allocator(LinkerInitialized)
: AllocatorQuarantine(LINKER_INITIALIZED),
FallbackQuarantineCache(LINKER_INITIALIZED) {}
void init(const AllocatorOptions &Options) {
// Verify that the header offset field can hold the maximum offset. In the
// case of the Secondary allocator, it takes care of alignment and the
// offset will always be 0. In the case of the Primary, the worst case
// scenario happens in the last size class, when the backend allocation
// would already be aligned on the requested alignment, which would happen
// to be the maximum alignment that would fit in that size class. As a
// result, the maximum offset will be at most the maximum alignment for the
// last size class minus the header size, in multiples of MinAlignment.
UnpackedHeader Header = {};
uptr MaxPrimaryAlignment = 1 << MostSignificantSetBitIndex(
SizeClassMap::kMaxSize - MinAlignment);
uptr MaxOffset = (MaxPrimaryAlignment - AlignedChunkHeaderSize) >>
MinAlignmentLog;
Header.Offset = MaxOffset;
if (Header.Offset != MaxOffset) {
dieWithMessage("ERROR: the maximum possible offset doesn't fit in the "
"header\n");
}
// Verify that we can fit the maximum amount of unused bytes in the header.
// Given that the Secondary fits the allocation to a page, the worst case
// scenario happens in the Primary. It will depend on the second to last
// and last class sizes, as well as the dynamic base for the Primary. The
// following is an over-approximation that works for our needs.
uptr MaxUnusedBytes = SizeClassMap::kMaxSize - 1 - AlignedChunkHeaderSize;
Header.UnusedBytes = MaxUnusedBytes;
if (Header.UnusedBytes != MaxUnusedBytes) {
dieWithMessage("ERROR: the maximum possible unused bytes doesn't fit in "
"the header\n");
}
DeallocationTypeMismatch = Options.DeallocationTypeMismatch;
DeleteSizeMismatch = Options.DeleteSizeMismatch;
ZeroContents = Options.ZeroContents;
BackendAllocator.Init(Options.MayReturnNull, Options.ReleaseToOSIntervalMs);
AllocatorQuarantine.Init(
static_cast<uptr>(Options.QuarantineSizeMb) << 20,
static_cast<uptr>(Options.ThreadLocalQuarantineSizeKb) << 10);
BackendAllocator.InitCache(&FallbackAllocatorCache);
Cookie = Prng.Next();
}
// Helper function that checks for a valid Scudo chunk.
bool isValidPointer(const void *UserPtr) {
uptr ChunkBeg = reinterpret_cast<uptr>(UserPtr);
if (!IsAligned(ChunkBeg, MinAlignment)) {
return false;
}
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
return Chunk->isValid();
}
// Allocates a chunk.
void *allocate(uptr Size, uptr Alignment, AllocType Type) {
if (UNLIKELY(!ThreadInited))
initThread();
if (!IsPowerOfTwo(Alignment)) {
dieWithMessage("ERROR: alignment is not a power of 2\n");
}
if (Alignment > MaxAlignment)
return BackendAllocator.ReturnNullOrDieOnBadRequest();
if (Alignment < MinAlignment)
Alignment = MinAlignment;
if (Size == 0)
Size = 1;
if (Size >= MaxAllowedMallocSize)
return BackendAllocator.ReturnNullOrDieOnBadRequest();
uptr NeededSize = RoundUpTo(Size, MinAlignment) + AlignedChunkHeaderSize;
if (Alignment > MinAlignment)
NeededSize += Alignment;
if (NeededSize >= MaxAllowedMallocSize)
return BackendAllocator.ReturnNullOrDieOnBadRequest();
// Primary backed and Secondary backed allocations have a different
// treatment. We deal with alignment requirements of Primary serviced
// allocations here, but the Secondary will take care of its own alignment
// needs, which means we also have to work around some limitations of the
// combined allocator to accommodate the situation.
bool FromPrimary = PrimaryAllocator::CanAllocate(NeededSize, MinAlignment);
void *Ptr;
if (LIKELY(!ThreadTornDown)) {
Ptr = BackendAllocator.Allocate(&Cache, NeededSize,
FromPrimary ? MinAlignment : Alignment);
} else {
SpinMutexLock l(&FallbackMutex);
Ptr = BackendAllocator.Allocate(&FallbackAllocatorCache, NeededSize,
FromPrimary ? MinAlignment : Alignment);
}
if (!Ptr)
return BackendAllocator.ReturnNullOrDieOnOOM();
uptr AllocBeg = reinterpret_cast<uptr>(Ptr);
// If the allocation was serviced by the secondary, the returned pointer
// accounts for ChunkHeaderSize to pass the alignment check of the combined
// allocator. Adjust it here.
if (!FromPrimary) {
AllocBeg -= AlignedChunkHeaderSize;
if (Alignment > MinAlignment)
NeededSize -= Alignment;
}
uptr ActuallyAllocatedSize = BackendAllocator.GetActuallyAllocatedSize(
reinterpret_cast<void *>(AllocBeg));
// If requested, we will zero out the entire contents of the returned chunk.
if (ZeroContents && FromPrimary)
memset(Ptr, 0, ActuallyAllocatedSize);
uptr ChunkBeg = AllocBeg + AlignedChunkHeaderSize;
if (!IsAligned(ChunkBeg, Alignment))
ChunkBeg = RoundUpTo(ChunkBeg, Alignment);
CHECK_LE(ChunkBeg + Size, AllocBeg + NeededSize);
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
UnpackedHeader Header = {};
Header.State = ChunkAllocated;
uptr Offset = ChunkBeg - AlignedChunkHeaderSize - AllocBeg;
Header.Offset = Offset >> MinAlignmentLog;
Header.AllocType = Type;
Header.UnusedBytes = ActuallyAllocatedSize - Offset -
AlignedChunkHeaderSize - Size;
Header.Salt = static_cast<u8>(Prng.Next());
Chunk->storeHeader(&Header);
void *UserPtr = reinterpret_cast<void *>(ChunkBeg);
// TODO(kostyak): hooks sound like a terrible idea security wise but might
// be needed for things to work properly?
// if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(UserPtr, Size);
return UserPtr;
}
// Deallocates a Chunk, which means adding it to the delayed free list (or
// Quarantine).
void deallocate(void *UserPtr, uptr DeleteSize, AllocType Type) {
if (UNLIKELY(!ThreadInited))
initThread();
// TODO(kostyak): see hook comment above
// if (&__sanitizer_free_hook) __sanitizer_free_hook(UserPtr);
if (!UserPtr)
return;
uptr ChunkBeg = reinterpret_cast<uptr>(UserPtr);
if (!IsAligned(ChunkBeg, MinAlignment)) {
dieWithMessage("ERROR: attempted to deallocate a chunk not properly "
"aligned at address %p\n", UserPtr);
}
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
UnpackedHeader OldHeader;
Chunk->loadHeader(&OldHeader);
if (OldHeader.State != ChunkAllocated) {
dieWithMessage("ERROR: invalid chunk state when deallocating address "
"%p\n", UserPtr);
}
uptr UsableSize = Chunk->getUsableSize(&OldHeader);
UnpackedHeader NewHeader = OldHeader;
NewHeader.State = ChunkQuarantine;
Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
if (DeallocationTypeMismatch) {
// The deallocation type has to match the allocation one.
if (NewHeader.AllocType != Type) {
// With the exception of memalign'd Chunks, that can be still be free'd.
if (NewHeader.AllocType != FromMemalign || Type != FromMalloc) {
dieWithMessage("ERROR: allocation type mismatch on address %p\n",
Chunk);
}
}
}
uptr Size = UsableSize - OldHeader.UnusedBytes;
if (DeleteSizeMismatch) {
if (DeleteSize && DeleteSize != Size) {
dieWithMessage("ERROR: invalid sized delete on chunk at address %p\n",
Chunk);
}
}
if (LIKELY(!ThreadTornDown)) {
AllocatorQuarantine.Put(&ThreadQuarantineCache,
QuarantineCallback(&Cache), Chunk, UsableSize);
} else {
SpinMutexLock l(&FallbackMutex);
AllocatorQuarantine.Put(&FallbackQuarantineCache,
QuarantineCallback(&FallbackAllocatorCache),
Chunk, UsableSize);
}
}
// Reallocates a chunk. We can save on a new allocation if the new requested
// size still fits in the chunk.
void *reallocate(void *OldPtr, uptr NewSize) {
if (UNLIKELY(!ThreadInited))
initThread();
uptr ChunkBeg = reinterpret_cast<uptr>(OldPtr);
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
UnpackedHeader OldHeader;
Chunk->loadHeader(&OldHeader);
if (OldHeader.State != ChunkAllocated) {
dieWithMessage("ERROR: invalid chunk state when reallocating address "
"%p\n", OldPtr);
}
uptr Size = Chunk->getUsableSize(&OldHeader);
if (OldHeader.AllocType != FromMalloc) {
dieWithMessage("ERROR: invalid chunk type when reallocating address %p\n",
Chunk);
}
UnpackedHeader NewHeader = OldHeader;
// The new size still fits in the current chunk.
if (NewSize <= Size) {
NewHeader.UnusedBytes = Size - NewSize;
Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
return OldPtr;
}
// Otherwise, we have to allocate a new chunk and copy the contents of the
// old one.
void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
if (NewPtr) {
uptr OldSize = Size - OldHeader.UnusedBytes;
memcpy(NewPtr, OldPtr, Min(NewSize, OldSize));
NewHeader.State = ChunkQuarantine;
Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
if (LIKELY(!ThreadTornDown)) {
AllocatorQuarantine.Put(&ThreadQuarantineCache,
QuarantineCallback(&Cache), Chunk, Size);
} else {
SpinMutexLock l(&FallbackMutex);
AllocatorQuarantine.Put(&FallbackQuarantineCache,
QuarantineCallback(&FallbackAllocatorCache),
Chunk, Size);
}
}
return NewPtr;
}
// Helper function that returns the actual usable size of a chunk.
uptr getUsableSize(const void *Ptr) {
if (UNLIKELY(!ThreadInited))
initThread();
if (!Ptr)
return 0;
uptr ChunkBeg = reinterpret_cast<uptr>(Ptr);
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
UnpackedHeader Header;
Chunk->loadHeader(&Header);
// Getting the usable size of a chunk only makes sense if it's allocated.
if (Header.State != ChunkAllocated) {
dieWithMessage("ERROR: invalid chunk state when sizing address %p\n",
Ptr);
}
return Chunk->getUsableSize(&Header);
}
void *calloc(uptr NMemB, uptr Size) {
if (UNLIKELY(!ThreadInited))
initThread();
uptr Total = NMemB * Size;
if (Size != 0 && Total / Size != NMemB) // Overflow check
return BackendAllocator.ReturnNullOrDieOnBadRequest();
void *Ptr = allocate(Total, MinAlignment, FromMalloc);
// If ZeroContents, the content of the chunk has already been zero'd out.
if (!ZeroContents && Ptr && BackendAllocator.FromPrimary(Ptr))
memset(Ptr, 0, getUsableSize(Ptr));
return Ptr;
}
void drainQuarantine() {
AllocatorQuarantine.Drain(&ThreadQuarantineCache,
QuarantineCallback(&Cache));
}
};
static Allocator Instance(LINKER_INITIALIZED);
static ScudoAllocator &getAllocator() {
return Instance.BackendAllocator;
}
void initAllocator(const AllocatorOptions &Options) {
Instance.init(Options);
}
void drainQuarantine() {
Instance.drainQuarantine();
}
void *scudoMalloc(uptr Size, AllocType Type) {
return Instance.allocate(Size, MinAlignment, Type);
}
void scudoFree(void *Ptr, AllocType Type) {
Instance.deallocate(Ptr, 0, Type);
}
void scudoSizedFree(void *Ptr, uptr Size, AllocType Type) {
Instance.deallocate(Ptr, Size, Type);
}
void *scudoRealloc(void *Ptr, uptr Size) {
if (!Ptr)
return Instance.allocate(Size, MinAlignment, FromMalloc);
if (Size == 0) {
Instance.deallocate(Ptr, 0, FromMalloc);
return nullptr;
}
return Instance.reallocate(Ptr, Size);
}
void *scudoCalloc(uptr NMemB, uptr Size) {
return Instance.calloc(NMemB, Size);
}
void *scudoValloc(uptr Size) {
return Instance.allocate(Size, GetPageSizeCached(), FromMemalign);
}
void *scudoMemalign(uptr Alignment, uptr Size) {
return Instance.allocate(Size, Alignment, FromMemalign);
}
void *scudoPvalloc(uptr Size) {
uptr PageSize = GetPageSizeCached();
Size = RoundUpTo(Size, PageSize);
if (Size == 0) {
// pvalloc(0) should allocate one page.
Size = PageSize;
}
return Instance.allocate(Size, PageSize, FromMemalign);
}
int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
*MemPtr = Instance.allocate(Size, Alignment, FromMemalign);
return 0;
}
void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
// size must be a multiple of the alignment. To avoid a division, we first
// make sure that alignment is a power of 2.
CHECK(IsPowerOfTwo(Alignment));
CHECK_EQ((Size & (Alignment - 1)), 0);
return Instance.allocate(Size, Alignment, FromMalloc);
}
uptr scudoMallocUsableSize(void *Ptr) {
return Instance.getUsableSize(Ptr);
}
} // namespace __scudo
using namespace __scudo;
// MallocExtension helper functions
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
getAllocator().GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
getAllocator().GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() {
return 1;
}
uptr __sanitizer_get_unmapped_bytes() {
return 1;
}
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
return size;
}
int __sanitizer_get_ownership(const void *Ptr) {
return Instance.isValidPointer(Ptr);
}
uptr __sanitizer_get_allocated_size(const void *Ptr) {
return Instance.getUsableSize(Ptr);
}