llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp

9099 lines
332 KiB
C++

//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
/// makeVTList - Return an instance of the SDVTList struct initialized with the
/// specified members.
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
SDVTList Res = {VTs, NumVTs};
return Res;
}
// Default null implementations of the callbacks.
void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
#define DEBUG_TYPE "selectiondag"
static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
cl::Hidden, cl::init(true),
cl::desc("Gang up loads and stores generated by inlining of memcpy"));
static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
cl::desc("Number limit for gluing ld/st of memcpy."),
cl::Hidden, cl::init(0));
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
}
//===----------------------------------------------------------------------===//
// ConstantFPSDNode Class
//===----------------------------------------------------------------------===//
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
return getValueAPF().bitwiseIsEqual(V);
}
bool ConstantFPSDNode::isValueValidForType(EVT VT,
const APFloat& Val) {
assert(VT.isFloatingPoint() && "Can only convert between FP types");
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
(void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven,
&losesInfo);
return !losesInfo;
}
//===----------------------------------------------------------------------===//
// ISD Namespace
//===----------------------------------------------------------------------===//
bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
auto *BV = dyn_cast<BuildVectorSDNode>(N);
if (!BV)
return false;
APInt SplatUndef;
unsigned SplatBitSize;
bool HasUndefs;
unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
EltSize) &&
EltSize == SplatBitSize;
}
// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
// specializations of the more general isConstantSplatVector()?
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
// Look through a bit convert.
while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
// Skip over all of the undef values.
while (i != e && N->getOperand(i).isUndef())
++i;
// Do not accept an all-undef vector.
if (i == e) return false;
// Do not accept build_vectors that aren't all constants or which have non-~0
// elements. We have to be a bit careful here, as the type of the constant
// may not be the same as the type of the vector elements due to type
// legalization (the elements are promoted to a legal type for the target and
// a vector of a type may be legal when the base element type is not).
// We only want to check enough bits to cover the vector elements, because
// we care if the resultant vector is all ones, not whether the individual
// constants are.
SDValue NotZero = N->getOperand(i);
unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
if (CN->getAPIntValue().countTrailingOnes() < EltSize)
return false;
} else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
return false;
} else
return false;
// Okay, we have at least one ~0 value, check to see if the rest match or are
// undefs. Even with the above element type twiddling, this should be OK, as
// the same type legalization should have applied to all the elements.
for (++i; i != e; ++i)
if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
return false;
return true;
}
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
// Look through a bit convert.
while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
bool IsAllUndef = true;
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
IsAllUndef = false;
// Do not accept build_vectors that aren't all constants or which have non-0
// elements. We have to be a bit careful here, as the type of the constant
// may not be the same as the type of the vector elements due to type
// legalization (the elements are promoted to a legal type for the target
// and a vector of a type may be legal when the base element type is not).
// We only want to check enough bits to cover the vector elements, because
// we care if the resultant vector is all zeros, not whether the individual
// constants are.
unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
if (CN->getAPIntValue().countTrailingZeros() < EltSize)
return false;
} else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
return false;
} else
return false;
}
// Do not accept an all-undef vector.
if (IsAllUndef)
return false;
return true;
}
bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
if (!isa<ConstantSDNode>(Op))
return false;
}
return true;
}
bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
if (!isa<ConstantFPSDNode>(Op))
return false;
}
return true;
}
bool ISD::allOperandsUndef(const SDNode *N) {
// Return false if the node has no operands.
// This is "logically inconsistent" with the definition of "all" but
// is probably the desired behavior.
if (N->getNumOperands() == 0)
return false;
for (const SDValue &Op : N->op_values())
if (!Op.isUndef())
return false;
return true;
}
bool ISD::matchUnaryPredicate(SDValue Op,
std::function<bool(ConstantSDNode *)> Match) {
if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
return Match(Cst);
if (ISD::BUILD_VECTOR != Op.getOpcode())
return false;
EVT SVT = Op.getValueType().getScalarType();
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
return false;
}
return true;
}
bool ISD::matchBinaryPredicate(
SDValue LHS, SDValue RHS,
std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) {
if (LHS.getValueType() != RHS.getValueType())
return false;
if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
return Match(LHSCst, RHSCst);
if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
ISD::BUILD_VECTOR != RHS.getOpcode())
return false;
EVT SVT = LHS.getValueType().getScalarType();
for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i));
auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i));
if (!LHSCst || !RHSCst)
return false;
if (LHSCst->getValueType(0) != SVT ||
LHSCst->getValueType(0) != RHSCst->getValueType(0))
return false;
if (!Match(LHSCst, RHSCst))
return false;
}
return true;
}
ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
switch (ExtType) {
case ISD::EXTLOAD:
return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
case ISD::SEXTLOAD:
return ISD::SIGN_EXTEND;
case ISD::ZEXTLOAD:
return ISD::ZERO_EXTEND;
default:
break;
}
llvm_unreachable("Invalid LoadExtType");
}
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
// To perform this operation, we just need to swap the L and G bits of the
// operation.
unsigned OldL = (Operation >> 2) & 1;
unsigned OldG = (Operation >> 1) & 1;
return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
(OldL << 1) | // New G bit
(OldG << 2)); // New L bit.
}
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
unsigned Operation = Op;
if (isInteger)
Operation ^= 7; // Flip L, G, E bits, but not U.
else
Operation ^= 15; // Flip all of the condition bits.
if (Operation > ISD::SETTRUE2)
Operation &= ~8; // Don't let N and U bits get set.
return ISD::CondCode(Operation);
}
/// For an integer comparison, return 1 if the comparison is a signed operation
/// and 2 if the result is an unsigned comparison. Return zero if the operation
/// does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
switch (Opcode) {
default: llvm_unreachable("Illegal integer setcc operation!");
case ISD::SETEQ:
case ISD::SETNE: return 0;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return 1;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return 2;
}
}
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool IsInteger) {
if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed integer setcc with an unsigned integer setcc.
return ISD::SETCC_INVALID;
unsigned Op = Op1 | Op2; // Combine all of the condition bits.
// If the N and U bits get set, then the resultant comparison DOES suddenly
// care about orderedness, and it is true when ordered.
if (Op > ISD::SETTRUE2)
Op &= ~16; // Clear the U bit if the N bit is set.
// Canonicalize illegal integer setcc's.
if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
Op = ISD::SETNE;
return ISD::CondCode(Op);
}
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool IsInteger) {
if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed setcc with an unsigned setcc.
return ISD::SETCC_INVALID;
// Combine all of the condition bits.
ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
// Canonicalize illegal integer setcc's.
if (IsInteger) {
switch (Result) {
default: break;
case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
case ISD::SETOEQ: // SETEQ & SETU[LG]E
case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
}
}
return Result;
}
//===----------------------------------------------------------------------===//
// SDNode Profile Support
//===----------------------------------------------------------------------===//
/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
ID.AddInteger(OpC);
}
/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
/// solely with their pointer.
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
ID.AddPointer(VTList.VTs);
}
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static void AddNodeIDOperands(FoldingSetNodeID &ID,
ArrayRef<SDValue> Ops) {
for (auto& Op : Ops) {
ID.AddPointer(Op.getNode());
ID.AddInteger(Op.getResNo());
}
}
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static void AddNodeIDOperands(FoldingSetNodeID &ID,
ArrayRef<SDUse> Ops) {
for (auto& Op : Ops) {
ID.AddPointer(Op.getNode());
ID.AddInteger(Op.getResNo());
}
}
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
SDVTList VTList, ArrayRef<SDValue> OpList) {
AddNodeIDOpcode(ID, OpC);
AddNodeIDValueTypes(ID, VTList);
AddNodeIDOperands(ID, OpList);
}
/// If this is an SDNode with special info, add this info to the NodeID data.
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
switch (N->getOpcode()) {
case ISD::TargetExternalSymbol:
case ISD::ExternalSymbol:
case ISD::MCSymbol:
llvm_unreachable("Should only be used on nodes with operands");
default: break; // Normal nodes don't need extra info.
case ISD::TargetConstant:
case ISD::Constant: {
const ConstantSDNode *C = cast<ConstantSDNode>(N);
ID.AddPointer(C->getConstantIntValue());
ID.AddBoolean(C->isOpaque());
break;
}
case ISD::TargetConstantFP:
case ISD::ConstantFP:
ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
break;
case ISD::TargetGlobalAddress:
case ISD::GlobalAddress:
case ISD::TargetGlobalTLSAddress:
case ISD::GlobalTLSAddress: {
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
ID.AddPointer(GA->getGlobal());
ID.AddInteger(GA->getOffset());
ID.AddInteger(GA->getTargetFlags());
break;
}
case ISD::BasicBlock:
ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
break;
case ISD::Register:
ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
break;
case ISD::RegisterMask:
ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
break;
case ISD::SRCVALUE:
ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
break;
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::JumpTable:
case ISD::TargetJumpTable:
ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
break;
case ISD::ConstantPool:
case ISD::TargetConstantPool: {
const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
ID.AddInteger(CP->getAlignment());
ID.AddInteger(CP->getOffset());
if (CP->isMachineConstantPoolEntry())
CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
else
ID.AddPointer(CP->getConstVal());
ID.AddInteger(CP->getTargetFlags());
break;
}
case ISD::TargetIndex: {
const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
ID.AddInteger(TI->getIndex());
ID.AddInteger(TI->getOffset());
ID.AddInteger(TI->getTargetFlags());
break;
}
case ISD::LOAD: {
const LoadSDNode *LD = cast<LoadSDNode>(N);
ID.AddInteger(LD->getMemoryVT().getRawBits());
ID.AddInteger(LD->getRawSubclassData());
ID.AddInteger(LD->getPointerInfo().getAddrSpace());
break;
}
case ISD::STORE: {
const StoreSDNode *ST = cast<StoreSDNode>(N);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
break;
}
case ISD::MLOAD: {
const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
ID.AddInteger(MLD->getMemoryVT().getRawBits());
ID.AddInteger(MLD->getRawSubclassData());
ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
break;
}
case ISD::MSTORE: {
const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
ID.AddInteger(MST->getMemoryVT().getRawBits());
ID.AddInteger(MST->getRawSubclassData());
ID.AddInteger(MST->getPointerInfo().getAddrSpace());
break;
}
case ISD::MGATHER: {
const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
ID.AddInteger(MG->getMemoryVT().getRawBits());
ID.AddInteger(MG->getRawSubclassData());
ID.AddInteger(MG->getPointerInfo().getAddrSpace());
break;
}
case ISD::MSCATTER: {
const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
ID.AddInteger(MS->getMemoryVT().getRawBits());
ID.AddInteger(MS->getRawSubclassData());
ID.AddInteger(MS->getPointerInfo().getAddrSpace());
break;
}
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: {
const AtomicSDNode *AT = cast<AtomicSDNode>(N);
ID.AddInteger(AT->getMemoryVT().getRawBits());
ID.AddInteger(AT->getRawSubclassData());
ID.AddInteger(AT->getPointerInfo().getAddrSpace());
break;
}
case ISD::PREFETCH: {
const MemSDNode *PF = cast<MemSDNode>(N);
ID.AddInteger(PF->getPointerInfo().getAddrSpace());
break;
}
case ISD::VECTOR_SHUFFLE: {
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
i != e; ++i)
ID.AddInteger(SVN->getMaskElt(i));
break;
}
case ISD::TargetBlockAddress:
case ISD::BlockAddress: {
const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
ID.AddPointer(BA->getBlockAddress());
ID.AddInteger(BA->getOffset());
ID.AddInteger(BA->getTargetFlags());
break;
}
} // end switch (N->getOpcode())
// Target specific memory nodes could also have address spaces to check.
if (N->isTargetMemoryOpcode())
ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
}
/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
/// data.
static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
AddNodeIDOpcode(ID, N->getOpcode());
// Add the return value info.
AddNodeIDValueTypes(ID, N->getVTList());
// Add the operand info.
AddNodeIDOperands(ID, N->ops());
// Handle SDNode leafs with special info.
AddNodeIDCustom(ID, N);
}
//===----------------------------------------------------------------------===//
// SelectionDAG Class
//===----------------------------------------------------------------------===//
/// doNotCSE - Return true if CSE should not be performed for this node.
static bool doNotCSE(SDNode *N) {
if (N->getValueType(0) == MVT::Glue)
return true; // Never CSE anything that produces a flag.
switch (N->getOpcode()) {
default: break;
case ISD::HANDLENODE:
case ISD::EH_LABEL:
return true; // Never CSE these nodes.
}
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Glue)
return true; // Never CSE anything that produces a flag.
return false;
}
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void SelectionDAG::RemoveDeadNodes() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted.
HandleSDNode Dummy(getRoot());
SmallVector<SDNode*, 128> DeadNodes;
// Add all obviously-dead nodes to the DeadNodes worklist.
for (SDNode &Node : allnodes())
if (Node.use_empty())
DeadNodes.push_back(&Node);
RemoveDeadNodes(DeadNodes);
// If the root changed (e.g. it was a dead load, update the root).
setRoot(Dummy.getValue());
}
/// RemoveDeadNodes - This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
// Process the worklist, deleting the nodes and adding their uses to the
// worklist.
while (!DeadNodes.empty()) {
SDNode *N = DeadNodes.pop_back_val();
// Skip to next node if we've already managed to delete the node. This could
// happen if replacing a node causes a node previously added to the node to
// be deleted.
if (N->getOpcode() == ISD::DELETED_NODE)
continue;
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeDeleted(N, nullptr);
// Take the node out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Next, brutally remove the operand list. This is safe to do, as there are
// no cycles in the graph.
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
SDUse &Use = *I++;
SDNode *Operand = Use.getNode();
Use.set(SDValue());
// Now that we removed this operand, see if there are no uses of it left.
if (Operand->use_empty())
DeadNodes.push_back(Operand);
}
DeallocateNode(N);
}
}
void SelectionDAG::RemoveDeadNode(SDNode *N){
SmallVector<SDNode*, 16> DeadNodes(1, N);
// Create a dummy node that adds a reference to the root node, preventing
// it from being deleted. (This matters if the root is an operand of the
// dead node.)
HandleSDNode Dummy(getRoot());
RemoveDeadNodes(DeadNodes);
}
void SelectionDAG::DeleteNode(SDNode *N) {
// First take this out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Finally, remove uses due to operands of this node, remove from the
// AllNodes list, and delete the node.
DeleteNodeNotInCSEMaps(N);
}
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
assert(N->getIterator() != AllNodes.begin() &&
"Cannot delete the entry node!");
assert(N->use_empty() && "Cannot delete a node that is not dead!");
// Drop all of the operands and decrement used node's use counts.
N->DropOperands();
DeallocateNode(N);
}
void SDDbgInfo::erase(const SDNode *Node) {
DbgValMapType::iterator I = DbgValMap.find(Node);
if (I == DbgValMap.end())
return;
for (auto &Val: I->second)
Val->setIsInvalidated();
DbgValMap.erase(I);
}
void SelectionDAG::DeallocateNode(SDNode *N) {
// If we have operands, deallocate them.
removeOperands(N);
NodeAllocator.Deallocate(AllNodes.remove(N));
// Set the opcode to DELETED_NODE to help catch bugs when node
// memory is reallocated.
// FIXME: There are places in SDag that have grown a dependency on the opcode
// value in the released node.
__asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
N->NodeType = ISD::DELETED_NODE;
// If any of the SDDbgValue nodes refer to this SDNode, invalidate
// them and forget about that node.
DbgInfo->erase(N);
}
#ifndef NDEBUG
/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
static void VerifySDNode(SDNode *N) {
switch (N->getOpcode()) {
default:
break;
case ISD::BUILD_PAIR: {
EVT VT = N->getValueType(0);
assert(N->getNumValues() == 1 && "Too many results!");
assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
"Wrong return type!");
assert(N->getNumOperands() == 2 && "Wrong number of operands!");
assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
"Mismatched operand types!");
assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
"Wrong operand type!");
assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
"Wrong return type size");
break;
}
case ISD::BUILD_VECTOR: {
assert(N->getNumValues() == 1 && "Too many results!");
assert(N->getValueType(0).isVector() && "Wrong return type!");
assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
"Wrong number of operands!");
EVT EltVT = N->getValueType(0).getVectorElementType();
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
assert((I->getValueType() == EltVT ||
(EltVT.isInteger() && I->getValueType().isInteger() &&
EltVT.bitsLE(I->getValueType()))) &&
"Wrong operand type!");
assert(I->getValueType() == N->getOperand(0).getValueType() &&
"Operands must all have the same type");
}
break;
}
}
}
#endif // NDEBUG
/// Insert a newly allocated node into the DAG.
///
/// Handles insertion into the all nodes list and CSE map, as well as
/// verification and other common operations when a new node is allocated.
void SelectionDAG::InsertNode(SDNode *N) {
AllNodes.push_back(N);
#ifndef NDEBUG
N->PersistentId = NextPersistentId++;
VerifySDNode(N);
#endif
}
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it. This is useful when we're about to delete or repurpose
/// the node. We don't want future request for structurally identical nodes
/// to return N anymore.
bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
bool Erased = false;
switch (N->getOpcode()) {
case ISD::HANDLENODE: return false; // noop.
case ISD::CONDCODE:
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
"Cond code doesn't exist!");
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
break;
case ISD::ExternalSymbol:
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::TargetExternalSymbol: {
ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
Erased = TargetExternalSymbols.erase(
std::pair<std::string,unsigned char>(ESN->getSymbol(),
ESN->getTargetFlags()));
break;
}
case ISD::MCSymbol: {
auto *MCSN = cast<MCSymbolSDNode>(N);
Erased = MCSymbols.erase(MCSN->getMCSymbol());
break;
}
case ISD::VALUETYPE: {
EVT VT = cast<VTSDNode>(N)->getVT();
if (VT.isExtended()) {
Erased = ExtendedValueTypeNodes.erase(VT);
} else {
Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
}
break;
}
default:
// Remove it from the CSE Map.
assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
Erased = CSEMap.RemoveNode(N);
break;
}
#ifndef NDEBUG
// Verify that the node was actually in one of the CSE maps, unless it has a
// flag result (which cannot be CSE'd) or is one of the special cases that are
// not subject to CSE.
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
!N->isMachineOpcode() && !doNotCSE(N)) {
N->dump(this);
dbgs() << "\n";
llvm_unreachable("Node is not in map!");
}
#endif
return Erased;
}
/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
/// maps and modified in place. Add it back to the CSE maps, unless an identical
/// node already exists, in which case transfer all its users to the existing
/// node. This transfer can potentially trigger recursive merging.
void
SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
// For node types that aren't CSE'd, just act as if no identical node
// already exists.
if (!doNotCSE(N)) {
SDNode *Existing = CSEMap.GetOrInsertNode(N);
if (Existing != N) {
// If there was already an existing matching node, use ReplaceAllUsesWith
// to replace the dead one with the existing one. This can cause
// recursive merging of other unrelated nodes down the line.
ReplaceAllUsesWith(N, Existing);
// N is now dead. Inform the listeners and delete it.
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeDeleted(N, Existing);
DeleteNodeNotInCSEMaps(N);
return;
}
}
// If the node doesn't already exist, we updated it. Inform listeners.
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeUpdated(N);
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
SDValue Ops[] = { Op };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
if (Node)
Node->intersectFlagsWith(N->getFlags());
return Node;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
SDValue Op1, SDValue Op2,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
SDValue Ops[] = { Op1, Op2 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
if (Node)
Node->intersectFlagsWith(N->getFlags());
return Node;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
if (Node)
Node->intersectFlagsWith(N->getFlags());
return Node;
}
unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
Type *Ty = VT == MVT::iPTR ?
PointerType::get(Type::getInt8Ty(*getContext()), 0) :
VT.getTypeForEVT(*getContext());
return getDataLayout().getABITypeAlignment(Ty);
}
// EntryNode could meaningfully have debug info if we can find it...
SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
: TM(tm), OptLevel(OL),
EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
Root(getEntryNode()) {
InsertNode(&EntryNode);
DbgInfo = new SDDbgInfo();
}
void SelectionDAG::init(MachineFunction &NewMF,
OptimizationRemarkEmitter &NewORE,
Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
LegacyDivergenceAnalysis * Divergence) {
MF = &NewMF;
SDAGISelPass = PassPtr;
ORE = &NewORE;
TLI = getSubtarget().getTargetLowering();
TSI = getSubtarget().getSelectionDAGInfo();
LibInfo = LibraryInfo;
Context = &MF->getFunction().getContext();
DA = Divergence;
}
SelectionDAG::~SelectionDAG() {
assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
allnodes_clear();
OperandRecycler.clear(OperandAllocator);
delete DbgInfo;
}
void SelectionDAG::allnodes_clear() {
assert(&*AllNodes.begin() == &EntryNode);
AllNodes.remove(AllNodes.begin());
while (!AllNodes.empty())
DeallocateNode(&AllNodes.front());
#ifndef NDEBUG
NextPersistentId = 0;
#endif
}
SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
void *&InsertPos) {
SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
if (N) {
switch (N->getOpcode()) {
default: break;
case ISD::Constant:
case ISD::ConstantFP:
llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
"debug location. Use another overload.");
}
}
return N;
}
SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
const SDLoc &DL, void *&InsertPos) {
SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
if (N) {
switch (N->getOpcode()) {
case ISD::Constant:
case ISD::ConstantFP:
// Erase debug location from the node if the node is used at several
// different places. Do not propagate one location to all uses as it
// will cause a worse single stepping debugging experience.
if (N->getDebugLoc() != DL.getDebugLoc())
N->setDebugLoc(DebugLoc());
break;
default:
// When the node's point of use is located earlier in the instruction
// sequence than its prior point of use, update its debug info to the
// earlier location.
if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
N->setDebugLoc(DL.getDebugLoc());
break;
}
}
return N;
}
void SelectionDAG::clear() {
allnodes_clear();
OperandRecycler.clear(OperandAllocator);
OperandAllocator.Reset();
CSEMap.clear();
ExtendedValueTypeNodes.clear();
ExternalSymbols.clear();
TargetExternalSymbols.clear();
MCSymbols.clear();
std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
static_cast<CondCodeSDNode*>(nullptr));
std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
static_cast<SDNode*>(nullptr));
EntryNode.UseList = nullptr;
InsertNode(&EntryNode);
Root = getEntryNode();
DbgInfo->clear();
}
SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
return VT.bitsGT(Op.getValueType())
? getNode(ISD::FP_EXTEND, DL, VT, Op)
: getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
}
SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::ANY_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
EVT OpVT) {
if (VT.bitsLE(Op.getValueType()))
return getNode(ISD::TRUNCATE, SL, VT, Op);
TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
}
SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
assert(!VT.isVector() &&
"getZeroExtendInReg should use the vector element type instead of "
"the vector type!");
if (Op.getValueType().getScalarType() == VT) return Op;
unsigned BitWidth = Op.getScalarValueSizeInBits();
APInt Imm = APInt::getLowBitsSet(BitWidth,
VT.getSizeInBits());
return getNode(ISD::AND, DL, Op.getValueType(), Op,
getConstant(Imm, DL, Op.getValueType()));
}
/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
EVT EltVT = VT.getScalarType();
SDValue NegOne =
getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
return getNode(ISD::XOR, DL, VT, Val, NegOne);
}
SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
return getNode(ISD::XOR, DL, VT, Val, TrueValue);
}
SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
EVT OpVT) {
if (!V)
return getConstant(0, DL, VT);
switch (TLI->getBooleanContents(OpVT)) {
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::UndefinedBooleanContent:
return getConstant(1, DL, VT);
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return getAllOnesConstant(DL, VT);
}
llvm_unreachable("Unexpected boolean content enum!");
}
SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
bool isT, bool isO) {
EVT EltVT = VT.getScalarType();
assert((EltVT.getSizeInBits() >= 64 ||
(uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
"getConstant with a uint64_t value that doesn't fit in the type!");
return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
}
SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
bool isT, bool isO) {
return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
}
SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
EVT VT, bool isT, bool isO) {
assert(VT.isInteger() && "Cannot create FP integer constant!");
EVT EltVT = VT.getScalarType();
const ConstantInt *Elt = &Val;
// In some cases the vector type is legal but the element type is illegal and
// needs to be promoted, for example v8i8 on ARM. In this case, promote the
// inserted value (the type does not need to match the vector element type).
// Any extra bits introduced will be truncated away.
if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
TargetLowering::TypePromoteInteger) {
EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
Elt = ConstantInt::get(*getContext(), NewVal);
}
// In other cases the element type is illegal and needs to be expanded, for
// example v2i64 on MIPS32. In this case, find the nearest legal type, split
// the value into n parts and use a vector type with n-times the elements.
// Then bitcast to the type requested.
// Legalizing constants too early makes the DAGCombiner's job harder so we
// only legalize if the DAG tells us we must produce legal types.
else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
TLI->getTypeAction(*getContext(), EltVT) ==
TargetLowering::TypeExpandInteger) {
const APInt &NewVal = Elt->getValue();
EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
// Check the temporary vector is the correct size. If this fails then
// getTypeToTransformTo() probably returned a type whose size (in bits)
// isn't a power-of-2 factor of the requested type size.
assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
SmallVector<SDValue, 2> EltParts;
for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
.zextOrTrunc(ViaEltSizeInBits), DL,
ViaEltVT, isT, isO));
}
// EltParts is currently in little endian order. If we actually want
// big-endian order then reverse it now.
if (getDataLayout().isBigEndian())
std::reverse(EltParts.begin(), EltParts.end());
// The elements must be reversed when the element order is different
// to the endianness of the elements (because the BITCAST is itself a
// vector shuffle in this situation). However, we do not need any code to
// perform this reversal because getConstant() is producing a vector
// splat.
// This situation occurs in MIPS MSA.
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
return V;
}
assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
"APInt size does not match type size!");
unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
ID.AddPointer(Elt);
ID.AddBoolean(isO);
void *IP = nullptr;
SDNode *N = nullptr;
if ((N = FindNodeOrInsertPos(ID, DL, IP)))
if (!VT.isVector())
return SDValue(N, 0);
if (!N) {
N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
CSEMap.InsertNode(N, IP);
InsertNode(N);
NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
}
SDValue Result(N, 0);
if (VT.isVector())
Result = getSplatBuildVector(VT, DL, Result);
return Result;
}
SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
bool isTarget) {
return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
}
SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
bool isTarget) {
return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
}
SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
EVT VT, bool isTarget) {
assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
EVT EltVT = VT.getScalarType();
// Do the map lookup using the actual bit pattern for the floating point
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
// we don't have issues with SNANs.
unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
ID.AddPointer(&V);
void *IP = nullptr;
SDNode *N = nullptr;
if ((N = FindNodeOrInsertPos(ID, DL, IP)))
if (!VT.isVector())
return SDValue(N, 0);
if (!N) {
N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
CSEMap.InsertNode(N, IP);
InsertNode(N);
}
SDValue Result(N, 0);
if (VT.isVector())
Result = getSplatBuildVector(VT, DL, Result);
NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
return Result;
}
SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
bool isTarget) {
EVT EltVT = VT.getScalarType();
if (EltVT == MVT::f32)
return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
else if (EltVT == MVT::f64)
return getConstantFP(APFloat(Val), DL, VT, isTarget);
else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
EltVT == MVT::f16) {
bool Ignored;
APFloat APF = APFloat(Val);
APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
&Ignored);
return getConstantFP(APF, DL, VT, isTarget);
} else
llvm_unreachable("Unsupported type in getConstantFP");
}
SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
EVT VT, int64_t Offset, bool isTargetGA,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTargetGA) &&
"Cannot set target flags on target-independent globals");
// Truncate (with sign-extension) the offset value to the pointer size.
unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
if (BitWidth < 64)
Offset = SignExtend64(Offset, BitWidth);
unsigned Opc;
if (GV->isThreadLocal())
Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
else
Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddPointer(GV);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
auto *N = newSDNode<GlobalAddressSDNode>(
Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(FI);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent jump tables");
unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(JTI);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
unsigned Alignment, int Offset,
bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
Alignment = MF->getFunction().optForSize()
? getDataLayout().getABITypeAlignment(C->getType())
: getDataLayout().getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(Alignment);
ID.AddInteger(Offset);
ID.AddPointer(C);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
unsigned Alignment, int Offset,
bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(Alignment);
ID.AddInteger(Offset);
C->addSelectionDAGCSEId(ID);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
unsigned char TargetFlags) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
ID.AddInteger(Index);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
ID.AddPointer(MBB);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<BasicBlockSDNode>(MBB);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getValueType(EVT VT) {
if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
ValueTypeNodes.size())
ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
SDNode *&N = VT.isExtended() ?
ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
if (N) return SDValue(N, 0);
N = newSDNode<VTSDNode>(VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDValue(N, 0);
N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
SDNode *&N = MCSymbols[Sym];
if (N)
return SDValue(N, 0);
N = newSDNode<MCSymbolSDNode>(Sym, VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned char TargetFlags) {
SDNode *&N =
TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
TargetFlags)];
if (N) return SDValue(N, 0);
N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
if ((unsigned)Cond >= CondCodeNodes.size())
CondCodeNodes.resize(Cond+1);
if (!CondCodeNodes[Cond]) {
auto *N = newSDNode<CondCodeSDNode>(Cond);
CondCodeNodes[Cond] = N;
InsertNode(N);
}
return SDValue(CondCodeNodes[Cond], 0);
}
/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
/// point at N1 to point at N2 and indices that point at N2 to point at N1.
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
std::swap(N1, N2);
ShuffleVectorSDNode::commuteMask(M);
}
SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
SDValue N2, ArrayRef<int> Mask) {
assert(VT.getVectorNumElements() == Mask.size() &&
"Must have the same number of vector elements as mask elements!");
assert(VT == N1.getValueType() && VT == N2.getValueType() &&
"Invalid VECTOR_SHUFFLE");
// Canonicalize shuffle undef, undef -> undef
if (N1.isUndef() && N2.isUndef())
return getUNDEF(VT);
// Validate that all indices in Mask are within the range of the elements
// input to the shuffle.
int NElts = Mask.size();
assert(llvm::all_of(Mask,
[&](int M) { return M < (NElts * 2) && M >= -1; }) &&
"Index out of range");
// Copy the mask so we can do any needed cleanup.
SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
// Canonicalize shuffle v, v -> v, undef
if (N1 == N2) {
N2 = getUNDEF(VT);
for (int i = 0; i != NElts; ++i)
if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
}
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
if (N1.isUndef())
commuteShuffle(N1, N2, MaskVec);
if (TLI->hasVectorBlend()) {
// If shuffling a splat, try to blend the splat instead. We do this here so
// that even when this arises during lowering we don't have to re-handle it.
auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
BitVector UndefElements;
SDValue Splat = BV->getSplatValue(&UndefElements);
if (!Splat)
return;
for (int i = 0; i < NElts; ++i) {
if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
continue;
// If this input comes from undef, mark it as such.
if (UndefElements[MaskVec[i] - Offset]) {
MaskVec[i] = -1;
continue;
}
// If we can blend a non-undef lane, use that instead.
if (!UndefElements[i])
MaskVec[i] = i + Offset;
}
};
if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
BlendSplat(N1BV, 0);
if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
BlendSplat(N2BV, NElts);
}
// Canonicalize all index into lhs, -> shuffle lhs, undef
// Canonicalize all index into rhs, -> shuffle rhs, undef
bool AllLHS = true, AllRHS = true;
bool N2Undef = N2.isUndef();
for (int i = 0; i != NElts; ++i) {
if (MaskVec[i] >= NElts) {
if (N2Undef)
MaskVec[i] = -1;
else
AllLHS = false;
} else if (MaskVec[i] >= 0) {
AllRHS = false;
}
}
if (AllLHS && AllRHS)
return getUNDEF(VT);
if (AllLHS && !N2Undef)
N2 = getUNDEF(VT);
if (AllRHS) {
N1 = getUNDEF(VT);
commuteShuffle(N1, N2, MaskVec);
}
// Reset our undef status after accounting for the mask.
N2Undef = N2.isUndef();
// Re-check whether both sides ended up undef.
if (N1.isUndef() && N2Undef)
return getUNDEF(VT);
// If Identity shuffle return that node.
bool Identity = true, AllSame = true;
for (int i = 0; i != NElts; ++i) {
if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
if (MaskVec[i] != MaskVec[0]) AllSame = false;
}
if (Identity && NElts)
return N1;
// Shuffling a constant splat doesn't change the result.
if (N2Undef) {
SDValue V = N1;
// Look through any bitcasts. We check that these don't change the number
// (and size) of elements and just changes their types.
while (V.getOpcode() == ISD::BITCAST)
V = V->getOperand(0);
// A splat should always show up as a build vector node.
if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
BitVector UndefElements;
SDValue Splat = BV->getSplatValue(&UndefElements);
// If this is a splat of an undef, shuffling it is also undef.
if (Splat && Splat.isUndef())
return getUNDEF(VT);
bool SameNumElts =
V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
// We only have a splat which can skip shuffles if there is a splatted
// value and no undef lanes rearranged by the shuffle.
if (Splat && UndefElements.none()) {
// Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
// number of elements match or the value splatted is a zero constant.
if (SameNumElts)
return N1;
if (auto *C = dyn_cast<ConstantSDNode>(Splat))
if (C->isNullValue())
return N1;
}
// If the shuffle itself creates a splat, build the vector directly.
if (AllSame && SameNumElts) {
EVT BuildVT = BV->getValueType(0);
const SDValue &Splatted = BV->getOperand(MaskVec[0]);
SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
// We may have jumped through bitcasts, so the type of the
// BUILD_VECTOR may not match the type of the shuffle.
if (BuildVT != VT)
NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
return NewBV;
}
}
}
FoldingSetNodeID ID;
SDValue Ops[2] = { N1, N2 };
AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
for (int i = 0; i != NElts; ++i)
ID.AddInteger(MaskVec[i]);
void* IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
return SDValue(E, 0);
// Allocate the mask array for the node out of the BumpPtrAllocator, since
// SDNode doesn't have access to it. This memory will be "leaked" when
// the node is deallocated, but recovered when the NodeAllocator is released.
int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
llvm::copy(MaskVec, MaskAlloc);
auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
dl.getDebugLoc(), MaskAlloc);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
EVT VT = SV.getValueType(0);
SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
ShuffleVectorSDNode::commuteMask(MaskVec);
SDValue Op0 = SV.getOperand(0);
SDValue Op1 = SV.getOperand(1);
return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
}
SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
ID.AddInteger(RegNo);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
ID.AddPointer(RegMask);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
MCSymbol *Label) {
return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
}
SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
SDValue Root, MCSymbol *Label) {
FoldingSetNodeID ID;
SDValue Ops[] = { Root };
AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
ID.AddPointer(Label);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset,
bool isTarget,
unsigned char TargetFlags) {
unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddPointer(BA);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getSrcValue(const Value *V) {
assert((!V || V->getType()->isPointerTy()) &&
"SrcValue is not a pointer?");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
ID.AddPointer(V);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<SrcValueSDNode>(V);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getMDNode(const MDNode *MD) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
ID.AddPointer(MD);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
auto *N = newSDNode<MDNodeSDNode>(MD);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
if (VT == V.getValueType())
return V;
return getNode(ISD::BITCAST, SDLoc(V), VT, V);
}
SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
unsigned SrcAS, unsigned DestAS) {
SDValue Ops[] = {Ptr};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
ID.AddInteger(SrcAS);
ID.AddInteger(DestAS);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
return SDValue(E, 0);
auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
VT, SrcAS, DestAS);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
/// getShiftAmountOperand - Return the specified value casted to
/// the target's desired shift amount type.
SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
EVT OpTy = Op.getValueType();
EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
if (OpTy == ShTy || OpTy.isVector()) return Op;
return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
}
SDValue SelectionDAG::expandVAArg(SDNode *Node) {
SDLoc dl(Node);
const TargetLowering &TLI = getTargetLoweringInfo();
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
EVT VT = Node->getValueType(0);
SDValue Tmp1 = Node->getOperand(0);
SDValue Tmp2 = Node->getOperand(1);
unsigned Align = Node->getConstantOperandVal(3);
SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
Tmp2, MachinePointerInfo(V));
SDValue VAList = VAListLoad;
if (Align > TLI.getMinStackArgumentAlignment()) {
assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
getConstant(Align - 1, dl, VAList.getValueType()));
VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
getConstant(-(int64_t)Align, dl, VAList.getValueType()));
}
// Increment the pointer, VAList, to the next vaarg
Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
getConstant(getDataLayout().getTypeAllocSize(
VT.getTypeForEVT(*getContext())),
dl, VAList.getValueType()));
// Store the incremented VAList to the legalized pointer
Tmp1 =
getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
// Load the actual argument out of the pointer VAList
return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
}
SDValue SelectionDAG::expandVACopy(SDNode *Node) {
SDLoc dl(Node);
const TargetLowering &TLI = getTargetLoweringInfo();
// This defaults to loading a pointer from the input and storing it to the
// output, returning the chain.
const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
SDValue Tmp1 =
getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
Node->getOperand(2), MachinePointerInfo(VS));
return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
MachinePointerInfo(VD));
}
SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
unsigned ByteSize = VT.getStoreSize();
Type *Ty = VT.getTypeForEVT(*getContext());
unsigned StackAlign =
std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
}
SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
Type *Ty1 = VT1.getTypeForEVT(*getContext());
Type *Ty2 = VT2.getTypeForEVT(*getContext());
const DataLayout &DL = getDataLayout();
unsigned Align =
std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
}
SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
ISD::CondCode Cond, const SDLoc &dl) {
EVT OpVT = N1.getValueType();
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
case ISD::SETTRUE:
case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
case ISD::SETOEQ:
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETONE:
case ISD::SETO:
case ISD::SETUO:
case ISD::SETUEQ:
case ISD::SETUNE:
assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
break;
}
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
const APInt &C2 = N2C->getAPIntValue();
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
const APInt &C1 = N1C->getAPIntValue();
switch (Cond) {
default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT);
case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT);
case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
}
}
}
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
switch (Cond) {
default: break;
case ISD::SETEQ: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
OpVT);
case ISD::SETNE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpLessThan, dl, VT,
OpVT);
case ISD::SETLT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
OpVT);
case ISD::SETGT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
VT, OpVT);
case ISD::SETLE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual, dl, VT,
OpVT);
case ISD::SETGE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
LLVM_FALLTHROUGH;
case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual, dl, VT, OpVT);
case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
OpVT);
case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
OpVT);
case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual, dl, VT,
OpVT);
case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
OpVT);
case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan, dl, VT,
OpVT);
case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpUnordered, dl, VT,
OpVT);
case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
VT, OpVT);
case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
OpVT);
}
} else {
// Ensure that the constant occurs on the RHS.
ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
MVT CompVT = N1.getValueType().getSimpleVT();
if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
return SDValue();
return getSetCC(dl, VT, N2, N1, SwappedCond);
}
}
// Could not fold it.
return SDValue();
}
/// See if the specified operand can be simplified with the knowledge that only
/// the bits specified by Mask are used.
SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
switch (V.getOpcode()) {
default:
break;
case ISD::Constant: {
const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
assert(CV && "Const value should be ConstSDNode.");
const APInt &CVal = CV->getAPIntValue();
APInt NewVal = CVal & Mask;
if (NewVal != CVal)
return getConstant(NewVal, SDLoc(V), V.getValueType());
break;
}
case ISD::OR:
case ISD::XOR:
// If the LHS or RHS don't contribute bits to the or, drop them.
if (MaskedValueIsZero(V.getOperand(0), Mask))
return V.getOperand(1);
if (MaskedValueIsZero(V.getOperand(1), Mask))
return V.getOperand(0);
break;
case ISD::SRL:
// Only look at single-use SRLs.
if (!V.getNode()->hasOneUse())
break;
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
// See if we can recursively simplify the LHS.
unsigned Amt = RHSC->getZExtValue();
// Watch out for shift count overflow though.
if (Amt >= Mask.getBitWidth())
break;
APInt NewMask = Mask << Amt;
if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
V.getOperand(1));
}
break;
case ISD::AND: {
// X & -1 -> X (ignoring bits which aren't demanded).
ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
return V.getOperand(0);
break;
}
case ISD::ANY_EXTEND: {
SDValue Src = V.getOperand(0);
unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
// Being conservative here - only peek through if we only demand bits in the
// non-extended source (even though the extended bits are technically undef).
if (Mask.getActiveBits() > SrcBitWidth)
break;
APInt SrcMask = Mask.trunc(SrcBitWidth);
if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
break;
}
}
return SDValue();
}
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
/// use this predicate to simplify operations downstream.
bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
unsigned BitWidth = Op.getScalarValueSizeInBits();
return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
unsigned Depth) const {
return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
}
/// Helper function that checks to see if a node is a constant or a
/// build vector of splat constants at least within the demanded elts.
static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
const APInt &DemandedElts) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
return CN;
if (N.getOpcode() != ISD::BUILD_VECTOR)
return nullptr;
EVT VT = N.getValueType();
ConstantSDNode *Cst = nullptr;
unsigned NumElts = VT.getVectorNumElements();
assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
C->getValueType(0) != VT.getScalarType())
return nullptr;
Cst = C;
}
return Cst;
}
/// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
/// is less than the element bit-width of the shift node, return it.
static const APInt *getValidShiftAmountConstant(SDValue V) {
if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
// Shifting more than the bitwidth is not valid.
const APInt &ShAmt = SA->getAPIntValue();
if (ShAmt.ult(V.getScalarValueSizeInBits()))
return &ShAmt;
}
return nullptr;
}
/// Determine which bits of Op are known to be either zero or one and return
/// them in Known. For vectors, the known bits are those that are shared by
/// every vector element.
KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
EVT VT = Op.getValueType();
APInt DemandedElts = VT.isVector()
? APInt::getAllOnesValue(VT.getVectorNumElements())
: APInt(1, 1);
return computeKnownBits(Op, DemandedElts, Depth);
}
/// Determine which bits of Op are known to be either zero or one and return
/// them in Known. The DemandedElts argument allows us to only collect the known
/// bits that are shared by the requested vector elements.
KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth) const {
unsigned BitWidth = Op.getScalarValueSizeInBits();
KnownBits Known(BitWidth); // Don't know anything.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
// We know all of the bits for a constant!
Known.One = C->getAPIntValue();
Known.Zero = ~Known.One;
return Known;
}
if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
// We know all of the bits for a constant fp!
Known.One = C->getValueAPF().bitcastToAPInt();
Known.Zero = ~Known.One;
return Known;
}
if (Depth == 6)
return Known; // Limit search depth.
KnownBits Known2;
unsigned NumElts = DemandedElts.getBitWidth();
assert((!Op.getValueType().isVector() ||
NumElts == Op.getValueType().getVectorNumElements()) &&
"Unexpected vector size");
if (!DemandedElts)
return Known; // No demanded elts, better to assume we don't know anything.
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
case ISD::BUILD_VECTOR:
// Collect the known bits that are shared by every demanded vector element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
if (!DemandedElts[i])
continue;
SDValue SrcOp = Op.getOperand(i);
Known2 = computeKnownBits(SrcOp, Depth + 1);
// BUILD_VECTOR can implicitly truncate sources, we must handle this.
if (SrcOp.getValueSizeInBits() != BitWidth) {
assert(SrcOp.getValueSizeInBits() > BitWidth &&
"Expected BUILD_VECTOR implicit truncation");
Known2 = Known2.trunc(BitWidth);
}
// Known bits are the values that are shared by every demanded element.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
break;
case ISD::VECTOR_SHUFFLE: {
// Collect the known bits that are shared by every vector element referenced
// by the shuffle.
APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
Known.Zero.setAllBits(); Known.One.setAllBits();
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
int M = SVN->getMaskElt(i);
if (M < 0) {
// For UNDEF elements, we don't know anything about the common state of
// the shuffle result.
Known.resetAll();
DemandedLHS.clearAllBits();
DemandedRHS.clearAllBits();
break;
}
if ((unsigned)M < NumElts)
DemandedLHS.setBit((unsigned)M % NumElts);
else
DemandedRHS.setBit((unsigned)M % NumElts);
}
// Known bits are the values that are shared by every demanded element.
if (!!DemandedLHS) {
SDValue LHS = Op.getOperand(0);
Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
if (!!DemandedRHS) {
SDValue RHS = Op.getOperand(1);
Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
break;
}
case ISD::CONCAT_VECTORS: {
// Split DemandedElts and test each of the demanded subvectors.
Known.Zero.setAllBits(); Known.One.setAllBits();
EVT SubVectorVT = Op.getOperand(0).getValueType();
unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
unsigned NumSubVectors = Op.getNumOperands();
for (unsigned i = 0; i != NumSubVectors; ++i) {
APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
DemandedSub = DemandedSub.trunc(NumSubVectorElts);
if (!!DemandedSub) {
SDValue Sub = Op.getOperand(i);
Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
break;
}
case ISD::INSERT_SUBVECTOR: {
// If we know the element index, demand any elements from the subvector and
// the remainder from the src its inserted into, otherwise demand them all.
SDValue Src = Op.getOperand(0);
SDValue Sub = Op.getOperand(1);
ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
Known.One.setAllBits();
Known.Zero.setAllBits();
uint64_t Idx = SubIdx->getZExtValue();
APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
if (!!DemandedSubElts) {
Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
if (Known.isUnknown())
break; // early-out.
}
APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
APInt DemandedSrcElts = DemandedElts & ~SubMask;
if (!!DemandedSrcElts) {
Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
} else {
Known = computeKnownBits(Sub, Depth + 1);
if (Known.isUnknown())
break; // early-out.
Known2 = computeKnownBits(Src, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
break;
}
case ISD::EXTRACT_SUBVECTOR: {
// If we know the element index, just demand that subvector elements,
// otherwise demand them all.
SDValue Src = Op.getOperand(0);
ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
// Offset the demanded elts by the subvector index.
uint64_t Idx = SubIdx->getZExtValue();
APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
} else {
Known = computeKnownBits(Src, Depth + 1);
}
break;
}
case ISD::SCALAR_TO_VECTOR: {
// We know about scalar_to_vector as much as we know about it source,
// which becomes the first element of otherwise unknown vector.
if (DemandedElts != 1)
break;
SDValue N0 = Op.getOperand(0);
Known = computeKnownBits(N0, Depth + 1);
if (N0.getValueSizeInBits() != BitWidth)
Known = Known.trunc(BitWidth);
break;
}
case ISD::BITCAST: {
SDValue N0 = Op.getOperand(0);
EVT SubVT = N0.getValueType();
unsigned SubBitWidth = SubVT.getScalarSizeInBits();
// Ignore bitcasts from unsupported types.
if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
break;
// Fast handling of 'identity' bitcasts.
if (BitWidth == SubBitWidth) {
Known = computeKnownBits(N0, DemandedElts, Depth + 1);
break;
}
bool IsLE = getDataLayout().isLittleEndian();
// Bitcast 'small element' vector to 'large element' scalar/vector.
if ((BitWidth % SubBitWidth) == 0) {
assert(N0.getValueType().isVector() && "Expected bitcast from vector");
// Collect known bits for the (larger) output by collecting the known
// bits from each set of sub elements and shift these into place.
// We need to separately call computeKnownBits for each set of
// sub elements as the knownbits for each is likely to be different.
unsigned SubScale = BitWidth / SubBitWidth;
APInt SubDemandedElts(NumElts * SubScale, 0);
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i])
SubDemandedElts.setBit(i * SubScale);
for (unsigned i = 0; i != SubScale; ++i) {
Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
Depth + 1);
unsigned Shifts = IsLE ? i : SubScale - 1 - i;
Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
}
}
// Bitcast 'large element' scalar/vector to 'small element' vector.
if ((SubBitWidth % BitWidth) == 0) {
assert(Op.getValueType().isVector() && "Expected bitcast to vector");
// Collect known bits for the (smaller) output by collecting the known
// bits from the overlapping larger input elements and extracting the
// sub sections we actually care about.
unsigned SubScale = SubBitWidth / BitWidth;
APInt SubDemandedElts(NumElts / SubScale, 0);
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i])
SubDemandedElts.setBit(i / SubScale);
Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i]) {
unsigned Shifts = IsLE ? i : NumElts - 1 - i;
unsigned Offset = (Shifts % SubScale) * BitWidth;
Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
}
break;
}
case ISD::AND:
// If either the LHS or the RHS are Zero, the result is zero.
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// Output known-1 bits are only known if set in both the LHS & RHS.
Known.One &= Known2.One;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
Known.Zero |= Known2.Zero;
break;
case ISD::OR:
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
Known.Zero &= Known2.Zero;
// Output known-1 are known to be set if set in either the LHS | RHS.
Known.One |= Known2.One;
break;
case ISD::XOR: {
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
Known.Zero = KnownZeroOut;
break;
}
case ISD::MUL: {
Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conservative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
unsigned TrailZ = Known.countMinTrailingZeros() +
Known2.countMinTrailingZeros();
unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
Known2.countMinLeadingZeros(),
BitWidth) - BitWidth;
Known.resetAll();
Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
break;
}
case ISD::UDIV: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned LeadZ = Known2.countMinLeadingZeros();
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
if (RHSMaxLeadingZeros != BitWidth)
LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Known.Zero.setHighBits(LeadZ);
break;
}
case ISD::SELECT:
case ISD::VSELECT:
Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
// Only known if known in both the LHS and RHS.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
break;
case ISD::SELECT_CC:
Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
// Only known if known in both the LHS and RHS.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
break;
case ISD::SMULO:
case ISD::UMULO:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
if (Op.getResNo() != 1)
break;
// The boolean result conforms to getBooleanContents.
// If we know the result of a setcc has the top bits zero, use this info.
// We know that we have an integer-based boolean since these operations
// are only available for integer.
if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
case ISD::SETCC:
// If we know the result of a setcc has the top bits zero, use this info.
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
case ISD::SHL:
if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned Shift = ShAmt->getZExtValue();
Known.Zero <<= Shift;
Known.One <<= Shift;
// Low bits are known zero.
Known.Zero.setLowBits(Shift);
}
break;
case ISD::SRL:
if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned Shift = ShAmt->getZExtValue();
Known.Zero.lshrInPlace(Shift);
Known.One.lshrInPlace(Shift);
// High bits are known zero.
Known.Zero.setHighBits(Shift);
} else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
// If the shift amount is a vector of constants see if we can bound
// the number of upper zero bits.
unsigned ShiftAmountMin = BitWidth;
for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
const APInt &ShAmt = C->getAPIntValue();
if (ShAmt.ult(BitWidth)) {
ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
ShAmt.getZExtValue());
continue;
}
}
// Don't know anything.
ShiftAmountMin = 0;
break;
}
Known.Zero.setHighBits(ShiftAmountMin);
}
break;
case ISD::SRA:
if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned Shift = ShAmt->getZExtValue();
// Sign extend known zero/one bit (else is unknown).
Known.Zero.ashrInPlace(Shift);
Known.One.ashrInPlace(Shift);
}
break;
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
unsigned EBits = EVT.getScalarSizeInBits();
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
APInt InSignMask = APInt::getSignMask(EBits);
APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
// If the sign extended bits are demanded, we know that the sign
// bit is demanded.
InSignMask = InSignMask.zext(BitWidth);
if (NewBits.getBoolValue())
InputDemandedBits |= InSignMask;
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known.One &= InputDemandedBits;
Known.Zero &= InputDemandedBits;
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear
Known.Zero |= NewBits;
Known.One &= ~NewBits;
} else if (Known.One.intersects(InSignMask)) { // Input sign bit known set
Known.One |= NewBits;
Known.Zero &= ~NewBits;
} else { // Input sign bit unknown
Known.Zero &= ~NewBits;
Known.One &= ~NewBits;
}
break;
}
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// If we have a known 1, its position is our upper bound.
unsigned PossibleTZ = Known2.countMaxTrailingZeros();
unsigned LowBits = Log2_32(PossibleTZ) + 1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// If we have a known 1, its position is our upper bound.
unsigned PossibleLZ = Known2.countMaxLeadingZeros();
unsigned LowBits = Log2_32(PossibleLZ) + 1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case ISD::CTPOP: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// If we know some of the bits are zero, they can't be one.
unsigned PossibleOnes = Known2.countMaxPopulation();
Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Op);
// If this is a ZEXTLoad and we are looking at the loaded value.
if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
EVT VT = LD->getMemoryVT();
unsigned MemBits = VT.getScalarSizeInBits();
Known.Zero.setBitsFrom(MemBits);
} else if (const MDNode *Ranges = LD->getRanges()) {
if (LD->getExtensionType() == ISD::NON_EXTLOAD)
computeKnownBitsFromRangeMetadata(*Ranges, Known);
}
break;
}
case ISD::ZERO_EXTEND_VECTOR_INREG: {
EVT InVT = Op.getOperand(0).getValueType();
APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
Known = Known.zext(BitWidth);
Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
break;
}
case ISD::ZERO_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known.zext(BitWidth);
Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
break;
}
// TODO ISD::SIGN_EXTEND_VECTOR_INREG
case ISD::SIGN_EXTEND: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// If the sign bit is known to be zero or one, then sext will extend
// it to the top bits, else it will just zext.
Known = Known.sext(BitWidth);
break;
}
case ISD::ANY_EXTEND: {
Known = computeKnownBits(Op.getOperand(0), Depth+1);
Known = Known.zext(BitWidth);
break;
}
case ISD::TRUNCATE: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known = Known.trunc(BitWidth);
break;
}
case ISD::AssertZext: {
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
Known = computeKnownBits(Op.getOperand(0), Depth+1);
Known.Zero |= (~InMask);
Known.One &= (~Known.Zero);
break;
}
case ISD::FGETSIGN:
// All bits are zero except the low bit.
Known.Zero.setBitsFrom(1);
break;
case ISD::USUBO:
case ISD::SSUBO:
if (Op.getResNo() == 1) {
// If we know the result of a setcc has the top bits zero, use this info.
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
LLVM_FALLTHROUGH;
case ISD::SUB:
case ISD::SUBC: {
if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
if (CLHS->getAPIntValue().isNonNegative()) {
unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
Depth + 1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
// from [0-C].
if ((Known2.Zero & MaskV) == MaskV) {
unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
// Top bits known zero.
Known.Zero.setHighBits(NLZ2);
}
}
}
// If low bits are know to be zero in both operands, then we know they are
// going to be 0 in the result. Both addition and complement operations
// preserve the low zero bits.
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned KnownZeroLow = Known2.countMinTrailingZeros();
if (KnownZeroLow == 0)
break;
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
Known.Zero.setLowBits(KnownZeroLow);
break;
}
case ISD::UADDO:
case ISD::SADDO:
case ISD::ADDCARRY:
if (Op.getResNo() == 1) {
// If we know the result of a setcc has the top bits zero, use this info.
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
LLVM_FALLTHROUGH;
case ISD::ADD:
case ISD::ADDC:
case ISD::ADDE: {
// Output known-0 bits are known if clear or set in both the low clear bits
// common to both LHS & RHS. For example, 8+(X<<3) is known to have the
// low 3 bits clear.
// Output known-0 bits are also known if the top bits of each input are
// known to be clear. For example, if one input has the top 10 bits clear
// and the other has the top 8 bits clear, we know the top 7 bits of the
// output must be clear.
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
unsigned KnownZeroLow = Known2.countMinTrailingZeros();
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
// With ADDE and ADDCARRY, a carry bit may be added in, so we can only
// use this information if we know (at least) that the low two bits are
// clear. We then return to the caller that the low bit is unknown but
// that other bits are known zero.
if (KnownZeroLow >= 2)
Known.Zero.setBits(1, KnownZeroLow);
break;
}
Known.Zero.setLowBits(KnownZeroLow);
if (KnownZeroHigh > 1)
Known.Zero.setHighBits(KnownZeroHigh - 1);
break;
}
case ISD::SREM:
if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
const APInt &RA = Rem->getAPIntValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// The low bits of the first operand are unchanged by the srem.
Known.Zero = Known2.Zero & LowBits;
Known.One = Known2.One & LowBits;
// If the first operand is non-negative or has all low bits zero, then
// the upper bits are all zero.
if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
Known.Zero |= ~LowBits;
// If the first operand is negative and not all low bits are zero, then
// the upper bits are all one.
if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
Known.One |= ~LowBits;
assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
}
}
break;
case ISD::UREM: {
if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
const APInt &RA = Rem->getAPIntValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// The upper bits are all zero, the lower ones are unchanged.
Known.Zero = Known2.Zero | ~LowBits;
Known.One = Known2.One & LowBits;
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
uint32_t Leaders =
std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Known.resetAll();
Known.Zero.setHighBits(Leaders);
break;
}
case ISD::EXTRACT_ELEMENT: {
Known = computeKnownBits(Op.getOperand(0), Depth+1);
const unsigned Index = Op.getConstantOperandVal(1);
const unsigned BitWidth = Op.getValueSizeInBits();
// Remove low part of known bits mask
Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
// Remove high part of known bit mask
Known = Known.trunc(BitWidth);
break;
}
case ISD::EXTRACT_VECTOR_ELT: {
SDValue InVec = Op.getOperand(0);
SDValue EltNo = Op.getOperand(1);
EVT VecVT = InVec.getValueType();
const unsigned BitWidth = Op.getValueSizeInBits();
const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
const unsigned NumSrcElts = VecVT.getVectorNumElements();
// If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
// anything about the extended bits.
if (BitWidth > EltBitWidth)
Known = Known.trunc(EltBitWidth);
ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
// If we know the element index, just demand that vector element.
unsigned Idx = ConstEltNo->getZExtValue();
APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
} else {
// Unknown element index, so ignore DemandedElts and demand them all.
Known = computeKnownBits(InVec, Depth + 1);
}
if (BitWidth > EltBitWidth)
Known = Known.zext(BitWidth);
break;
}
case ISD::INSERT_VECTOR_ELT: {
SDValue InVec = Op.getOperand(0);
SDValue InVal = Op.getOperand(1);
SDValue EltNo = Op.getOperand(2);
ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
// If we know the element index, split the demand between the
// source vector and the inserted element.
Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
unsigned EltIdx = CEltNo->getZExtValue();
// If we demand the inserted element then add its common known bits.
if (DemandedElts[EltIdx]) {
Known2 = computeKnownBits(InVal, Depth + 1);
Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
}
// If we demand the source vector then add its common known bits, ensuring
// that we don't demand the inserted element.
APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
if (!!VectorElts) {
Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
} else {
// Unknown element index, so ignore DemandedElts and demand them all.
Known = computeKnownBits(InVec, Depth + 1);
Known2 = computeKnownBits(InVal, Depth + 1);
Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
}
break;
}
case ISD::BITREVERSE: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known.Zero = Known2.Zero.reverseBits();
Known.One = Known2.One.reverseBits();
break;
}
case ISD::BSWAP: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known.Zero = Known2.Zero.byteSwap();
Known.One = Known2.One.byteSwap();
break;
}
case ISD::ABS: {
Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// If the source's MSB is zero then we know the rest of the bits already.
if (Known2.isNonNegative()) {
Known.Zero = Known2.Zero;
Known.One = Known2.One;
break;
}
// We only know that the absolute values's MSB will be zero iff there is
// a set bit that isn't the sign bit (otherwise it could be INT_MIN).
Known2.One.clearSignBit();
if (Known2.One.getBoolValue()) {
Known.Zero = APInt::getSignMask(BitWidth);
break;
}
break;
}
case ISD::UMIN: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
// UMIN - we know that the result will have the maximum of the
// known zero leading bits of the inputs.
unsigned LeadZero = Known.countMinLeadingZeros();
LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
Known.Zero &= Known2.Zero;
Known.One &= Known2.One;
Known.Zero.setHighBits(LeadZero);
break;
}
case ISD::UMAX: {
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
// UMAX - we know that the result will have the maximum of the
// known one leading bits of the inputs.
unsigned LeadOne = Known.countMinLeadingOnes();
LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
Known.Zero &= Known2.Zero;
Known.One &= Known2.One;
Known.One.setHighBits(LeadOne);
break;
}
case ISD::SMIN:
case ISD::SMAX: {
// If we have a clamp pattern, we know that the number of sign bits will be
// the minimum of the clamp min/max range.
bool IsMax = (Opcode == ISD::SMAX);
ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
DemandedElts);
if (CstLow && CstHigh) {
if (!IsMax)
std::swap(CstLow, CstHigh);
const APInt &ValueLow = CstLow->getAPIntValue();
const APInt &ValueHigh = CstHigh->getAPIntValue();
if (ValueLow.sle(ValueHigh)) {
unsigned LowSignBits = ValueLow.getNumSignBits();
unsigned HighSignBits = ValueHigh.getNumSignBits();
unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
if (ValueLow.isNegative() && ValueHigh.isNegative()) {
Known.One.setHighBits(MinSignBits);
break;
}
if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
Known.Zero.setHighBits(MinSignBits);
break;
}
}
}
// Fallback - just get the shared known bits of the operands.
Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (Known.isUnknown()) break; // Early-out
Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known.Zero &= Known2.Zero;
Known.One &= Known2.One;
break;
}
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
break;
default:
if (Opcode < ISD::BUILTIN_OP_END)
break;
LLVM_FALLTHROUGH;
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
// Allow the target to implement this method for its nodes.
TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
break;
}
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
return Known;
}
SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
SDValue N1) const {
// X + 0 never overflow
if (isNullConstant(N1))
return OFK_Never;
KnownBits N1Known;
computeKnownBits(N1, N1Known);
if (N1Known.Zero.getBoolValue()) {
KnownBits N0Known;
computeKnownBits(N0, N0Known);
bool overflow;
(void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
if (!overflow)
return OFK_Never;
}
// mulhi + 1 never overflow
if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
(~N1Known.Zero & 0x01) == ~N1Known.Zero)
return OFK_Never;
if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
KnownBits N0Known;
computeKnownBits(N0, N0Known);
if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
return OFK_Never;
}
return OFK_Sometime;
}
bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
EVT OpVT = Val.getValueType();
unsigned BitWidth = OpVT.getScalarSizeInBits();
// Is the constant a known power of 2?
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
// A left-shift of a constant one will have exactly one bit set because
// shifting the bit off the end is undefined.
if (Val.getOpcode() == ISD::SHL) {
auto *C = isConstOrConstSplat(Val.getOperand(0));
if (C && C->getAPIntValue() == 1)
return true;
}
// Similarly, a logical right-shift of a constant sign-bit will have exactly
// one bit set.
if (Val.getOpcode() == ISD::SRL) {
auto *C = isConstOrConstSplat(Val.getOperand(0));
if (C && C->getAPIntValue().isSignMask())
return true;
}
// Are all operands of a build vector constant powers of two?
if (Val.getOpcode() == ISD::BUILD_VECTOR)
if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
return false;
}))
return true;
// More could be done here, though the above checks are enough
// to handle some common cases.
// Fall back to computeKnownBits to catch other known cases.
KnownBits Known = computeKnownBits(Val);
return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
}
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
EVT VT = Op.getValueType();
APInt DemandedElts = VT.isVector()
? APInt::getAllOnesValue(VT.getVectorNumElements())
: APInt(1, 1);
return ComputeNumSignBits(Op, DemandedElts, Depth);
}
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth) const {
EVT VT = Op.getValueType();
assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
unsigned VTBits = VT.getScalarSizeInBits();
unsigned NumElts = DemandedElts.getBitWidth();
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
const APInt &Val = C->getAPIntValue();
return Val.getNumSignBits();
}
if (Depth == 6)
return 1; // Limit search depth.
if (!DemandedElts)
return 1; // No demanded elts, better to assume we don't know anything.
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
default: break;
case ISD::AssertSext:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
return VTBits-Tmp+1;
case ISD::AssertZext:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
return VTBits-Tmp;
case ISD::BUILD_VECTOR:
Tmp = VTBits;
for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
if (!DemandedElts[i])
continue;
SDValue SrcOp = Op.getOperand(i);
Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
// BUILD_VECTOR can implicitly truncate sources, we must handle this.
if (SrcOp.getValueSizeInBits() != VTBits) {
assert(SrcOp.getValueSizeInBits() > VTBits &&
"Expected BUILD_VECTOR implicit truncation");
unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
}
Tmp = std::min(Tmp, Tmp2);
}
return Tmp;
case ISD::VECTOR_SHUFFLE: {
// Collect the minimum number of sign bits that are shared by every vector
// element referenced by the shuffle.
APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
for (unsigned i = 0; i != NumElts; ++i) {
int M = SVN->getMaskElt(i);
if (!DemandedElts[i])
continue;
// For UNDEF elements, we don't know anything about the common state of
// the shuffle result.
if (M < 0)
return 1;
if ((unsigned)M < NumElts)
DemandedLHS.setBit((unsigned)M % NumElts);
else
DemandedRHS.setBit((unsigned)M % NumElts);
}
Tmp = std::numeric_limits<unsigned>::max();
if (!!DemandedLHS)
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
if (!!DemandedRHS) {
Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
// If we don't know anything, early out and try computeKnownBits fall-back.
if (Tmp == 1)
break;
assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
return Tmp;
}
case ISD::BITCAST: {
SDValue N0 = Op.getOperand(0);
EVT SrcVT = N0.getValueType();
unsigned SrcBits = SrcVT.getScalarSizeInBits();
// Ignore bitcasts from unsupported types..
if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
break;
// Fast handling of 'identity' bitcasts.
if (VTBits == SrcBits)
return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
bool IsLE = getDataLayout().isLittleEndian();
// Bitcast 'large element' scalar/vector to 'small element' vector.
if ((SrcBits % VTBits) == 0) {
assert(VT.isVector() && "Expected bitcast to vector");
unsigned Scale = SrcBits / VTBits;
APInt SrcDemandedElts(NumElts / Scale, 0);
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i])
SrcDemandedElts.setBit(i / Scale);
// Fast case - sign splat can be simply split across the small elements.
Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
if (Tmp == SrcBits)
return VTBits;
// Slow case - determine how far the sign extends into each sub-element.
Tmp2 = VTBits;
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i]) {
unsigned SubOffset = i % Scale;
SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
SubOffset = SubOffset * VTBits;
if (Tmp <= SubOffset)
return 1;
Tmp2 = std::min(Tmp2, Tmp - SubOffset);
}
return Tmp2;
}
break;
}
case ISD::SIGN_EXTEND:
Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
case ISD::SIGN_EXTEND_INREG:
// Max of the input and what this extends.
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
Tmp = VTBits-Tmp+1;
Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
return std::max(Tmp, Tmp2);
case ISD::SIGN_EXTEND_VECTOR_INREG: {
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
Tmp = VTBits - SrcVT.getScalarSizeInBits();
return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
}
case ISD::SRA:
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
// SRA X, C -> adds C sign bits.
if (ConstantSDNode *C =
isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
APInt ShiftVal = C->getAPIntValue();
ShiftVal += Tmp;
Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
}
return Tmp;
case ISD::SHL:
if (ConstantSDNode *C =
isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
if (C->getAPIntValue().uge(VTBits) || // Bad shift.
C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out.
return Tmp - C->getZExtValue();
}
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
// computeKnownBits, and pick whichever answer is better.
}
break;
case ISD::SELECT:
case ISD::VSELECT:
Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
return std::min(Tmp, Tmp2);
case ISD::SELECT_CC:
Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
return std::min(Tmp, Tmp2);
case ISD::SMIN:
case ISD::SMAX: {
// If we have a clamp pattern, we know that the number of sign bits will be
// the minimum of the clamp min/max range.
bool IsMax = (Opcode == ISD::SMAX);
ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
DemandedElts);
if (CstLow && CstHigh) {
if (!IsMax)
std::swap(CstLow, CstHigh);
if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
Tmp = CstLow->getAPIntValue().getNumSignBits();
Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
return std::min(Tmp, Tmp2);
}
}
// Fallback - just get the minimum number of sign bits of the operands.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
if (Tmp == 1)
return 1; // Early out.
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
return std::min(Tmp, Tmp2);
}
case ISD::UMIN:
case ISD::UMAX:
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
if (Tmp == 1)
return 1; // Early out.
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
return std::min(Tmp, Tmp2);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO:
if (Op.getResNo() != 1)
break;
// The boolean result conforms to getBooleanContents. Fall through.
// If setcc returns 0/-1, all bits are sign bits.
// We know that we have an integer-based boolean since these operations
// are only available for integer.
if (TLI->getBooleanContents(VT.isVector(), false) ==
TargetLowering::ZeroOrNegativeOneBooleanContent)
return VTBits;
break;
case ISD::SETCC:
// If setcc returns 0/-1, all bits are sign bits.
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent)
return VTBits;
break;
case ISD::ROTL:
case ISD::ROTR:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned RotAmt = C->getAPIntValue().urem(VTBits);
// Handle rotate right by N like a rotate left by 32-N.
if (Opcode == ISD::ROTR)
RotAmt = (VTBits - RotAmt) % VTBits;
// If we aren't rotating out all of the known-in sign bits, return the
// number that are left. This handles rotl(sext(x), 1) for example.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
}
break;
case ISD::ADD:
case ISD::ADDC:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
if (CRHS->isAllOnesValue()) {
KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((Known.Zero | 1).isAllOnesValue())
return VTBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (Known.isNonNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case ISD::SUB:
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
if (CLHS->isNullValue()) {
KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((Known.Zero | 1).isAllOnesValue())
return VTBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
if (Known.isNonNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
case ISD::TRUNCATE: {
// Check if the sign bits of source go down as far as the truncated value.
unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
if (NumSrcSignBits > (NumSrcBits - VTBits))
return NumSrcSignBits - (NumSrcBits - VTBits);
break;
}
case ISD::EXTRACT_ELEMENT: {
const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
const int BitWidth = Op.getValueSizeInBits();
const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
// Get reverse index (starting from 1), Op1 value indexes elements from
// little end. Sign starts at big end.
const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
// If the sign portion ends in our element the subtraction gives correct
// result. Otherwise it gives either negative or > bitwidth result
return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
}
case ISD::INSERT_VECTOR_ELT: {
SDValue InVec = Op.getOperand(0);
SDValue InVal = Op.getOperand(1);
SDValue EltNo = Op.getOperand(2);
unsigned NumElts = InVec.getValueType().getVectorNumElements();
ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
// If we know the element index, split the demand between the
// source vector and the inserted element.
unsigned EltIdx = CEltNo->getZExtValue();
// If we demand the inserted element then get its sign bits.
Tmp = std::numeric_limits<unsigned>::max();
if (DemandedElts[EltIdx]) {
// TODO - handle implicit truncation of inserted elements.
if (InVal.getScalarValueSizeInBits() != VTBits)
break;
Tmp = ComputeNumSignBits(InVal, Depth + 1);
}
// If we demand the source vector then get its sign bits, and determine
// the minimum.
APInt VectorElts = DemandedElts;
VectorElts.clearBit(EltIdx);
if (!!VectorElts) {
Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
} else {
// Unknown element index, so ignore DemandedElts and demand them all.
Tmp = ComputeNumSignBits(InVec, Depth + 1);
Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
return Tmp;
}
case ISD::EXTRACT_VECTOR_ELT: {
SDValue InVec = Op.getOperand(0);
SDValue EltNo = Op.getOperand(1);
EVT VecVT = InVec.getValueType();
const unsigned BitWidth = Op.getValueSizeInBits();
const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
const unsigned NumSrcElts = VecVT.getVectorNumElements();
// If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
// anything about sign bits. But if the sizes match we can derive knowledge
// about sign bits from the vector operand.
if (BitWidth != EltBitWidth)
break;
// If we know the element index, just demand that vector element, else for
// an unknown element index, ignore DemandedElts and demand them all.
APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
DemandedSrcElts =
APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
}
case ISD::EXTRACT_SUBVECTOR: {
// If we know the element index, just demand that subvector elements,
// otherwise demand them all.
SDValue Src = Op.getOperand(0);
ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
// Offset the demanded elts by the subvector index.
uint64_t Idx = SubIdx->getZExtValue();
APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
}
return ComputeNumSignBits(Src, Depth + 1);
}
case ISD::CONCAT_VECTORS:
// Determine the minimum number of sign bits across all demanded
// elts of the input vectors. Early out if the result is already 1.
Tmp = std::numeric_limits<unsigned>::max();
EVT SubVectorVT = Op.getOperand(0).getValueType();
unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
unsigned NumSubVectors = Op.getNumOperands();
for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
DemandedSub = DemandedSub.trunc(NumSubVectorElts);
if (!DemandedSub)
continue;
Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
Tmp = std::min(Tmp, Tmp2);
}
assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
return Tmp;
}
// If we are looking at the loaded value of the SDNode.
if (Op.getResNo() == 0) {
// Handle LOADX separately here. EXTLOAD case will fallthrough.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
unsigned ExtType = LD->getExtensionType();
switch (ExtType) {
default: break;
case ISD::SEXTLOAD: // '17' bits known
Tmp = LD->getMemoryVT().getScalarSizeInBits();
return VTBits-Tmp+1;
case ISD::ZEXTLOAD: // '16' bits known
Tmp = LD->getMemoryVT().getScalarSizeInBits();
return VTBits-Tmp;
}
}
}
// Allow the target to implement this method for its nodes.
if (Opcode >= ISD::BUILTIN_OP_END ||
Opcode == ISD::INTRINSIC_WO_CHAIN ||
Opcode == ISD::INTRINSIC_W_CHAIN ||
Opcode == ISD::INTRINSIC_VOID) {
unsigned NumBits =
TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
if (NumBits > 1)
FirstAnswer = std::max(FirstAnswer, NumBits);
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
APInt Mask;
if (Known.isNonNegative()) { // sign bit is 0
Mask = Known.Zero;
} else if (Known.isNegative()) { // sign bit is 1;
Mask = Known.One;
} else {
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
// the number of identical bits in the top of the input value.
Mask = ~Mask;
Mask <<= Mask.getBitWidth()-VTBits;
// Return # leading zeros. We use 'min' here in case Val was zero before
// shifting. We don't want to return '64' as for an i32 "0".
return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
}
bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
!isa<ConstantSDNode>(Op.getOperand(1)))
return false;
if (Op.getOpcode() == ISD::OR &&
!MaskedValueIsZero(Op.getOperand(0),
cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
return false;
return true;
}
bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
// If we're told that NaNs won't happen, assume they won't.
if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
return true;
if (Depth == 6)
return false; // Limit search depth.
// TODO: Handle vectors.
// If the value is a constant, we can obviously see if it is a NaN or not.
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
return !C->getValueAPF().isNaN() ||
(SNaN && !C->getValueAPF().isSignaling());
}
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::FSIN:
case ISD::FCOS: {
if (SNaN)
return true;
// TODO: Need isKnownNeverInfinity
return false;
}
case ISD::FCANONICALIZE:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FROUND:
case ISD::FRINT:
case ISD::FNEARBYINT: {
if (SNaN)
return true;
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
case ISD::FABS:
case ISD::FNEG:
case ISD::FCOPYSIGN: {
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
case ISD::SELECT:
return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
case ISD::FP_EXTEND:
case ISD::FP_ROUND: {
if (SNaN)
return true;
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return true;
case ISD::FMA:
case ISD::FMAD: {
if (SNaN)
return true;
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
}
case ISD::FSQRT: // Need is known positive
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FPOWI:
case ISD::FPOW: {
if (SNaN)
return true;
// TODO: Refine on operand
return false;
}
case ISD::FMINNUM:
case ISD::FMAXNUM: {
// Only one needs to be known not-nan, since it will be returned if the
// other ends up being one.
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
}
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE: {
if (SNaN)
return true;
// This can return a NaN if either operand is an sNaN, or if both operands
// are NaN.
return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
(isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
}
case ISD::FMINIMUM:
case ISD::FMAXIMUM: {
// TODO: Does this quiet or return the origina NaN as-is?
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
}
case ISD::EXTRACT_VECTOR_ELT: {
return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
default:
if (Opcode >= ISD::BUILTIN_OP_END ||
Opcode == ISD::INTRINSIC_WO_CHAIN ||
Opcode == ISD::INTRINSIC_W_CHAIN ||
Opcode == ISD::INTRINSIC_VOID) {
return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
}
return false;
}
}
bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
assert(Op.getValueType().isFloatingPoint() &&
"Floating point type expected");
// If the value is a constant, we can obviously see if it is a zero or not.
// TODO: Add BuildVector support.
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
return !C->isZero();
return false;
}
bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
assert(!Op.getValueType().isFloatingPoint() &&
"Floating point types unsupported - use isKnownNeverZeroFloat");
// If the value is a constant, we can obviously see if it is a zero or not.
if (ISD::matchUnaryPredicate(
Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
return true;
// TODO: Recognize more cases here.
switch (Op.getOpcode()) {
default: break;
case ISD::OR:
if (isKnownNeverZero(Op.getOperand(1)) ||
isKnownNeverZero(Op.getOperand(0)))
return true;
break;
}
return false;
}
bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
// Check the obvious case.
if (A == B) return true;
// For for negative and positive zero.
if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
if (CA->isZero() && CB->isZero()) return true;
// Otherwise they may not be equal.
return false;
}
// FIXME: unify with llvm::haveNoCommonBitsSet.
// FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
assert(A.getValueType() == B.getValueType() &&
"Values must have the same type");
return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
}
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
SelectionDAG &DAG) {
int NumOps = Ops.size();
assert(NumOps != 0 && "Can't build an empty vector!");
assert(VT.getVectorNumElements() == (unsigned)NumOps &&
"Incorrect element count in BUILD_VECTOR!");
// BUILD_VECTOR of UNDEFs is UNDEF.
if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
return DAG.getUNDEF(VT);
// BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
SDValue IdentitySrc;
bool IsIdentity = true;
for (int i = 0; i != NumOps; ++i) {
if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Ops[i].getOperand(0).getValueType() != VT ||
(IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
!isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
IsIdentity = false;
break;
}
IdentitySrc = Ops[i].getOperand(0);
}
if (IsIdentity)
return IdentitySrc;
return SDValue();
}
static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
SelectionDAG &DAG) {
assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
assert(llvm::all_of(Ops,
[Ops](SDValue Op) {
return Ops[0].getValueType() == Op.getValueType();
}) &&
"Concatenation of vectors with inconsistent value types!");
assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
VT.getVectorNumElements() &&
"Incorrect element count in vector concatenation!");
if (Ops.size() == 1)
return Ops[0];
// Concat of UNDEFs is UNDEF.
if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
return DAG.getUNDEF(VT);
// A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
// simplified to one big BUILD_VECTOR.
// FIXME: Add support for SCALAR_TO_VECTOR as well.
EVT SVT = VT.getScalarType();
SmallVector<SDValue, 16> Elts;
for (SDValue Op : Ops) {
EVT OpVT = Op.getValueType();
if (Op.isUndef())
Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
else if (Op.getOpcode() == ISD::BUILD_VECTOR)
Elts.append(Op->op_begin(), Op->op_end());
else
return SDValue();
}
// BUILD_VECTOR requires all inputs to be of the same type, find the
// maximum type and extend them all.
for (SDValue Op : Elts)
SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
if (SVT.bitsGT(VT.getScalarType()))
for (SDValue &Op : Elts)
Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
? DAG.getZExtOrTrunc(Op, DL, SVT)
: DAG.getSExtOrTrunc(Op, DL, SVT);
SDValue V = DAG.getBuildVector(VT, DL, Elts);
NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
return V;
}
/// Gets or creates the specified node.
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, getVTList(VT), None);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
getVTList(VT));
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue Operand, const SDNodeFlags Flags) {
// Constant fold unary operations with an integer constant operand. Even
// opaque constant will be folded, because the folding of unary operations
// doesn't create new constants with different values. Nevertheless, the
// opaque flag is preserved during folding to prevent future folding with
// other constants.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
const APInt &Val = C->getAPIntValue();
switch (Opcode) {
default: break;
case ISD::SIGN_EXTEND:
return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
C->isTargetOpcode(), C->isOpaque());
case ISD::TRUNCATE:
if (C->isOpaque())
break;
LLVM_FALLTHROUGH;
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
C->isTargetOpcode(), C->isOpaque());
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: {
APFloat apf(EVTToAPFloatSemantics(VT),
APInt::getNullValue(VT.getSizeInBits()));
(void)apf.convertFromAPInt(Val,
Opcode==ISD::SINT_TO_FP,
APFloat::rmNearestTiesToEven);
return getConstantFP(apf, DL, VT);
}
case ISD::BITCAST:
if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
break;
case ISD::ABS:
return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::BITREVERSE:
return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::BSWAP:
return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTPOP:
return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::FP16_TO_FP: {
bool Ignored;
APFloat FPV(APFloat::IEEEhalf(),
(Val.getBitWidth() == 16) ? Val : Val.trunc(16));
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void)FPV.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &Ignored);
return getConstantFP(FPV, DL, VT);
}
}
}
// Constant fold unary operations with a floating point constant operand.
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
APFloat V = C->getValueAPF(); // make copy
switch (Opcode) {
case ISD::FNEG:
V.changeSign();
return getConstantFP(V, DL, VT);
case ISD::FABS:
V.clearSign();
return getConstantFP(V, DL, VT);
case ISD::FCEIL: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, DL, VT);
break;
}
case ISD::FTRUNC: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, DL, VT);
break;
}
case ISD::FFLOOR: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, DL, VT);
break;
}
case ISD::FP_EXTEND: {
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void)V.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, DL, VT);
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
bool ignored;
APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
// FIXME need to be more flexible about rounding mode.
APFloat::opStatus s =
V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
break;
return getConstant(IntVal, DL, VT);
}
case ISD::BITCAST:
if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
break;
case ISD::FP_TO_FP16: {
bool Ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void)V.convert(APFloat::IEEEhalf(),
APFloat::rmNearestTiesToEven, &Ignored);
return getConstant(V.bitcastToAPInt(), DL, VT);
}
}
}
// Constant fold unary operations with a vector integer or float operand.
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
if (BV->isConstant()) {
switch (Opcode) {
default:
// FIXME: Entirely reasonable to perform folding of other unary
// operations here as the need arises.
break;
case ISD::FNEG:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FP_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::TRUNCATE:
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::ABS:
case ISD::BITREVERSE:
case ISD::BSWAP:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTPOP: {
SDValue Ops = { Operand };
if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
return Fold;
}
}
}
}
unsigned OpOpcode = Operand.getNode()->getOpcode();
switch (Opcode) {
case ISD::TokenFactor:
case ISD::MERGE_VALUES:
case ISD::CONCAT_VECTORS:
return Operand; // Factor, merge or concat of one node? No need.
case ISD::BUILD_VECTOR: {
// Attempt to simplify BUILD_VECTOR.
SDValue Ops[] = {Operand};
if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
return V;
break;
}
case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
case ISD::FP_EXTEND:
assert(VT.isFloatingPoint() &&
Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
if (Operand.getValueType() == VT) return Operand; // noop conversion.
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsLT(VT) &&
"Invalid fpext node, dst < src!");
if (Operand.isUndef())
return getUNDEF(VT);
break;
case ISD::SIGN_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid SIGN_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsLT(VT) &&
"Invalid sext node, dst < src!");
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
else if (OpOpcode == ISD::UNDEF)
// sext(undef) = 0, because the top bits will all be the same.
return getConstant(0, DL, VT);
break;
case ISD::ZERO_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid ZERO_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsLT(VT) &&
"Invalid zext node, dst < src!");
if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
else if (OpOpcode == ISD::UNDEF)
// zext(undef) = 0, because the top bits will be zero.
return getConstant(0, DL, VT);
break;
case ISD::ANY_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid ANY_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsLT(VT) &&
"Invalid anyext node, dst < src!");
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND)
// (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
else if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
// (ext (trunc x)) -> x
if (OpOpcode == ISD::TRUNCATE) {
SDValue OpOp = Operand.getOperand(0);
if (OpOp.getValueType() == VT) {
transferDbgValues(Operand, OpOp);
return OpOp;
}
}
break;
case ISD::TRUNCATE:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid TRUNCATE!");
if (Operand.getValueType() == VT) return Operand; // noop truncate
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
assert(Operand.getValueType().bitsGT(VT) &&
"Invalid truncate node, src < dst!");
if (OpOpcode == ISD::TRUNCATE)
return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND) {
// If the source is smaller than the dest, we still need an extend.
if (Operand.getOperand(0).getValueType().getScalarType()
.bitsLT(VT.getScalarType()))
return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
if (Operand.getOperand(0).getValueType().bitsGT(VT))
return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
return Operand.getOperand(0);
}
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
assert(VT.isVector() && "This DAG node is restricted to vector types.");
assert(Operand.getValueType().bitsLE(VT) &&
"The input must be the same size or smaller than the result.");
assert(VT.getVectorNumElements() <
Operand.getValueType().getVectorNumElements() &&
"The destination vector type must have fewer lanes than the input.");
break;
case ISD::ABS:
assert(VT.isInteger() && VT == Operand.getValueType() &&
"Invalid ABS!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::BSWAP:
assert(VT.isInteger() && VT == Operand.getValueType() &&
"Invalid BSWAP!");
assert((VT.getScalarSizeInBits() % 16 == 0) &&
"BSWAP types must be a multiple of 16 bits!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::BITREVERSE:
assert(VT.isInteger() && VT == Operand.getValueType() &&
"Invalid BITREVERSE!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::BITCAST:
// Basic sanity checking.
assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
"Cannot BITCAST between types of different sizes!");
if (VT == Operand.getValueType()) return Operand; // noop conversion.
if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::SCALAR_TO_VECTOR:
assert(VT.isVector() && !Operand.getValueType().isVector() &&
(VT.getVectorElementType() == Operand.getValueType() ||
(VT.getVectorElementType().isInteger() &&
Operand.getValueType().isInteger() &&
VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
"Illegal SCALAR_TO_VECTOR node!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
// scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(Operand.getOperand(1)) &&
Operand.getConstantOperandVal(1) == 0 &&
Operand.getOperand(0).getValueType() == VT)
return Operand.getOperand(0);
break;
case ISD::FNEG:
// -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
OpOpcode == ISD::FSUB)
return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
Operand.getOperand(0), Flags);
if (OpOpcode == ISD::FNEG) // --X -> X
return Operand.getOperand(0);
break;
case ISD::FABS:
if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
break;
}
SDNode *N;
SDVTList VTs = getVTList(VT);
SDValue Ops[] = {Operand};
if (VT != MVT::Glue) { // Don't CSE flag producing nodes
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
E->intersectFlagsWith(Flags);
return SDValue(E, 0);
}
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
N->setFlags(Flags);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
const APInt &C2) {
switch (Opcode) {
case ISD::ADD: return std::make_pair(C1 + C2, true);
case ISD::SUB: return std::make_pair(C1 - C2, true);
case ISD::MUL: return std::make_pair(C1 * C2, true);
case ISD::AND: return std::make_pair(C1 & C2, true);
case ISD::OR: return std::make_pair(C1 | C2, true);
case ISD::XOR: return std::make_pair(C1 ^ C2, true);
case ISD::SHL: return std::make_pair(C1 << C2, true);
case ISD::SRL: return std::make_pair(C1.lshr(C2), true);
case ISD::SRA: return std::make_pair(C1.ashr(C2), true);
case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
case ISD::UDIV:
if (!C2.getBoolValue())
break;
return std::make_pair(C1.udiv(C2), true);
case ISD::UREM:
if (!C2.getBoolValue())
break;
return std::make_pair(C1.urem(C2), true);
case ISD::SDIV:
if (!C2.getBoolValue())
break;
return std::make_pair(C1.sdiv(C2), true);
case ISD::SREM:
if (!C2.getBoolValue())
break;
return std::make_pair(C1.srem(C2), true);
}
return std::make_pair(APInt(1, 0), false);
}
SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
EVT VT, const ConstantSDNode *Cst1,
const ConstantSDNode *Cst2) {
if (Cst1->isOpaque() || Cst2->isOpaque())
return SDValue();
std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
Cst2->getAPIntValue());
if (!Folded.second)
return SDValue();
return getConstant(Folded.first, DL, VT);
}
SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
const GlobalAddressSDNode *GA,
const SDNode *N2) {
if (GA->getOpcode() != ISD::GlobalAddress)
return SDValue();
if (!TLI->isOffsetFoldingLegal(GA))
return SDValue();
const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
if (!Cst2)
return SDValue();
int64_t Offset = Cst2->getSExtValue();
switch (Opcode) {
case ISD::ADD: break;
case ISD::SUB: Offset = -uint64_t(Offset); break;
default: return SDValue();
}
return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
GA->getOffset() + uint64_t(Offset));
}
bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
switch (Opcode) {
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM: {
// If a divisor is zero/undef or any element of a divisor vector is
// zero/undef, the whole op is undef.
assert(Ops.size() == 2 && "Div/rem should have 2 operands");
SDValue Divisor = Ops[1];
if (Divisor.isUndef() || isNullConstant(Divisor))
return true;
return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
llvm::any_of(Divisor->op_values(),
[](SDValue V) { return V.isUndef() ||
isNullConstant(V); });
// TODO: Handle signed overflow.
}
// TODO: Handle oversized shifts.
default:
return false;
}
}
SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
EVT VT, SDNode *Cst1,
SDNode *Cst2) {
// If the opcode is a target-specific ISD node, there's nothing we can
// do here and the operand rules may not line up with the below, so
// bail early.
if (Opcode >= ISD::BUILTIN_OP_END)
return SDValue();
if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
return getUNDEF(VT);
// Handle the case of two scalars.
if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
assert((!Folded || !VT.isVector()) &&
"Can't fold vectors ops with scalar operands");
return Folded;
}
}
// fold (add Sym, c) -> Sym+c
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
return FoldSymbolOffset(Opcode, VT, GA, Cst2);
if (TLI->isCommutativeBinOp(Opcode))
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
return FoldSymbolOffset(Opcode, VT, GA, Cst1);
// For vectors, extract each constant element and fold them individually.
// Either input may be an undef value.
auto *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
if (!BV1 && !Cst1->isUndef())
return SDValue();
auto *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
if (!BV2 && !Cst2->isUndef())
return SDValue();
// If both operands are undef, that's handled the same way as scalars.
if (!BV1 && !BV2)
return SDValue();
assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
"Vector binop with different number of elements in operands?");
EVT SVT = VT.getScalarType();
EVT LegalSVT = SVT;
if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
if (LegalSVT.bitsLT(SVT))
return SDValue();
}
SmallVector<SDValue, 4> Outputs;
unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
for (unsigned I = 0; I != NumOps; ++I) {
SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
if (SVT.isInteger()) {
if (V1->getValueType(0).bitsGT(SVT))
V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
if (V2->getValueType(0).bitsGT(SVT))
V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
}
if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
return SDValue();
// Fold one vector element.
SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
if (LegalSVT != SVT)
ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
// Scalar folding only succeeded if the result is a constant or UNDEF.
if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
ScalarResult.getOpcode() != ISD::ConstantFP)
return SDValue();
Outputs.push_back(ScalarResult);
}
assert(VT.getVectorNumElements() == Outputs.size() &&
"Vector size mismatch!");
// We may have a vector type but a scalar result. Create a splat.
Outputs.resize(VT.getVectorNumElements(), Outputs.back());
// Build a big vector out of the scalar elements we generated.
return getBuildVector(VT, SDLoc(), Outputs);
}
// TODO: Merge with FoldConstantArithmetic
SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
const SDNodeFlags Flags) {
// If the opcode is a target-specific ISD node, there's nothing we can
// do here and the operand rules may not line up with the below, so
// bail early.
if (Opcode >= ISD::BUILTIN_OP_END)
return SDValue();
if (isUndef(Opcode, Ops))
return getUNDEF(VT);
// We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
if (!VT.isVector())
return SDValue();
unsigned NumElts = VT.getVectorNumElements();
auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
return !Op.getValueType().isVector() ||
Op.getValueType().getVectorNumElements() == NumElts;
};
auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
(BV && BV->isConstant());
};
// All operands must be vector types with the same number of elements as
// the result type and must be either UNDEF or a build vector of constant
// or UNDEF scalars.
if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
!llvm::all_of(Ops, IsScalarOrSameVectorSize))
return SDValue();
// If we are comparing vectors, then the result needs to be a i1 boolean
// that is then sign-extended back to the legal result type.
EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
// Find legal integer scalar type for constant promotion and
// ensure that its scalar size is at least as large as source.
EVT LegalSVT = VT.getScalarType();
if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
if (LegalSVT.bitsLT(VT.getScalarType()))
return SDValue();
}
// Constant fold each scalar lane separately.
SmallVector<SDValue, 4> ScalarResults;
for (unsigned i = 0; i != NumElts; i++) {
SmallVector<SDValue, 4> ScalarOps;
for (SDValue Op : Ops) {
EVT InSVT = Op.getValueType().getScalarType();
BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
if (!InBV) {
// We've checked that this is UNDEF or a constant of some kind.
if (Op.isUndef())
ScalarOps.push_back(getUNDEF(InSVT));
else
ScalarOps.push_back(Op);
continue;
}
SDValue ScalarOp = InBV->getOperand(i);
EVT ScalarVT = ScalarOp.getValueType();
// Build vector (integer) scalar operands may need implicit
// truncation - do this before constant folding.
if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
ScalarOps.push_back(ScalarOp);
}
// Constant fold the scalar operands.
SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
// Legalize the (integer) scalar constant if necessary.
if (LegalSVT != SVT)
ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
// Scalar folding only succeeded if the result is a constant or UNDEF.
if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
ScalarResult.getOpcode() != ISD::ConstantFP)
return SDValue();
ScalarResults.push_back(ScalarResult);
}
SDValue V = getBuildVector(VT, DL, ScalarResults);
NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, const SDNodeFlags Flags) {
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
// Canonicalize constant to RHS if commutative.
if (TLI->isCommutativeBinOp(Opcode)) {
if (N1C && !N2C) {
std::swap(N1C, N2C);
std::swap(N1, N2);
} else if (N1CFP && !N2CFP) {
std::swap(N1CFP, N2CFP);
std::swap(N1, N2);
}
}
switch (Opcode) {
default: break;
case ISD::TokenFactor:
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
N2.getValueType() == MVT::Other && "Invalid token factor!");
// Fold trivial token factors.
if (N1.getOpcode() == ISD::EntryToken) return N2;
if (N2.getOpcode() == ISD::EntryToken) return N1;
if (N1 == N2) return N1;
break;
case ISD::BUILD_VECTOR: {
// Attempt to simplify BUILD_VECTOR.
SDValue Ops[] = {N1, N2};
if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
return V;
break;
}
case ISD::CONCAT_VECTORS: {
// Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
SDValue Ops[] = {N1, N2};
if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
return V;
break;
}
case ISD::AND:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
// (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
// worth handling here.
if (N2C && N2C->isNullValue())
return N2;
if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
return N1;
break;
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
// (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
// it's worth handling here.
if (N2C && N2C->isNullValue())
return N1;
break;
case ISD::UDIV:
case ISD::UREM:
case ISD::MULHU:
case ISD::MULHS:
case ISD::MUL:
case ISD::SDIV:
case ISD::SREM:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
assert(N1.getValueType() == VT &&
N1.getValueType().isFloatingPoint() &&
N2.getValueType().isFloatingPoint() &&
"Invalid FCOPYSIGN!");
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
if (SDValue V = simplifyShift(N1, N2))
return V;
LLVM_FALLTHROUGH;
case ISD::ROTL:
case ISD::ROTR:
assert(VT == N1.getValueType() &&
"Shift operators return type must be the same as their first arg");
assert(VT.isInteger() && N2.getValueType().isInteger() &&
"Shifts only work on integers");
assert((!VT.isVector() || VT == N2.getValueType()) &&
"Vector shift amounts must be in the same as their first arg");
// Verify that the shift amount VT is big enough to hold valid shift
// amounts. This catches things like trying to shift an i1024 value by an
// i8, which is easy to fall into in generic code that uses
// TLI.getShiftAmount().
assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
"Invalid use of small shift amount with oversized value!");
// Always fold shifts of i1 values so the code generator doesn't need to
// handle them. Since we know the size of the shift has to be less than the
// size of the value, the shift/rotate count is guaranteed to be zero.
if (VT == MVT::i1)
return N1;
if (N2C && N2C->isNullValue())
return N1;
break;
case ISD::FP_ROUND_INREG: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg round!");
assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
"Cannot FP_ROUND_INREG integer types");
assert(EVT.isVector() == VT.isVector() &&
"FP_ROUND_INREG type should be vector iff the operand "
"type is vector!");
assert((!EVT.isVector() ||
EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
"Vector element counts must match in FP_ROUND_INREG");
assert(EVT.bitsLE(VT) && "Not rounding down!");
(void)EVT;
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
break;
}
case ISD::FP_ROUND:
assert(VT.isFloatingPoint() &&
N1.getValueType().isFloatingPoint() &&
VT.bitsLE(N1.getValueType()) &&
N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
"Invalid FP_ROUND!");
if (N1.getValueType() == VT) return N1; // noop conversion.
break;
case ISD::AssertSext:
case ISD::AssertZext: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
assert(!EVT.isVector() &&
"AssertSExt/AssertZExt type should be the vector element type "
"rather than the vector type!");
assert(EVT.bitsLE(VT) && "Not extending!");
if (VT == EVT) return N1; // noop assertion.
break;
}
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
assert(EVT.isVector() == VT.isVector() &&
"SIGN_EXTEND_INREG type should be vector iff the operand "
"type is vector!");
assert((!EVT.isVector() ||
EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
"Vector element counts must match in SIGN_EXTEND_INREG");
assert(EVT.bitsLE(VT) && "Not extending!");
if (EVT == VT) return N1; // Not actually extending
auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
unsigned FromBits = EVT.getScalarSizeInBits();
Val <<= Val.getBitWidth() - FromBits;
Val.ashrInPlace(Val.getBitWidth() - FromBits);
return getConstant(Val, DL, ConstantVT);
};
if (N1C) {
const APInt &Val = N1C->getAPIntValue();
return SignExtendInReg(Val, VT);
}
if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
SmallVector<SDValue, 8> Ops;
llvm::EVT OpVT = N1.getOperand(0).getValueType();
for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
SDValue Op = N1.getOperand(i);
if (Op.isUndef()) {
Ops.push_back(getUNDEF(OpVT));
continue;
}
ConstantSDNode *C = cast<ConstantSDNode>(Op);
APInt Val = C->getAPIntValue();
Ops.push_back(SignExtendInReg(Val, OpVT));
}
return getBuildVector(VT, DL, Ops);
}
break;
}
case ISD::EXTRACT_VECTOR_ELT:
assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
"The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
element type of the vector.");
// EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
if (N1.isUndef())
return getUNDEF(VT);
// EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
return getUNDEF(VT);
// EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
// expanding copies of large vectors from registers.
if (N2C &&
N1.getOpcode() == ISD::CONCAT_VECTORS &&
N1.getNumOperands() > 0) {
unsigned Factor =
N1.getOperand(0).getValueType().getVectorNumElements();
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
N1.getOperand(N2C->getZExtValue() / Factor),
getConstant(N2C->getZExtValue() % Factor, DL,
N2.getValueType()));
}
// EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
// expanding large vector constants.
if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
SDValue Elt = N1.getOperand(N2C->getZExtValue());
if (VT != Elt.getValueType())
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated, and the result implicitly
// extended. Make that explicit here.
Elt = getAnyExtOrTrunc(Elt, DL, VT);
return Elt;
}
// EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
// operations are lowered to scalars.
if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
// If the indices are the same, return the inserted element else
// if the indices are known different, extract the element from
// the original vector.
SDValue N1Op2 = N1.getOperand(2);
ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
if (N1Op2C && N2C) {
if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
if (VT == N1.getOperand(1).getValueType())
return N1.getOperand(1);
else
return getSExtOrTrunc(N1.getOperand(1), DL, VT);
}
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
}
}
// EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
// when vector types are scalarized and v1iX is legal.
// vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N1.getValueType().getVectorNumElements() == 1) {
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
N1.getOperand(1));
}
break;
case ISD::EXTRACT_ELEMENT:
assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
assert(!N1.getValueType().isVector() && !VT.isVector() &&
(N1.getValueType().isInteger() == VT.isInteger()) &&
N1.getValueType() != VT &&
"Wrong types for EXTRACT_ELEMENT!");
// EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
// 64-bit integers into 32-bit parts. Instead of building the extract of
// the BUILD_PAIR, only to have legalize rip it apart, just do it now.
if (N1.getOpcode() == ISD::BUILD_PAIR)
return N1.getOperand(N2C->getZExtValue());
// EXTRACT_ELEMENT of a constant int is also very common.
if (N1C) {
unsigned ElementSize = VT.getSizeInBits();
unsigned Shift = ElementSize * N2C->getZExtValue();
APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
}
break;
case ISD::EXTRACT_SUBVECTOR:
if (VT.isSimple() && N1.getValueType().isSimple()) {
assert(VT.isVector() && N1.getValueType().isVector() &&
"Extract subvector VTs must be a vectors!");
assert(VT.getVectorElementType() ==
N1.getValueType().getVectorElementType() &&
"Extract subvector VTs must have the same element type!");
assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
"Extract subvector must be from larger vector to smaller vector!");
if (N2C) {
assert((VT.getVectorNumElements() + N2C->getZExtValue()
<= N1.getValueType().getVectorNumElements())
&& "Extract subvector overflow!");
}
// Trivial extraction.
if (VT.getSimpleVT() == N1.getSimpleValueType())
return N1;
// EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
if (N1.isUndef())
return getUNDEF(VT);
// EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
// the concat have the same type as the extract.
if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
N1.getNumOperands() > 0 &&
VT == N1.getOperand(0).getValueType()) {
unsigned Factor = VT.getVectorNumElements();
return N1.getOperand(N2C->getZExtValue() / Factor);
}
// EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
// during shuffle legalization.
if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
VT == N1.getOperand(1).getValueType())
return N1.getOperand(1);
}
break;
}
// Perform trivial constant folding.
if (SDValue SV =
FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
return SV;
// Constant fold FP operations.
bool HasFPExceptions = TLI->hasFloatingPointExceptions();
if (N1CFP) {
if (N2CFP) {
APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
APFloat::opStatus s;
switch (Opcode) {
case ISD::FADD:
s = V1.add(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || s != APFloat::opInvalidOp)
return getConstantFP(V1, DL, VT);
break;
case ISD::FSUB:
s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || s!=APFloat::opInvalidOp)
return getConstantFP(V1, DL, VT);
break;
case ISD::FMUL:
s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || s!=APFloat::opInvalidOp)
return getConstantFP(V1, DL, VT);
break;
case ISD::FDIV:
s = V1.divide(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
s!=APFloat::opDivByZero)) {
return getConstantFP(V1, DL, VT);
}
break;
case ISD::FREM :
s = V1.mod(V2);
if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
s!=APFloat::opDivByZero)) {
return getConstantFP(V1, DL, VT);
}
break;
case ISD::FCOPYSIGN:
V1.copySign(V2);
return getConstantFP(V1, DL, VT);
default: break;
}
}
if (Opcode == ISD::FP_ROUND) {
APFloat V = N1CFP->getValueAPF(); // make copy
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void)V.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, DL, VT);
}
}
switch (Opcode) {
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
// If both operands are undef, the result is undef. If 1 operand is undef,
// the result is NaN. This should match the behavior of the IR optimizer.
if (N1.isUndef() && N2.isUndef())
return getUNDEF(VT);
if (N1.isUndef() || N2.isUndef())
return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
}
// Canonicalize an UNDEF to the RHS, even over a constant.
if (N1.isUndef()) {
if (TLI->isCommutativeBinOp(Opcode)) {
std::swap(N1, N2);
} else {
switch (Opcode) {
case ISD::FP_ROUND_INREG:
case ISD::SIGN_EXTEND_INREG:
case ISD::SUB:
return getUNDEF(VT); // fold op(undef, arg2) -> undef
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
}
}
}
// Fold a bunch of operators when the RHS is undef.
if (N2.isUndef()) {
switch (Opcode) {
case ISD::XOR:
if (N1.isUndef())
// Handle undef ^ undef -> 0 special case. This is a common
// idiom (misuse).
return getConstant(0, DL, VT);
LLVM_FALLTHROUGH;
case ISD::ADD:
case ISD::SUB:
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
return getUNDEF(VT); // fold op(arg1, undef) -> undef
case ISD::MUL:
case ISD::AND:
return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
case ISD::OR:
return getAllOnesConstant(DL, VT);
}
}
// Memoize this node if possible.
SDNode *N;
SDVTList VTs = getVTList(VT);
SDValue Ops[] = {N1, N2};
if (VT != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
E->intersectFlagsWith(Flags);
return SDValue(E, 0);
}
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
N->setFlags(Flags);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3,
const SDNodeFlags Flags) {
// Perform various simplifications.
switch (Opcode) {
case ISD::FMA: {
assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
assert(N1.getValueType() == VT && N2.getValueType() == VT &&
N3.getValueType() == VT && "FMA types must match!");
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
if (N1CFP && N2CFP && N3CFP) {
APFloat V1 = N1CFP->getValueAPF();
const APFloat &V2 = N2CFP->getValueAPF();
const APFloat &V3 = N3CFP->getValueAPF();
APFloat::opStatus s =
V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
return getConstantFP(V1, DL, VT);
}
break;
}
case ISD::BUILD_VECTOR: {
// Attempt to simplify BUILD_VECTOR.
SDValue Ops[] = {N1, N2, N3};
if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
return V;
break;
}
case ISD::CONCAT_VECTORS: {
// Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
SDValue Ops[] = {N1, N2, N3};
if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
return V;
break;
}
case ISD::SETCC: {
assert(VT.isInteger() && "SETCC result type must be an integer!");
assert(N1.getValueType() == N2.getValueType() &&
"SETCC operands must have the same type!");
assert(VT.isVector() == N1.getValueType().isVector() &&
"SETCC type should be vector iff the operand type is vector!");
assert((!VT.isVector() ||
VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
"SETCC vector element counts must match!");
// Use FoldSetCC to simplify SETCC's.
if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
return V;
// Vector constant folding.
SDValue Ops[] = {N1, N2, N3};
if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
return V;
}
break;
}
case ISD::SELECT:
case ISD::VSELECT:
if (SDValue V = simplifySelect(N1, N2, N3))
return V;
break;
case ISD::VECTOR_SHUFFLE:
llvm_unreachable("should use getVectorShuffle constructor!");
case ISD::INSERT_VECTOR_ELT: {
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
// INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
return getUNDEF(VT);
break;
}
case ISD::INSERT_SUBVECTOR: {
SDValue Index = N3;
if (VT.isSimple() && N1.getValueType().isSimple()
&& N2.getValueType().isSimple()) {
assert(VT.isVector() && N1.getValueType().isVector() &&
N2.getValueType().isVector() &&
"Insert subvector VTs must be a vectors");
assert(VT == N1.getValueType() &&
"Dest and insert subvector source types must match!");
assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
"Insert subvector must be from smaller vector to larger vector!");
if (isa<ConstantSDNode>(Index)) {
assert((N2.getValueType().getVectorNumElements() +
cast<ConstantSDNode>(Index)->getZExtValue()
<= VT.getVectorNumElements())
&& "Insert subvector overflow!");
}
// Trivial insertion.
if (VT.getSimpleVT() == N2.getSimpleValueType())
return N2;
}
break;
}
case ISD::BITCAST:
// Fold bit_convert nodes from a type to themselves.
if (N1.getValueType() == VT)
return N1;
break;
}
// Memoize node if it doesn't produce a flag.
SDNode *N;
SDVTList VTs = getVTList(VT);
SDValue Ops[] = {N1, N2, N3};
if (VT != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
E->intersectFlagsWith(Flags);
return SDValue(E, 0);
}
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
N->setFlags(Flags);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V = SDValue(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VT, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3, SDValue N4,
SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VT, Ops);
}
/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
/// the incoming stack arguments to be loaded from the stack.
SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
SmallVector<SDValue, 8> ArgChains;
// Include the original chain at the beginning of the list. When this is
// used by target LowerCall hooks, this helps legalize find the
// CALLSEQ_BEGIN node.
ArgChains.push_back(Chain);
// Add a chain value for each stack argument.
for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
if (FI->getIndex() < 0)
ArgChains.push_back(SDValue(L, 1));
// Build a tokenfactor for all the chains.
return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}
/// getMemsetValue - Vectorized representation of the memset value
/// operand.
static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
const SDLoc &dl) {
assert(!Value.isUndef());
unsigned NumBits = VT.getScalarSizeInBits();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
assert(C->getAPIntValue().getBitWidth() == 8);
APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
if (VT.isInteger()) {
bool IsOpaque = VT.getSizeInBits() > 64 ||
!DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
return DAG.getConstant(Val, dl, VT, false, IsOpaque);
}
return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
VT);
}
assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
EVT IntVT = VT.getScalarType();
if (!IntVT.isInteger())
IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
if (NumBits > 8) {
// Use a multiplication with 0x010101... to extend the input to the
// required length.
APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
DAG.getConstant(Magic, dl, IntVT));
}
if (VT != Value.getValueType() && !VT.isInteger())
Value = DAG.getBitcast(VT.getScalarType(), Value);
if (VT != Value.getValueType())
Value = DAG.getSplatBuildVector(VT, dl, Value);
return Value;
}
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
const TargetLowering &TLI,
const ConstantDataArraySlice &Slice) {
// Handle vector with all elements zero.
if (Slice.Array == nullptr) {
if (VT.isInteger())
return DAG.getConstant(0, dl, VT);
else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
return DAG.getConstantFP(0.0, dl, VT);
else if (VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getConstant(0, dl,
EVT::getVectorVT(*DAG.getContext(),
EltVT, NumElts)));
} else
llvm_unreachable("Expected type!");
}
assert(!VT.isVector() && "Can't handle vector type here!");
unsigned NumVTBits = VT.getSizeInBits();
unsigned NumVTBytes = NumVTBits / 8;
unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
APInt Val(NumVTBits, 0);
if (DAG.getDataLayout().isLittleEndian()) {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
} else {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
}
// If the "cost" of materializing the integer immediate is less than the cost
// of a load, then it is cost effective to turn the load into the immediate.
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
return DAG.getConstant(Val, dl, VT);
return SDValue(nullptr, 0);
}
SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
const SDLoc &DL) {
EVT VT = Base.getValueType();
return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
}
/// Returns true if memcpy source is constant data.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
uint64_t SrcDelta = 0;
GlobalAddressSDNode *G = nullptr;
if (Src.getOpcode() == ISD::GlobalAddress)
G = cast<GlobalAddressSDNode>(Src);
else if (Src.getOpcode() == ISD::ADD &&
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
Src.getOperand(1).getOpcode() == ISD::Constant) {
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
}
if (!G)
return false;
return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
SrcDelta + G->getOffset());
}
/// Determines the optimal series of memory ops to replace the memset / memcpy.
/// Return true if the number of memory ops is below the threshold (Limit).
/// It returns the types of the sequence of memory ops to perform
/// memset / memcpy by reference.
static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
unsigned Limit, uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset,
bool ZeroMemset,
bool MemcpyStrSrc,
bool AllowOverlap,
unsigned DstAS, unsigned SrcAS,
SelectionDAG &DAG,
const TargetLowering &TLI) {
assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
"Expecting memcpy / memset source to meet alignment requirement!");
// If 'SrcAlign' is zero, that means the memory operation does not need to
// load the value, i.e. memset or memcpy from constant string. Otherwise,
// it's the inferred alignment of the source. 'DstAlign', on the other hand,
// is the specified alignment of the memory operation. If it is zero, that
// means it's possible to change the alignment of the destination.
// 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
// not need to be loaded.
EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
IsMemset, ZeroMemset, MemcpyStrSrc,
DAG.getMachineFunction());
if (VT == MVT::Other) {
// Use the largest integer type whose alignment constraints are satisfied.
// We only need to check DstAlign here as SrcAlign is always greater or
// equal to DstAlign (or zero).
VT = MVT::i64;
while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
!TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
assert(VT.isInteger());
// Find the largest legal integer type.
MVT LVT = MVT::i64;
while (!TLI.isTypeLegal(LVT))
LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
assert(LVT.isInteger());
// If the type we've chosen is larger than the largest legal integer type
// then use that instead.
if (VT.bitsGT(LVT))
VT = LVT;
}
unsigned NumMemOps = 0;
while (Size != 0) {
unsigned VTSize = VT.getSizeInBits() / 8;
while (VTSize > Size) {
// For now, only use non-vector load / store's for the left-over pieces.
EVT NewVT = VT;
unsigned NewVTSize;
bool Found = false;
if (VT.isVector() || VT.isFloatingPoint()) {
NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
TLI.isSafeMemOpType(NewVT.getSimpleVT()))
Found = true;
else if (NewVT == MVT::i64 &&
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
TLI.isSafeMemOpType(MVT::f64)) {
// i64 is usually not legal on 32-bit targets, but f64 may be.
NewVT = MVT::f64;
Found = true;
}
}
if (!Found) {
do {
NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
if (NewVT == MVT::i8)
break;
} while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
}
NewVTSize = NewVT.getSizeInBits() / 8;
// If the new VT cannot cover all of the remaining bits, then consider
// issuing a (or a pair of) unaligned and overlapping load / store.
// FIXME: Only does this for 64-bit or more since we don't have proper
// cost model for unaligned load / store.
bool Fast;
if (NumMemOps && AllowOverlap &&
VTSize >= 8 && NewVTSize < Size &&
TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
VTSize = Size;
else {
VT = NewVT;
VTSize = NewVTSize;
}
}
if (++NumMemOps > Limit)
return false;
MemOps.push_back(VT);
Size -= VTSize;
}
return true;
}
static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
// On Darwin, -Os means optimize for size without hurting performance, so
// only really optimize for size when -Oz (MinSize) is used.
if (MF.getTarget().getTargetTriple().isOSDarwin())
return MF.getFunction().optForMinSize();
return MF.getFunction().optForSize();
}
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
SmallVector<SDValue, 32> &OutChains, unsigned From,
unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
SmallVector<SDValue, 16> &OutStoreChains) {
assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
SmallVector<SDValue, 16> GluedLoadChains;
for (unsigned i = From; i < To; ++i) {
OutChains.push_back(OutLoadChains[i]);
GluedLoadChains.push_back(OutLoadChains[i]);
}
// Chain for all loads.
SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
GluedLoadChains);
for (unsigned i = From; i < To; ++i) {
StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
ST->getBasePtr(), ST->getMemoryVT(),
ST->getMemOperand());
OutChains.push_back(NewStore);
}
}
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src,
uint64_t Size, unsigned Align,
bool isVol, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Turn a memcpy of undef to nop.
if (Src.isUndef())
return Chain;
// Expand memcpy to a series of load and store ops if the size operand falls
// below a certain threshold.
// TODO: In the AlwaysInline case, if the size is big then generate a loop
// rather than maybe a humongous number of loads and stores.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const DataLayout &DL = DAG.getDataLayout();
LLVMContext &C = *DAG.getContext();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
SrcAlign = Align;
ConstantDataArraySlice Slice;
bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
(DstAlignCanChange ? 0 : Align),
(isZeroConstant ? 0 : SrcAlign),
false, false, CopyFromConstant, true,
DstPtrInfo.getAddrSpace(),
SrcPtrInfo.getAddrSpace(),
DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(C);
unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
// Don't promote to an alignment that would require dynamic stack
// realignment.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TRI->needsStackRealignment(MF))
while (NewAlign > Align &&
DL.exceedsNaturalStackAlignment(NewAlign))
NewAlign /= 2;
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
MachineMemOperand::Flags MMOFlags =
isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
SmallVector<SDValue, 16> OutLoadChains;
SmallVector<SDValue, 16> OutStoreChains;
SmallVector<SDValue, 32> OutChains;
unsigned NumMemOps = MemOps.size();
uint64_t SrcOff = 0, DstOff = 0;
for (unsigned i = 0; i != NumMemOps; ++i) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
if (VTSize > Size) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
assert(i == NumMemOps-1 && i != 0);
SrcOff -= VTSize - Size;
DstOff -= VTSize - Size;
}
if (CopyFromConstant &&
(isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
// It's unlikely a store of a vector immediate can be done in a single
// instruction. It would require a load from a constantpool first.
// We only handle zero vectors here.
// FIXME: Handle other cases where store of vector immediate is done in
// a single instruction.
ConstantDataArraySlice SubSlice;
if (SrcOff < Slice.Length) {
SubSlice = Slice;
SubSlice.move(SrcOff);
} else {
// This is an out-of-bounds access and hence UB. Pretend we read zero.
SubSlice.Array = nullptr;
SubSlice.Offset = 0;
SubSlice.Length = VTSize;
}
Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
if (Value.getNode()) {
Store = DAG.getStore(Chain, dl, Value,
DAG.getMemBasePlusOffset(Dst, DstOff, dl),
DstPtrInfo.getWithOffset(DstOff), Align,
MMOFlags);
OutChains.push_back(Store);
}
}
if (!Store.getNode()) {
// The type might not be legal for the target. This should only happen
// if the type is smaller than a legal type, as on PPC, so the right
// thing to do is generate a LoadExt/StoreTrunc pair. These simplify
// to Load/Store if NVT==VT.
// FIXME does the case above also need this?
EVT NVT = TLI.getTypeToTransformTo(C, VT);
assert(NVT.bitsGE(VT));
bool isDereferenceable =
SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
if (isDereferenceable)
SrcMMOFlags |= MachineMemOperand::MODereferenceable;
Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
DAG.getMemBasePlusOffset(Src, SrcOff, dl),
SrcPtrInfo.getWithOffset(SrcOff), VT,
MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
OutLoadChains.push_back(Value.getValue(1));
Store = DAG.getTruncStore(
Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
OutStoreChains.push_back(Store);
}
SrcOff += VTSize;
DstOff += VTSize;
Size -= VTSize;
}
unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
unsigned NumLdStInMemcpy = OutStoreChains.size();
if (NumLdStInMemcpy) {
// It may be that memcpy might be converted to memset if it's memcpy
// of constants. In such a case, we won't have loads and stores, but
// just stores. In the absence of loads, there is nothing to gang up.
if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
// If target does not care, just leave as it.
for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
OutChains.push_back(OutLoadChains[i]);
OutChains.push_back(OutStoreChains[i]);
}
} else {
// Ld/St less than/equal limit set by target.
if (NumLdStInMemcpy <= GluedLdStLimit) {
chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
NumLdStInMemcpy, OutLoadChains,
OutStoreChains);
} else {
unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
unsigned GlueIter = 0;
for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
unsigned IndexTo = NumLdStInMemcpy - GlueIter;
chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
OutLoadChains, OutStoreChains);
GlueIter += GluedLdStLimit;
}
// Residual ld/st.
if (RemainingLdStInMemcpy) {
chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
RemainingLdStInMemcpy, OutLoadChains,
OutStoreChains);
}
}
}
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src,
uint64_t Size, unsigned Align,
bool isVol, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Turn a memmove of undef to nop.
if (Src.isUndef())
return Chain;
// Expand memmove to a series of load and store ops if the size operand falls
// below a certain threshold.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const DataLayout &DL = DAG.getDataLayout();
LLVMContext &C = *DAG.getContext();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
SrcAlign = Align;
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
(DstAlignCanChange ? 0 : Align), SrcAlign,
false, false, false, false,
DstPtrInfo.getAddrSpace(),
SrcPtrInfo.getAddrSpace(),
DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(C);
unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
MachineMemOperand::Flags MMOFlags =
isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
uint64_t SrcOff = 0, DstOff = 0;
SmallVector<SDValue, 8> LoadValues;
SmallVector<SDValue, 8> LoadChains;
SmallVector<SDValue, 8> OutChains;
unsigned NumMemOps = MemOps.size();
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value;
bool isDereferenceable =
SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
if (isDereferenceable)
SrcMMOFlags |= MachineMemOperand::MODereferenceable;
Value =
DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
LoadValues.push_back(Value);
LoadChains.push_back(Value.getValue(1));
SrcOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
OutChains.clear();
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Store;
Store = DAG.getStore(Chain, dl, LoadValues[i],
DAG.getMemBasePlusOffset(Dst, DstOff, dl),
DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
OutChains.push_back(Store);
DstOff += VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
/// Lower the call to 'memset' intrinsic function into a series of store
/// operations.
///
/// \param DAG Selection DAG where lowered code is placed.
/// \param dl Link to corresponding IR location.
/// \param Chain Control flow dependency.
/// \param Dst Pointer to destination memory location.
/// \param Src Value of byte to write into the memory.
/// \param Size Number of bytes to write.
/// \param Align Alignment of the destination in bytes.
/// \param isVol True if destination is volatile.
/// \param DstPtrInfo IR information on the memory pointer.
/// \returns New head in the control flow, if lowering was successful, empty
/// SDValue otherwise.
///
/// The function tries to replace 'llvm.memset' intrinsic with several store
/// operations and value calculation code. This is usually profitable for small
/// memory size.
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src,
uint64_t Size, unsigned Align, bool isVol,
MachinePointerInfo DstPtrInfo) {
// Turn a memset of undef to nop.
if (Src.isUndef())
return Chain;
// Expand memset to a series of load/store ops if the size operand
// falls below a certain threshold.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
bool IsZeroVal =
isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
Size, (DstAlignCanChange ? 0 : Align), 0,
true, IsZeroVal, false, true,
DstPtrInfo.getAddrSpace(), ~0u,
DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
SmallVector<SDValue, 8> OutChains;
uint64_t DstOff = 0;
unsigned NumMemOps = MemOps.size();
// Find the largest store and generate the bit pattern for it.
EVT LargestVT = MemOps[0];
for (unsigned i = 1; i < NumMemOps; i++)
if (MemOps[i].bitsGT(LargestVT))
LargestVT = MemOps[i];
SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
if (VTSize > Size) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
assert(i == NumMemOps-1 && i != 0);
DstOff -= VTSize - Size;
}
// If this store is smaller than the largest store see whether we can get
// the smaller value for free with a truncate.
SDValue Value = MemSetValue;
if (VT.bitsLT(LargestVT)) {
if (!LargestVT.isVector() && !VT.isVector() &&
TLI.isTruncateFree(LargestVT, VT))
Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
else
Value = getMemsetValue(Src, VT, DAG, dl);
}
assert(Value.getValueType() == VT && "Value with wrong type.");
SDValue Store = DAG.getStore(
Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
DstPtrInfo.getWithOffset(DstOff), Align,
isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
OutChains.push_back(Store);
DstOff += VT.getSizeInBits() / 8;
Size -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
unsigned AS) {
// Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
// pointer operands can be losslessly bitcasted to pointers of address space 0
if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
report_fatal_error("cannot lower memory intrinsic in address space " +
Twine(AS));
}
}
SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
SDValue Src, SDValue Size, unsigned Align,
bool isVol, bool AlwaysInline, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
// Check to see if we should lower the memcpy to loads and stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memcpy with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(),Align,
isVol, false, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memcpy with target-specific
// code. If the target chooses to do this, this is the next best.
if (TSI) {
SDValue Result = TSI->EmitTargetCodeForMemcpy(
*this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// If we really need inline code and the target declined to provide it,
// use a (potentially long) sequence of loads and stores.
if (AlwaysInline) {
assert(ConstantSize && "AlwaysInline requires a constant size!");
return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(), Align, isVol,
true, DstPtrInfo, SrcPtrInfo);
}
checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
// FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
// memcpy is not guaranteed to be safe. libc memcpys aren't required to
// respect volatile, so they may do things like read or write memory
// beyond the given memory regions. But fixing this isn't easy, and most
// people don't care.
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// FIXME: pass in SDLoc
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
Dst.getValueType().getTypeForEVT(*getContext()),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
SDValue Dst, unsigned DstAlign,
SDValue Src, unsigned SrcAlign,
SDValue Size, Type *SizeTy,
unsigned ElemSz, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Dst;
Args.push_back(Entry);
Entry.Node = Src;
Args.push_back(Entry);
Entry.Ty = SizeTy;
Entry.Node = Size;
Args.push_back(Entry);
RTLIB::Libcall LibraryCall =
RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
report_fatal_error("Unsupported element size");
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(LibraryCall),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
SDValue Src, SDValue Size, unsigned Align,
bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
// Check to see if we should lower the memmove to loads and stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memmove with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result =
getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(), Align, isVol,
false, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memmove with target-specific
// code. If the target chooses to do this, this is the next best.
if (TSI) {
SDValue Result = TSI->EmitTargetCodeForMemmove(
*this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
// FIXME: If the memmove is volatile, lowering it to plain libc memmove may
// not be safe. See memcpy above for more details.
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// FIXME: pass in SDLoc
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
Dst.getValueType().getTypeForEVT(*getContext()),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
SDValue Dst, unsigned DstAlign,
SDValue Src, unsigned SrcAlign,
SDValue Size, Type *SizeTy,
unsigned ElemSz, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Dst;
Args.push_back(Entry);
Entry.Node = Src;
Args.push_back(Entry);
Entry.Ty = SizeTy;
Entry.Node = Size;
Args.push_back(Entry);
RTLIB::Libcall LibraryCall =
RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
report_fatal_error("Unsupported element size");
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(LibraryCall),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
SDValue Src, SDValue Size, unsigned Align,
bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo) {
assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
// Check to see if we should lower the memset to stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memset with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result =
getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
Align, isVol, DstPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memset with target-specific
// code. If the target chooses to do this, this is the next best.
if (TSI) {
SDValue Result = TSI->EmitTargetCodeForMemset(
*this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
if (Result.getNode())
return Result;
}
checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
// Emit a library call.
Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst; Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Src;
Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
Args.push_back(Entry);
Entry.Node = Size;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
// FIXME: pass in SDLoc
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
Dst.getValueType().getTypeForEVT(*getContext()),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
SDValue Dst, unsigned DstAlign,
SDValue Value, SDValue Size, Type *SizeTy,
unsigned ElemSz, bool isTailCall,
MachinePointerInfo DstPtrInfo) {
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = getDataLayout().getIntPtrType(*getContext());
Entry.Node = Dst;
Args.push_back(Entry);
Entry.Ty = Type::getInt8Ty(*getContext());
Entry.Node = Value;
Args.push_back(Entry);
Entry.Ty = SizeTy;
Entry.Node = Size;
Args.push_back(Entry);
RTLIB::Libcall LibraryCall =
RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
report_fatal_error("Unsupported element size");
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(LibraryCall),
TLI->getPointerTy(getDataLayout())),
std::move(Args))
.setDiscardResult()
.setTailCall(isTailCall);
std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTList, ArrayRef<SDValue> Ops,
MachineMemOperand *MMO) {
FoldingSetNodeID ID;
ID.AddInteger(MemVT.getRawBits());
AddNodeIDNode(ID, Opcode, VTList, Ops);
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void* IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<AtomicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
VTList, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getAtomicCmpSwap(
unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
unsigned Alignment, AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
// FIXME: Volatile isn't really correct; we should keep track of atomic
// orderings in the memoperand.
auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
MachineMemOperand::MOStore;
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
AAMDNodes(), nullptr, SSID, SuccessOrdering,
FailureOrdering);
return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
}
SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
EVT MemVT, SDVTList VTs, SDValue Chain,
SDValue Ptr, SDValue Cmp, SDValue Swp,
MachineMemOperand *MMO) {
assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDValue Chain, SDValue Ptr, SDValue Val,
const Value *PtrVal, unsigned Alignment,
AtomicOrdering Ordering,
SyncScope::ID SSID) {
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
// An atomic store does not load. An atomic load does not store.
// (An atomicrmw obviously both loads and stores.)
// For now, atomics are considered to be volatile always, and they are
// chained as such.
// FIXME: Volatile isn't really correct; we should keep track of atomic
// orderings in the memoperand.
auto Flags = MachineMemOperand::MOVolatile;
if (Opcode != ISD::ATOMIC_STORE)
Flags |= MachineMemOperand::MOLoad;
if (Opcode != ISD::ATOMIC_LOAD)
Flags |= MachineMemOperand::MOStore;
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
MemVT.getStoreSize(), Alignment, AAMDNodes(),
nullptr, SSID, Ordering);
return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDValue Chain, SDValue Ptr, SDValue Val,
MachineMemOperand *MMO) {
assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
Opcode == ISD::ATOMIC_LOAD_SUB ||
Opcode == ISD::ATOMIC_LOAD_AND ||
Opcode == ISD::ATOMIC_LOAD_CLR ||
Opcode == ISD::ATOMIC_LOAD_OR ||
Opcode == ISD::ATOMIC_LOAD_XOR ||
Opcode == ISD::ATOMIC_LOAD_NAND ||
Opcode == ISD::ATOMIC_LOAD_MIN ||
Opcode == ISD::ATOMIC_LOAD_MAX ||
Opcode == ISD::ATOMIC_LOAD_UMIN ||
Opcode == ISD::ATOMIC_LOAD_UMAX ||
Opcode == ISD::ATOMIC_SWAP ||
Opcode == ISD::ATOMIC_STORE) &&
"Invalid Atomic Op");
EVT VT = Val.getValueType();
SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr, Val};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
EVT VT, SDValue Chain, SDValue Ptr,
MachineMemOperand *MMO) {
assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
if (Ops.size() == 1)
return Ops[0];
SmallVector<EVT, 4> VTs;
VTs.reserve(Ops.size());
for (unsigned i = 0; i < Ops.size(); ++i)
VTs.push_back(Ops[i].getValueType());
return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
}
SDValue SelectionDAG::getMemIntrinsicNode(
unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
MachineMemOperand::Flags Flags, unsigned Size) {
if (Align == 0) // Ensure that codegen never sees alignment 0
Align = getEVTAlignment(MemVT);
if (!Size)
Size = MemVT.getStoreSize();
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
}
SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachineMemOperand *MMO) {
assert((Opcode == ISD::INTRINSIC_VOID ||
Opcode == ISD::INTRINSIC_W_CHAIN ||
Opcode == ISD::PREFETCH ||
Opcode == ISD::LIFETIME_START ||
Opcode == ISD::LIFETIME_END ||
((int)Opcode <= std::numeric_limits<int>::max() &&
(int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
"Opcode is not a memory-accessing opcode!");
// Memoize the node unless it returns a flag.
MemIntrinsicSDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
Opcode, dl.getIROrder(), VTList, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
VTList, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
VTList, MemVT, MMO);
createOperands(N, Ops);
}
InsertNode(N);
return SDValue(N, 0);
}
/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
/// MachinePointerInfo record from it. This is particularly useful because the
/// code generator has many cases where it doesn't bother passing in a
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
SelectionDAG &DAG, SDValue Ptr,
int64_t Offset = 0) {
// If this is FI+Offset, we can model it.
if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
FI->getIndex(), Offset);
// If this is (FI+Offset1)+Offset2, we can model it.
if (Ptr.getOpcode() != ISD::ADD ||
!isa<ConstantSDNode>(Ptr.getOperand(1)) ||
!isa<FrameIndexSDNode>(Ptr.getOperand(0)))
return Info;
int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
return MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FI,
Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
}
/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
/// MachinePointerInfo record from it. This is particularly useful because the
/// code generator has many cases where it doesn't bother passing in a
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
SelectionDAG &DAG, SDValue Ptr,
SDValue OffsetOp) {
// If the 'Offset' value isn't a constant, we can't handle this.
if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
if (OffsetOp.isUndef())
return InferPointerInfo(Info, DAG, Ptr);
return Info;
}
SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT,
unsigned Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo, const MDNode *Ranges) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(MemVT);
MMOFlags |= MachineMemOperand::MOLoad;
assert((MMOFlags & MachineMemOperand::MOStore) == 0);
// If we don't have a PtrInfo, infer the trivial frame index case to simplify
// clients.
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
}
SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue Offset, EVT MemVT,
MachineMemOperand *MMO) {
if (VT == MemVT) {
ExtType = ISD::NON_EXTLOAD;
} else if (ExtType == ISD::NON_EXTLOAD) {
assert(VT == MemVT && "Non-extending load from different memory type!");
} else {
// Extending load.
assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be an extending load, not truncating!");
assert(VT.isInteger() == MemVT.isInteger() &&
"Cannot convert from FP to Int or Int -> FP!");
assert(VT.isVector() == MemVT.isVector() &&
"Cannot use an ext load to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
"Cannot use an ext load to change the number of vector elements!");
}
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
SDVTList VTs = Indexed ?
getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, Ptr, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<LoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
ExtType, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, MachinePointerInfo PtrInfo,
unsigned Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo, const MDNode *Ranges) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
}
SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, MachineMemOperand *MMO) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
VT, MMO);
}
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
EVT VT, SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT MemVT,
unsigned Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
MemVT, Alignment, MMOFlags, AAInfo);
}
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
MachineMemOperand *MMO) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
MemVT, MMO);
}
SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
// Don't propagate the invariant or dereferenceable flags.
auto MMOFlags =
LD->getMemOperand()->getFlags() &
~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
LD->getChain(), Base, Offset, LD->getPointerInfo(),
LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
LD->getAAInfo());
}
SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
unsigned Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo) {
assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(Val.getValueType());
MMOFlags |= MachineMemOperand::MOStore;
assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
return getStore(Chain, dl, Val, Ptr, MMO);
}
SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, MachineMemOperand *MMO) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
EVT VT = Val.getValueType();
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
ISD::UNINDEXED, false, VT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
EVT SVT, unsigned Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(SVT);
MMOFlags |= MachineMemOperand::MOStore;
assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
}
SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, EVT SVT,
MachineMemOperand *MMO) {
EVT VT = Val.getValueType();
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (VT == SVT)
return getStore(Chain, dl, Val, Ptr, MMO);
assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be a truncating store, not extending!");
assert(VT.isInteger() == SVT.isInteger() &&
"Can't do FP-INT conversion!");
assert(VT.isVector() == SVT.isVector() &&
"Cannot use trunc store to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
"Cannot use trunc store to change the number of vector elements!");
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(SVT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
ISD::UNINDEXED, true, SVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM) {
StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
return SDValue(E, 0);
auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
ST->isTruncatingStore(), ST->getMemoryVT(),
ST->getMemOperand());
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue Mask, SDValue PassThru,
EVT MemVT, MachineMemOperand *MMO,
ISD::LoadExtType ExtTy, bool isExpanding) {
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
ExtTy, isExpanding, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
SDValue Val, SDValue Ptr, SDValue Mask,
EVT MemVT, MachineMemOperand *MMO,
bool IsTruncating, bool IsCompressing) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
EVT VT = Val.getValueType();
SDVTList VTs = getVTList(MVT::Other);
SDValue Ops[] = { Chain, Val, Ptr, Mask };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
IsTruncating, IsCompressing, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
ArrayRef<SDValue> Ops,
MachineMemOperand *MMO) {
assert(Ops.size() == 6 && "Incompatible number of operands");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
dl.getIROrder(), VTs, VT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
VTs, VT, MMO);
createOperands(N, Ops);
assert(N->getPassThru().getValueType() == N->getValueType(0) &&
"Incompatible type of the PassThru value in MaskedGatherSDNode");
assert(N->getMask().getValueType().getVectorNumElements() ==
N->getValueType(0).getVectorNumElements() &&
"Vector width mismatch between mask and data");
assert(N->getIndex().getValueType().getVectorNumElements() >=
N->getValueType(0).getVectorNumElements() &&
"Vector width mismatch between index and data");
assert(isa<ConstantSDNode>(N->getScale()) &&
cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
"Scale should be a constant power of 2");
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
ArrayRef<SDValue> Ops,
MachineMemOperand *MMO) {
assert(Ops.size() == 6 && "Incompatible number of operands");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
dl.getIROrder(), VTs, VT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
VTs, VT, MMO);
createOperands(N, Ops);
assert(N->getMask().getValueType().getVectorNumElements() ==
N->getValue().getValueType().getVectorNumElements() &&
"Vector width mismatch between mask and data");
assert(N->getIndex().getValueType().getVectorNumElements() >=
N->getValue().getValueType().getVectorNumElements() &&
"Vector width mismatch between index and data");
assert(isa<ConstantSDNode>(N->getScale()) &&
cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
"Scale should be a constant power of 2");
CSEMap.InsertNode(N, IP);
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
// select undef, T, F --> T (if T is a constant), otherwise F
// select, ?, undef, F --> F
// select, ?, T, undef --> T
if (Cond.isUndef())
return isConstantValueOfAnyType(T) ? T : F;
if (T.isUndef())
return F;
if (F.isUndef())
return T;
// select true, T, F --> T
// select false, T, F --> F
if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
return CondC->isNullValue() ? F : T;
// TODO: This should simplify VSELECT with constant condition using something
// like this (but check boolean contents to be complete?):
// if (ISD::isBuildVectorAllOnes(Cond.getNode()))
// return T;
// if (ISD::isBuildVectorAllZeros(Cond.getNode()))
// return F;
// select ?, T, T --> T
if (T == F)
return T;
return SDValue();
}
SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
// shift undef, Y --> 0 (can always assume that the undef value is 0)
if (X.isUndef())
return getConstant(0, SDLoc(X.getNode()), X.getValueType());
// shift X, undef --> undef (because it may shift by the bitwidth)
if (Y.isUndef())
return getUNDEF(X.getValueType());
// shift 0, Y --> 0
// shift X, 0 --> X
if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
return X;
// shift X, C >= bitwidth(X) --> undef
// All vector elements must be too big to avoid partial undefs.
auto isShiftTooBig = [X](ConstantSDNode *Val) {
return Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
};
if (ISD::matchUnaryPredicate(Y, isShiftTooBig))
return getUNDEF(X.getValueType());
return SDValue();
}
SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue SV, unsigned Align) {
SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDUse> Ops) {
switch (Ops.size()) {
case 0: return getNode(Opcode, DL, VT);
case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
// Copy from an SDUse array into an SDValue array for use with
// the regular getNode logic.
SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
return getNode(Opcode, DL, VT, NewOps);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
unsigned NumOps = Ops.size();
switch (NumOps) {
case 0: return getNode(Opcode, DL, VT);
case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
default: break;
}
switch (Opcode) {
default: break;
case ISD::BUILD_VECTOR:
// Attempt to simplify BUILD_VECTOR.
if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
return V;
break;
case ISD::CONCAT_VECTORS:
// Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
return V;
break;
case ISD::SELECT_CC:
assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
"LHS and RHS of condition must have same type!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"True and False arms of SelectCC must have same type!");
assert(Ops[2].getValueType() == VT &&
"select_cc node must be of same type as true and false value!");
break;
case ISD::BR_CC:
assert(NumOps == 5 && "BR_CC takes 5 operands!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"LHS/RHS of comparison should match types!");
break;
}
// Memoize nodes.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
return getNode(Opcode, DL, getVTList(ResultTys), Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
ArrayRef<SDValue> Ops) {
if (VTList.NumVTs == 1)
return getNode(Opcode, DL, VTList.VTs[0], Ops);
#if 0
switch (Opcode) {
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
case ISD::SHL_PARTS:
if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
else if (N3.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = VT.getScalarSizeInBits()*2;
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
}
break;
}
#endif
// Memoize the node unless it returns a flag.
SDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
createOperands(N, Ops);
}
InsertNode(N);
SDValue V(N, 0);
NewSDValueDbgMsg(V, "Creating new node: ", this);
return V;
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
SDVTList VTList) {
return getNode(Opcode, DL, VTList, None);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1) {
SDValue Ops[] = { N1 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1, SDValue N2) {
SDValue Ops[] = { N1, N2 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3) {
SDValue Ops[] = { N1, N2, N3 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3, SDValue N4,
SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VTList, Ops);
}
SDVTList SelectionDAG::getVTList(EVT VT) {
return makeVTList(SDNode::getValueTypeList(VT), 1);
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
FoldingSetNodeID ID;
ID.AddInteger(2U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(2);
Array[0] = VT1;
Array[1] = VT2;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
FoldingSetNodeID ID;
ID.AddInteger(3U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
ID.AddInteger(VT3.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(3);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
FoldingSetNodeID ID;
ID.AddInteger(4U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
ID.AddInteger(VT3.getRawBits());
ID.AddInteger(VT4.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(4);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
Array[3] = VT4;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
unsigned NumVTs = VTs.size();
FoldingSetNodeID ID;
ID.AddInteger(NumVTs);
for (unsigned index = 0; index < NumVTs; index++) {
ID.AddInteger(VTs[index].getRawBits());
}
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(NumVTs);
llvm::copy(VTs, Array);
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op == N->getOperand(0)) return N;
// See if the modified node already exists.
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
// Now we update the operands.
N->OperandList[0].set(Op);
updateDivergence(N);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
return N; // No operands changed, just return the input node.
// See if the modified node already exists.
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
// Now we update the operands.
if (N->OperandList[0] != Op1)
N->OperandList[0].set(Op1);
if (N->OperandList[1] != Op2)
N->OperandList[1].set(Op2);
updateDivergence(N);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
SDValue Ops[] = { Op1, Op2, Op3 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4) {
SDValue Ops[] = { Op1, Op2, Op3, Op4 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5) {
SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
unsigned NumOps = Ops.size();
assert(N->getNumOperands() == NumOps &&
"Update with wrong number of operands");
// If no operands changed just return the input node.
if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
return N;
// See if the modified node already exists.
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
// Now we update the operands.
for (unsigned i = 0; i != NumOps; ++i)
if (N->OperandList[i] != Ops[i])
N->OperandList[i].set(Ops[i]);
updateDivergence(N);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
/// DropOperands - Release the operands and set this node to have
/// zero operands.
void SDNode::DropOperands() {
// Unlike the code in MorphNodeTo that does this, we don't need to
// watch for dead nodes here.
for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
SDUse &Use = *I++;
Use.set(SDValue());
}
}
void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
ArrayRef<MachineMemOperand *> NewMemRefs) {
if (NewMemRefs.empty()) {
N->clearMemRefs();
return;
}
// Check if we can avoid allocating by storing a single reference directly.
if (NewMemRefs.size() == 1) {
N->MemRefs = NewMemRefs[0];
N->NumMemRefs = 1;
return;
}
MachineMemOperand **MemRefsBuffer =
Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
llvm::copy(NewMemRefs, MemRefsBuffer);
N->MemRefs = MemRefsBuffer;
N->NumMemRefs = static_cast<int>(NewMemRefs.size());
}
/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
/// machine opcode.
///
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, None);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, None);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, EVT VT3,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
SDVTList VTs,ArrayRef<SDValue> Ops) {
SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
// Reset the NodeID to -1.
New->setNodeId(-1);
if (New != N) {
ReplaceAllUsesWith(N, New);
RemoveDeadNode(N);
}
return New;
}
/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
/// the line number information on the merged node since it is not possible to
/// preserve the information that operation is associated with multiple lines.
/// This will make the debugger working better at -O0, were there is a higher
/// probability having other instructions associated with that line.
///
/// For IROrder, we keep the smaller of the two
SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
DebugLoc NLoc = N->getDebugLoc();
if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
N->setDebugLoc(DebugLoc());
}
unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
N->setIROrder(Order);
return N;
}
/// MorphNodeTo - This *mutates* the specified node to have the specified
/// return type, opcode, and operands.
///
/// Note that MorphNodeTo returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one. Note that the SDLoc need not be the same.
///
/// Using MorphNodeTo is faster than creating a new node and swapping it in
/// with ReplaceAllUsesWith both because it often avoids allocating a new
/// node, and because it doesn't require CSE recalculation for any of
/// the node's users.
///
/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
/// As a consequence it isn't appropriate to use from within the DAG combiner or
/// the legalizer which maintain worklists that would need to be updated when
/// deleting things.
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
SDVTList VTs, ArrayRef<SDValue> Ops) {
// If an identical node already exists, use it.
void *IP = nullptr;
if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, VTs, Ops);
if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
}
if (!RemoveNodeFromCSEMaps(N))
IP = nullptr;
// Start the morphing.
N->NodeType = Opc;
N->ValueList = VTs.VTs;
N->NumValues = VTs.NumVTs;
// Clear the operands list, updating used nodes to remove this from their
// use list. Keep track of any operands that become dead as a result.
SmallPtrSet<SDNode*, 16> DeadNodeSet;
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
SDUse &Use = *I++;
SDNode *Used = Use.getNode();
Use.set(SDValue());
if (Used->use_empty())
DeadNodeSet.insert(Used);
}
// For MachineNode, initialize the memory references information.
if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
MN->clearMemRefs();
// Swap for an appropriately sized array from the recycler.
removeOperands(N);
createOperands(N, Ops);
// Delete any nodes that are still dead after adding the uses for the
// new operands.
if (!DeadNodeSet.empty()) {
SmallVector<SDNode *, 16> DeadNodes;
for (SDNode *N : DeadNodeSet)
if (N->use_empty())
DeadNodes.push_back(N);
RemoveDeadNodes(DeadNodes);
}
if (IP)
CSEMap.InsertNode(N, IP); // Memoize the new node.
return N;
}
SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
unsigned OrigOpc = Node->getOpcode();
unsigned NewOpc;
bool IsUnary = false;
bool IsTernary = false;
switch (OrigOpc) {
default:
llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
case ISD::STRICT_FNEARBYINT:
NewOpc = ISD::FNEARBYINT;
IsUnary = true;
break;
case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
}
// We're taking this node out of the chain, so we need to re-link things.
SDValue InputChain = Node->getOperand(0);
SDValue OutputChain = SDValue(Node, 1);
ReplaceAllUsesOfValueWith(OutputChain, InputChain);
SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
SDNode *Res = nullptr;
if (IsUnary)
Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
else if (IsTernary)
Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
Node->getOperand(2),
Node->getOperand(3)});
else
Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
Node->getOperand(2) });
// MorphNodeTo can operate in two ways: if an existing node with the
// specified operands exists, it can just return it. Otherwise, it
// updates the node in place to have the requested operands.
if (Res == Node) {
// If we updated the node in place, reset the node ID. To the isel,
// this should be just like a newly allocated machine node.
Res->setNodeId(-1);
} else {
ReplaceAllUsesWith(Node, Res);
RemoveDeadNode(Node);
}
return Res;
}
/// getMachineNode - These are used for target selectors to create a new node
/// with specified return type(s), MachineInstr opcode, and operands.
///
/// Note that getMachineNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT) {
SDVTList VTs = getVTList(VT);
return getMachineNode(Opcode, dl, VTs, None);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT, SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT, SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT, ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, EVT VT3,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
ArrayRef<EVT> ResultTys,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(ResultTys);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
SDVTList VTs,
ArrayRef<SDValue> Ops) {
bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
MachineSDNode *N;
void *IP = nullptr;
if (DoCSE) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ~Opcode, VTs, Ops);
IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
}
}
// Allocate a new MachineSDNode.
N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
createOperands(N, Ops);
if (DoCSE)
CSEMap.InsertNode(N, IP);
InsertNode(N);
return N;
}
/// getTargetExtractSubreg - A convenience function for creating
/// TargetOpcode::EXTRACT_SUBREG nodes.
SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand) {
SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
VT, Operand, SRIdxVal);
return SDValue(Subreg, 0);
}
/// getTargetInsertSubreg - A convenience function for creating
/// TargetOpcode::INSERT_SUBREG nodes.
SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand, SDValue Subreg) {
SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
VT, Operand, Subreg, SRIdxVal);
return SDValue(Result, 0);
}
/// getNodeIfExists - Get the specified node if it's already available, or
/// else return NULL.
SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
ArrayRef<SDValue> Ops,
const SDNodeFlags Flags) {
if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
E->intersectFlagsWith(Flags);
return E;
}
}
return nullptr;
}
/// getDbgValue - Creates a SDDbgValue node.
///
/// SDNode
SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
SDNode *N, unsigned R, bool IsIndirect,
const DebugLoc &DL, unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc())
SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
}
/// Constant
SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
DIExpression *Expr,
const Value *C,
const DebugLoc &DL, unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
}
/// FrameIndex
SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
DIExpression *Expr, unsigned FI,
bool IsIndirect,
const DebugLoc &DL,
unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc())
SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
}
/// VReg
SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
DIExpression *Expr,
unsigned VReg, bool IsIndirect,
const DebugLoc &DL, unsigned O) {
assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc())
SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
}
void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
unsigned OffsetInBits, unsigned SizeInBits,
bool InvalidateDbg) {
SDNode *FromNode = From.getNode();
SDNode *ToNode = To.getNode();
assert(FromNode && ToNode && "Can't modify dbg values");
// PR35338
// TODO: assert(From != To && "Redundant dbg value transfer");
// TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
if (From == To || FromNode == ToNode)
return;
if (!FromNode->getHasDebugValue())
return;
SmallVector<SDDbgValue *, 2> ClonedDVs;
for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
continue;
// TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
// Just transfer the dbg value attached to From.
if (Dbg->getResNo() != From.getResNo())
continue;
DIVariable *Var = Dbg->getVariable();
auto *Expr = Dbg->getExpression();
// If a fragment is requested, update the expression.
if (SizeInBits) {
// When splitting a larger (e.g., sign-extended) value whose
// lower bits are described with an SDDbgValue, do not attempt
// to transfer the SDDbgValue to the upper bits.
if (auto FI = Expr->getFragmentInfo())
if (OffsetInBits + SizeInBits > FI->SizeInBits)
continue;
auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
SizeInBits);
if (!Fragment)
continue;
Expr = *Fragment;
}
// Clone the SDDbgValue and move it to To.
SDDbgValue *Clone =
getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
Dbg->getDebugLoc(), Dbg->getOrder());
ClonedDVs.push_back(Clone);
if (InvalidateDbg)
Dbg->setIsInvalidated();
}
for (SDDbgValue *Dbg : ClonedDVs)
AddDbgValue(Dbg, ToNode, false);
}
void SelectionDAG::salvageDebugInfo(SDNode &N) {
if (!N.getHasDebugValue())
return;
SmallVector<SDDbgValue *, 2> ClonedDVs;
for (auto DV : GetDbgValues(&N)) {
if (DV->isInvalidated())
continue;
switch (N.getOpcode()) {
default:
break;
case ISD::ADD:
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
if (!isConstantIntBuildVectorOrConstantInt(N0) &&
isConstantIntBuildVectorOrConstantInt(N1)) {
uint64_t Offset = N.getConstantOperandVal(1);
// Rewrite an ADD constant node into a DIExpression. Since we are
// performing arithmetic to compute the variable's *value* in the
// DIExpression, we need to mark the expression with a
// DW_OP_stack_value.
auto *DIExpr = DV->getExpression();
DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
DIExpression::NoDeref,
DIExpression::WithStackValue);
SDDbgValue *Clone =
getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
ClonedDVs.push_back(Clone);
DV->setIsInvalidated();
LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
N0.getNode()->dumprFull(this);
dbgs() << " into " << *DIExpr << '\n');
}
}
}
for (SDDbgValue *Dbg : ClonedDVs)
AddDbgValue(Dbg, Dbg->getSDNode(), false);
}
/// Creates a SDDbgLabel node.
SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
const DebugLoc &DL, unsigned O) {
assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
}
namespace {
/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
/// pointed to by a use iterator is deleted, increment the use iterator
/// so that it doesn't dangle.
///
class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
SDNode::use_iterator &UI;
SDNode::use_iterator &UE;
void NodeDeleted(SDNode *N, SDNode *E) override {
// Increment the iterator as needed.
while (UI != UE && N == *UI)
++UI;
}
public:
RAUWUpdateListener(SelectionDAG &d,
SDNode::use_iterator &ui,
SDNode::use_iterator &ue)
: SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
};
} // end anonymous namespace
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From has a single result value.
///
void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
SDNode *From = FromN.getNode();
assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
"Cannot replace with this method!");
assert(From != To.getNode() && "Cannot replace uses of with self");
// Preserve Debug Values
transferDbgValues(FromN, To);
// Iterate over all the existing uses of From. New uses will be added
// to the beginning of the use list, which we avoid visiting.
// This specifically avoids visiting uses of From that arise while the
// replacement is happening, because any such uses would be the result
// of CSE: If an existing node looks like From after one of its operands
// is replaced by To, we don't want to replace of all its users with To
// too. See PR3018 for more info.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
++UI;
Use.set(To);
if (To->isDivergent() != From->isDivergent())
updateDivergence(User);
} while (UI != UE && *UI == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (FromN == getRoot())
setRoot(To);
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes that for each value of From, there is a
/// corresponding value in To in the same position with the same type.
///
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
#ifndef NDEBUG
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
assert((!From->hasAnyUseOfValue(i) ||
From->getValueType(i) == To->getValueType(i)) &&
"Cannot use this version of ReplaceAllUsesWith!");
#endif
// Handle the trivial case.
if (From == To)
return;
// Preserve Debug Info. Only do this if there's a use.
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
if (From->hasAnyUseOfValue(i)) {
assert((i < To->getNumValues()) && "Invalid To location");
transferDbgValues(SDValue(From, i), SDValue(To, i));
}
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
++UI;
Use.setNode(To);
if (To->isDivergent() != From->isDivergent())
updateDivergence(User);
} while (UI != UE && *UI == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot().getNode())
setRoot(SDValue(To, getRoot().getResNo()));
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version can replace From with any result values. To must match the
/// number and types of values returned by From.
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
if (From->getNumValues() == 1) // Handle the simple case efficiently.
return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
// Preserve Debug Info.
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
transferDbgValues(SDValue(From, i), To[i]);
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this happens the
// uses are usually next to each other in the list. To help reduce the
// number of CSE and divergence recomputations, process all the uses of this
// user that we can find this way.
bool To_IsDivergent = false;
do {
SDUse &Use = UI.getUse();
const SDValue &ToOp = To[Use.getResNo()];
++UI;
Use.set(ToOp);
To_IsDivergent |= ToOp->isDivergent();
} while (UI != UE && *UI == User);
if (To_IsDivergent != From->isDivergent())
updateDivergence(User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot().getNode())
setRoot(SDValue(To[getRoot().getResNo()]));
}
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone. The Deleted
/// vector is handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
// Handle the really simple, really trivial case efficiently.
if (From == To) return;
// Handle the simple, trivial, case efficiently.
if (From.getNode()->getNumValues() == 1) {
ReplaceAllUsesWith(From, To);
return;
}
// Preserve Debug Info.
transferDbgValues(From, To);
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From.getNode()->use_begin(),
UE = From.getNode()->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
bool UserRemovedFromCSEMaps = false;
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
// Skip uses of different values from the same node.
if (Use.getResNo() != From.getResNo()) {
++UI;
continue;
}
// If this node hasn't been modified yet, it's still in the CSE maps,
// so remove its old self from the CSE maps.
if (!UserRemovedFromCSEMaps) {
RemoveNodeFromCSEMaps(User);
UserRemovedFromCSEMaps = true;
}
++UI;
Use.set(To);
if (To->isDivergent() != From->isDivergent())
updateDivergence(User);
} while (UI != UE && *UI == User);
// We are iterating over all uses of the From node, so if a use
// doesn't use the specific value, no changes are made.
if (!UserRemovedFromCSEMaps)
continue;
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot())
setRoot(To);
}
namespace {
/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
/// to record information about a use.
struct UseMemo {
SDNode *User;
unsigned Index;
SDUse *Use;
};
/// operator< - Sort Memos by User.
bool operator<(const UseMemo &L, const UseMemo &R) {
return (intptr_t)L.User < (intptr_t)R.User;
}
} // end anonymous namespace
void SelectionDAG::updateDivergence(SDNode * N)
{
if (TLI->isSDNodeAlwaysUniform(N))
return;
bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
for (auto &Op : N->ops()) {
if (Op.Val.getValueType() != MVT::Other)
IsDivergent |= Op.getNode()->isDivergent();
}
if (N->SDNodeBits.IsDivergent != IsDivergent) {
N->SDNodeBits.IsDivergent = IsDivergent;
for (auto U : N->uses()) {
updateDivergence(U);
}
}
}
void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
DenseMap<SDNode *, unsigned> Degree;
Order.reserve(AllNodes.size());
for (auto & N : allnodes()) {
unsigned NOps = N.getNumOperands();
Degree[&N] = NOps;
if (0 == NOps)
Order.push_back(&N);
}
for (std::vector<SDNode *>::iterator I = Order.begin();
I!=Order.end();++I) {
SDNode * N = *I;
for (auto U : N->uses()) {
unsigned &UnsortedOps = Degree[U];
if (0 == --UnsortedOps)
Order.push_back(U);
}
}
}
#ifndef NDEBUG
void SelectionDAG::VerifyDAGDiverence()
{
std::vector<SDNode*> TopoOrder;
CreateTopologicalOrder(TopoOrder);
const TargetLowering &TLI = getTargetLoweringInfo();
DenseMap<const SDNode *, bool> DivergenceMap;
for (auto &N : allnodes()) {
DivergenceMap[&N] = false;
}
for (auto N : TopoOrder) {
bool IsDivergent = DivergenceMap[N];
bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
for (auto &Op : N->ops()) {
if (Op.Val.getValueType() != MVT::Other)
IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
}
if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
DivergenceMap[N] = true;
}
}
for (auto &N : allnodes()) {
(void)N;
assert(DivergenceMap[&N] == N.isDivergent() &&
"Divergence bit inconsistency detected\n");
}
}
#endif
/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone. The same value
/// may appear in both the From and To list. The Deleted vector is
/// handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
const SDValue *To,
unsigned Num){
// Handle the simple, trivial case efficiently.
if (Num == 1)
return ReplaceAllUsesOfValueWith(*From, *To);
transferDbgValues(*From, *To);
// Read up all the uses and make records of them. This helps
// processing new uses that are introduced during the
// replacement process.
SmallVector<UseMemo, 4> Uses;
for (unsigned i = 0; i != Num; ++i) {
unsigned FromResNo = From[i].getResNo();
SDNode *FromNode = From[i].getNode();
for (SDNode::use_iterator UI = FromNode->use_begin(),
E = FromNode->use_end(); UI != E; ++UI) {
SDUse &Use = UI.getUse();
if (Use.getResNo() == FromResNo) {
UseMemo Memo = { *UI, i, &Use };
Uses.push_back(Memo);
}
}
}
// Sort the uses, so that all the uses from a given User are together.
llvm::sort(Uses);
for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
UseIndex != UseIndexEnd; ) {
// We know that this user uses some value of From. If it is the right
// value, update it.
SDNode *User = Uses[UseIndex].User;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// The Uses array is sorted, so all the uses for a given User
// are next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
unsigned i = Uses[UseIndex].Index;
SDUse &Use = *Uses[UseIndex].Use;
++UseIndex;
Use.set(To[i]);
} while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
}
/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
/// based on their topological order. It returns the maximum id and a vector
/// of the SDNodes* in assigned order by reference.
unsigned SelectionDAG::AssignTopologicalOrder() {
unsigned DAGSize = 0;
// SortedPos tracks the progress of the algorithm. Nodes before it are
// sorted, nodes after it are unsorted. When the algorithm completes
// it is at the end of the list.
allnodes_iterator SortedPos = allnodes_begin();
// Visit all the nodes. Move nodes with no operands to the front of
// the list immediately. Annotate nodes that do have operands with their
// operand count. Before we do this, the Node Id fields of the nodes
// may contain arbitrary values. After, the Node Id fields for nodes
// before SortedPos will contain the topological sort index, and the
// Node Id fields for nodes At SortedPos and after will contain the
// count of outstanding operands.
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
SDNode *N = &*I++;
checkForCycles(N, this);
unsigned Degree = N->getNumOperands();
if (Degree == 0) {
// A node with no uses, add it to the result array immediately.
N->setNodeId(DAGSize++);
allnodes_iterator Q(N);
if (Q != SortedPos)
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
assert(SortedPos != AllNodes.end() && "Overran node list");
++SortedPos;
} else {
// Temporarily use the Node Id as scratch space for the degree count.
N->setNodeId(Degree);
}
}
// Visit all the nodes. As we iterate, move nodes into sorted order,
// such that by the time the end is reached all nodes will be sorted.
for (SDNode &Node : allnodes()) {
SDNode *N = &Node;
checkForCycles(N, this);
// N is in sorted position, so all its uses have one less operand
// that needs to be sorted.
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
SDNode *P = *UI;
unsigned Degree = P->getNodeId();
assert(Degree != 0 && "Invalid node degree");
--Degree;
if (Degree == 0) {
// All of P's operands are sorted, so P may sorted now.
P->setNodeId(DAGSize++);
if (P->getIterator() != SortedPos)
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
assert(SortedPos != AllNodes.end() && "Overran node list");
++SortedPos;
} else {
// Update P's outstanding operand count.
P->setNodeId(Degree);
}
}
if (Node.getIterator() == SortedPos) {
#ifndef NDEBUG
allnodes_iterator I(N);
SDNode *S = &*++I;
dbgs() << "Overran sorted position:\n";
S->dumprFull(this); dbgs() << "\n";
dbgs() << "Checking if this is due to cycles\n";
checkForCycles(this, true);
#endif
llvm_unreachable(nullptr);
}
}
assert(SortedPos == AllNodes.end() &&
"Topological sort incomplete!");
assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
"First node in topological sort is not the entry token!");
assert(AllNodes.front().getNodeId() == 0 &&
"First node in topological sort has non-zero id!");
assert(AllNodes.front().getNumOperands() == 0 &&
"First node in topological sort has operands!");
assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
"Last node in topologic sort has unexpected id!");
assert(AllNodes.back().use_empty() &&
"Last node in topologic sort has users!");
assert(DAGSize == allnodes_size() && "Node count mismatch!");
return DAGSize;
}
/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
/// value is produced by SD.
void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
if (SD) {
assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
SD->setHasDebugValue(true);
}
DbgInfo->add(DB, SD, isParameter);
}
void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
DbgInfo->add(DB);
}
SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
SDValue NewMemOp) {
assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
// The new memory operation must have the same position as the old load in
// terms of memory dependency. Create a TokenFactor for the old load and new
// memory operation and update uses of the old load's output chain to use that
// TokenFactor.
SDValue OldChain = SDValue(OldLoad, 1);
SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
if (!OldLoad->hasAnyUseOfValue(1))
return NewChain;
SDValue TokenFactor =
getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
return TokenFactor;
}
//===----------------------------------------------------------------------===//
// SDNode Class
//===----------------------------------------------------------------------===//
bool llvm::isNullConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isNullValue();
}
bool llvm::isNullFPConstant(SDValue V) {
ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
return Const != nullptr && Const->isZero() && !Const->isNegative();
}
bool llvm::isAllOnesConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isAllOnesValue();
}
bool llvm::isOneConstant(SDValue V) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
return Const != nullptr && Const->isOne();
}
SDValue llvm::peekThroughBitcasts(SDValue V) {
while (V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
return V;
}
SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
V = V.getOperand(0);
return V;
}
bool llvm::isBitwiseNot(SDValue V) {
if (V.getOpcode() != ISD::XOR)
return false;
ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
return C && C->isAllOnesValue();
}
ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
return CN;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
BitVector UndefElements;
ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
// BuildVectors can truncate their operands. Ignore that case here.
if (CN && (UndefElements.none() || AllowUndefs) &&
CN->getValueType(0) == N.getValueType().getScalarType())
return CN;
}
return nullptr;
}
ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
return CN;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
BitVector UndefElements;
ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
if (CN && (UndefElements.none() || AllowUndefs))
return CN;
}
return nullptr;
}
bool llvm::isNullOrNullSplat(SDValue N) {
// TODO: may want to use peekThroughBitcast() here.
ConstantSDNode *C = isConstOrConstSplat(N);
return C && C->isNullValue();
}
bool llvm::isOneOrOneSplat(SDValue N) {
// TODO: may want to use peekThroughBitcast() here.
unsigned BitWidth = N.getScalarValueSizeInBits();
ConstantSDNode *C = isConstOrConstSplat(N);
return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
}
bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
N = peekThroughBitcasts(N);
unsigned BitWidth = N.getScalarValueSizeInBits();
ConstantSDNode *C = isConstOrConstSplat(N);
return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
}
HandleSDNode::~HandleSDNode() {
DropOperands();
}
GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
const DebugLoc &DL,
const GlobalValue *GA, EVT VT,
int64_t o, unsigned char TF)
: SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
TheGlobal = GA;
}
AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
EVT VT, unsigned SrcAS,
unsigned DestAS)
: SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
: SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
MemSDNodeBits.IsVolatile = MMO->isVolatile();
MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
MemSDNodeBits.IsInvariant = MMO->isInvariant();
// We check here that the size of the memory operand fits within the size of
// the MMO. This is because the MMO might indicate only a possible address
// range instead of specifying the affected memory addresses precisely.
assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
}
/// Profile - Gather unique data for the node.
///
void SDNode::Profile(FoldingSetNodeID &ID) const {
AddNodeIDNode(ID, this);
}
namespace {
struct EVTArray {
std::vector<EVT> VTs;
EVTArray() {
VTs.reserve(MVT::LAST_VALUETYPE);
for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
VTs.push_back(MVT((MVT::SimpleValueType)i));
}
};
} // end anonymous namespace
static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
static ManagedStatic<EVTArray> SimpleVTArray;
static ManagedStatic<sys::SmartMutex<true>> VTMutex;
/// getValueTypeList - Return a pointer to the specified value type.
///
const EVT *SDNode::getValueTypeList(EVT VT) {
if (VT.isExtended()) {
sys::SmartScopedLock<true> Lock(*VTMutex);
return &(*EVTs->insert(VT).first);
} else {
assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
"Value type out of range!");
return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
}
}
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
// TODO: Only iterate over uses of a given value of the node
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
if (UI.getUse().getResNo() == Value) {
if (NUses == 0)
return false;
--NUses;
}
}
// Found exactly the right number of uses?
return NUses == 0;
}
/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
if (UI.getUse().getResNo() == Value)
return true;
return false;
}
/// isOnlyUserOf - Return true if this node is the only use of N.
bool SDNode::isOnlyUserOf(const SDNode *N) const {
bool Seen = false;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDNode *User = *I;
if (User == this)
Seen = true;
else
return false;
}
return Seen;
}
/// Return true if the only users of N are contained in Nodes.
bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
bool Seen = false;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDNode *User = *I;
if (llvm::any_of(Nodes,
[&User](const SDNode *Node) { return User == Node; }))
Seen = true;
else
return false;
}
return Seen;
}
/// isOperand - Return true if this node is an operand of N.
bool SDValue::isOperandOf(const SDNode *N) const {
for (const SDValue &Op : N->op_values())
if (*this == Op)
return true;
return false;
}
bool SDNode::isOperandOf(const SDNode *N) const {
for (const SDValue &Op : N->op_values())
if (this == Op.getNode())
return true;
return false;
}
/// reachesChainWithoutSideEffects - Return true if this operand (which must
/// be a chain) reaches the specified operand without crossing any
/// side-effecting instructions on any chain path. In practice, this looks
/// through token factors and non-volatile loads. In order to remain efficient,
/// this only looks a couple of nodes in, it does not do an exhaustive search.
///
/// Note that we only need to examine chains when we're searching for
/// side-effects; SelectionDAG requires that all side-effects are represented
/// by chains, even if another operand would force a specific ordering. This
/// constraint is necessary to allow transformations like splitting loads.
bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
unsigned Depth) const {
if (*this == Dest) return true;
// Don't search too deeply, we just want to be able to see through
// TokenFactor's etc.
if (Depth == 0) return false;
// If this is a token factor, all inputs to the TF happen in parallel.
if (getOpcode() == ISD::TokenFactor) {
// First, try a shallow search.
if (is_contained((*this)->ops(), Dest)) {
// We found the chain we want as an operand of this TokenFactor.
// Essentially, we reach the chain without side-effects if we could
// serialize the TokenFactor into a simple chain of operations with
// Dest as the last operation. This is automatically true if the
// chain has one use: there are no other ordering constraints.
// If the chain has more than one use, we give up: some other
// use of Dest might force a side-effect between Dest and the current
// node.
if (Dest.hasOneUse())
return true;
}
// Next, try a deep search: check whether every operand of the TokenFactor
// reaches Dest.
return llvm::all_of((*this)->ops(), [=](SDValue Op) {
return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
});
}
// Loads don't have side effects, look through them.
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
if (!Ld->isVolatile())
return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
}
return false;
}
bool SDNode::hasPredecessor(const SDNode *N) const {
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Worklist.push_back(this);
return hasPredecessorHelper(N, Visited, Worklist);
}
void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
this->Flags.intersectWith(Flags);
}
SDValue
SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
ArrayRef<ISD::NodeType> CandidateBinOps) {
// The pattern must end in an extract from index 0.
if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isNullConstant(Extract->getOperand(1)))
return SDValue();
SDValue Op = Extract->getOperand(0);
unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
// Match against one of the candidate binary ops.
if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
return Op.getOpcode() == unsigned(BinOp);
}))
return SDValue();
// At each stage, we're looking for something that looks like:
// %s = shufflevector <8 x i32> %op, <8 x i32> undef,
// <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
// i32 undef, i32 undef, i32 undef, i32 undef>
// %a = binop <8 x i32> %op, %s
// Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
// we expect something like:
// <4,5,6,7,u,u,u,u>
// <2,3,u,u,u,u,u,u>
// <1,u,u,u,u,u,u,u>
unsigned CandidateBinOp = Op.getOpcode();
for (unsigned i = 0; i < Stages; ++i) {
if (Op.getOpcode() != CandidateBinOp)
return SDValue();
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
if (Shuffle) {
Op = Op1;
} else {
Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
Op = Op0;
}
// The first operand of the shuffle should be the same as the other operand
// of the binop.
if (!Shuffle || Shuffle->getOperand(0) != Op)
return SDValue();
// Verify the shuffle has the expected (at this stage of the pyramid) mask.
for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
return SDValue();
}
BinOp = (ISD::NodeType)CandidateBinOp;
return Op;
}
SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
assert(N->getNumValues() == 1 &&
"Can't unroll a vector with multiple results!");
EVT VT = N->getValueType(0);
unsigned NE = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDLoc dl(N);
SmallVector<SDValue, 8> Scalars;
SmallVector<SDValue, 4> Operands(N->getNumOperands());
// If ResNE is 0, fully unroll the vector op.
if (ResNE == 0)
ResNE = NE;
else if (NE > ResNE)
NE = ResNE;
unsigned i;
for (i= 0; i != NE; ++i) {
for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
SDValue Operand = N->getOperand(j);
EVT OperandVT = Operand.getValueType();
if (OperandVT.isVector()) {
// A vector operand; extract a single element.
EVT OperandEltVT = OperandVT.getVectorElementType();
Operands[j] =
getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
} else {
// A scalar operand; just use it as is.
Operands[j] = Operand;
}
}
switch (N->getOpcode()) {
default: {
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
N->getFlags()));
break;
}
case ISD::VSELECT:
Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
getShiftAmountOperand(Operands[0].getValueType(),
Operands[1])));
break;
case ISD::SIGN_EXTEND_INREG:
case ISD::FP_ROUND_INREG: {
EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
Operands[0],
getValueType(ExtVT)));
}
}
}
for (; i < ResNE; ++i)
Scalars.push_back(getUNDEF(EltVT));
EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
return getBuildVector(VecVT, dl, Scalars);
}
bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
LoadSDNode *Base,
unsigned Bytes,
int Dist) const {
if (LD->isVolatile() || Base->isVolatile())
return false;
if (LD->isIndexed() || Base->isIndexed())
return false;
if (LD->getChain() != Base->getChain())
return false;
EVT VT = LD->getValueType(0);
if (VT.getSizeInBits() / 8 != Bytes)
return false;
auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
auto LocDecomp = BaseIndexOffset::match(LD, *this);
int64_t Offset = 0;
if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
return (Dist * Bytes == Offset);
return false;
}
/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
/// it cannot be inferred.
unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
// If this is a GlobalAddress + cst, return the alignment.
const GlobalValue *GV;
int64_t GVOffset = 0;
if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
KnownBits Known(IdxWidth);
llvm::computeKnownBits(GV, Known, getDataLayout());
unsigned AlignBits = Known.countMinTrailingZeros();
unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
if (Align)
return MinAlign(Align, GVOffset);
}
// If this is a direct reference to a stack slot, use information about the
// stack slot's alignment.
int FrameIdx = 1 << 31;
int64_t FrameOffset = 0;
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
FrameIdx = FI->getIndex();
} else if (isBaseWithConstantOffset(Ptr) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
// Handle FI+Cst
FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
FrameOffset = Ptr.getConstantOperandVal(1);
}
if (FrameIdx != (1 << 31)) {
const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
FrameOffset);
return FIInfoAlign;
}
return 0;
}
/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split (or expanded) into two not necessarily identical pieces.
std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
// Currently all types are split in half.
EVT LoVT, HiVT;
if (!VT.isVector())
LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
else
LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
return std::make_pair(LoVT, HiVT);
}
/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
/// low/high part.
std::pair<SDValue, SDValue>
SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
const EVT &HiVT) {
assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
N.getValueType().getVectorNumElements() &&
"More vector elements requested than available!");
SDValue Lo, Hi;
Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
getConstant(LoVT.getVectorNumElements(), DL,
TLI->getVectorIdxTy(getDataLayout())));
return std::make_pair(Lo, Hi);
}
void SelectionDAG::ExtractVectorElements(SDValue Op,
SmallVectorImpl<SDValue> &Args,
unsigned Start, unsigned Count) {
EVT VT = Op.getValueType();
if (Count == 0)
Count = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
SDLoc SL(Op);
for (unsigned i = Start, e = Start + Count; i != e; ++i) {
Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Op, getConstant(i, SL, IdxTy)));
}
}
// getAddressSpace - Return the address space this GlobalAddress belongs to.
unsigned GlobalAddressSDNode::getAddressSpace() const {
return getGlobal()->getType()->getAddressSpace();
}
Type *ConstantPoolSDNode::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
unsigned &SplatBitSize,
bool &HasAnyUndefs,
unsigned MinSplatBits,
bool IsBigEndian) const {
EVT VT = getValueType(0);
assert(VT.isVector() && "Expected a vector type");
unsigned VecWidth = VT.getSizeInBits();
if (MinSplatBits > VecWidth)
return false;
// FIXME: The widths are based on this node's type, but build vectors can
// truncate their operands.
SplatValue = APInt(VecWidth, 0);
SplatUndef = APInt(VecWidth, 0);
// Get the bits. Bits with undefined values (when the corresponding element
// of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
// in SplatValue. If any of the values are not constant, give up and return
// false.
unsigned int NumOps = getNumOperands();
assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
unsigned EltWidth = VT.getScalarSizeInBits();
for (unsigned j = 0; j < NumOps; ++j) {
unsigned i = IsBigEndian ? NumOps - 1 - j : j;
SDValue OpVal = getOperand(i);
unsigned BitPos = j * EltWidth;
if (OpVal.isUndef())
SplatUndef.setBits(BitPos, BitPos + EltWidth);
else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
else
return false;
}
// The build_vector is all constants or undefs. Find the smallest element
// size that splats the vector.
HasAnyUndefs = (SplatUndef != 0);
// FIXME: This does not work for vectors with elements less than 8 bits.
while (VecWidth > 8) {
unsigned HalfSize = VecWidth / 2;
APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
APInt LowValue = SplatValue.trunc(HalfSize);
APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
APInt LowUndef = SplatUndef.trunc(HalfSize);
// If the two halves do not match (ignoring undef bits), stop here.
if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
MinSplatBits > HalfSize)
break;
SplatValue = HighValue | LowValue;
SplatUndef = HighUndef & LowUndef;
VecWidth = HalfSize;
}
SplatBitSize = VecWidth;
return true;
}
SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
if (UndefElements) {
UndefElements->clear();
UndefElements->resize(getNumOperands());
}
SDValue Splatted;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
SDValue Op = getOperand(i);
if (Op.isUndef()) {
if (UndefElements)
(*UndefElements)[i] = true;
} else if (!Splatted) {
Splatted = Op;
} else if (Splatted != Op) {
return SDValue();
}
}
if (!Splatted) {
assert(getOperand(0).isUndef() &&
"Can only have a splat without a constant for all undefs.");
return getOperand(0);
}
return Splatted;
}
ConstantSDNode *
BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
}
ConstantFPSDNode *
BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
}
int32_t
BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
uint32_t BitWidth) const {
if (ConstantFPSDNode *CN =
dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
bool IsExact;
APSInt IntVal(BitWidth);
const APFloat &APF = CN->getValueAPF();
if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
APFloat::opOK ||
!IsExact)
return -1;
return IntVal.exactLogBase2();
}
return -1;
}
bool BuildVectorSDNode::isConstant() const {
for (const SDValue &Op : op_values()) {
unsigned Opc = Op.getOpcode();
if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
return false;
}
return true;
}
bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
// Find the first non-undef value in the shuffle mask.
unsigned i, e;
for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
/* search */;
assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
// Make sure all remaining elements are either undef or the same as the first
// non-undef value.
for (int Idx = Mask[i]; i != e; ++i)
if (Mask[i] >= 0 && Mask[i] != Idx)
return false;
return true;
}
// Returns the SDNode if it is a constant integer BuildVector
// or constant integer.
SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
if (isa<ConstantSDNode>(N))
return N.getNode();
if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
return N.getNode();
// Treat a GlobalAddress supporting constant offset folding as a
// constant integer.
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
if (GA->getOpcode() == ISD::GlobalAddress &&
TLI->isOffsetFoldingLegal(GA))
return GA;
return nullptr;
}
SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
if (isa<ConstantFPSDNode>(N))
return N.getNode();
if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
return N.getNode();
return nullptr;
}
void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
assert(!Node->OperandList && "Node already has operands");
assert(std::numeric_limits<decltype(SDNode::NumOperands)>::max() >
Vals.size() &&
"too many operands to fit into SDNode");
SDUse *Ops = OperandRecycler.allocate(
ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
bool IsDivergent = false;
for (unsigned I = 0; I != Vals.size(); ++I) {
Ops[I].setUser(Node);
Ops[I].setInitial(Vals[I]);
if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
}
Node->NumOperands = Vals.size();
Node->OperandList = Ops;
IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
if (!TLI->isSDNodeAlwaysUniform(Node))
Node->SDNodeBits.IsDivergent = IsDivergent;
checkForCycles(Node);
}
#ifndef NDEBUG
static void checkForCyclesHelper(const SDNode *N,
SmallPtrSetImpl<const SDNode*> &Visited,
SmallPtrSetImpl<const SDNode*> &Checked,
const llvm::SelectionDAG *DAG) {
// If this node has already been checked, don't check it again.
if (Checked.count(N))
return;
// If a node has already been visited on this depth-first walk, reject it as
// a cycle.
if (!Visited.insert(N).second) {
errs() << "Detected cycle in SelectionDAG\n";
dbgs() << "Offending node:\n";
N->dumprFull(DAG); dbgs() << "\n";
abort();
}
for (const SDValue &Op : N->op_values())
checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
Checked.insert(N);
Visited.erase(N);
}
#endif
void llvm::checkForCycles(const llvm::SDNode *N,
const llvm::SelectionDAG *DAG,
bool force) {
#ifndef NDEBUG
bool check = force;
#ifdef EXPENSIVE_CHECKS
check = true;
#endif // EXPENSIVE_CHECKS
if (check) {
assert(N && "Checking nonexistent SDNode");
SmallPtrSet<const SDNode*, 32> visited;
SmallPtrSet<const SDNode*, 32> checked;
checkForCyclesHelper(N, visited, checked, DAG);
}
#endif // !NDEBUG
}
void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
checkForCycles(DAG->getRoot().getNode(), DAG, force);
}