llvm-project/clang-tools-extra/clangd/TUScheduler.cpp

539 lines
19 KiB
C++

//===--- TUScheduler.cpp -----------------------------------------*-C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// For each file, managed by TUScheduler, we create a single ASTWorker that
// manages an AST for that file. All operations that modify or read the AST are
// run on a separate dedicated thread asynchronously in FIFO order.
//
// We start processing each update immediately after we receive it. If two or
// more updates come subsequently without reads in-between, we attempt to drop
// an older one to not waste time building the ASTs we don't need.
//
// The processing thread of the ASTWorker is also responsible for building the
// preamble. However, unlike AST, the same preamble can be read concurrently, so
// we run each of async preamble reads on its own thread.
//
// To limit the concurrent load that clangd produces we mantain a semaphore that
// keeps more than a fixed number of threads from running concurrently.
//
// Rationale for cancelling updates.
// LSP clients can send updates to clangd on each keystroke. Some files take
// significant time to parse (e.g. a few seconds) and clangd can get starved by
// the updates to those files. Therefore we try to process only the last update,
// if possible.
// Our current strategy to do that is the following:
// - For each update we immediately schedule rebuild of the AST.
// - Rebuild of the AST checks if it was cancelled before doing any actual work.
// If it was, it does not do an actual rebuild, only reports llvm::None to the
// callback
// - When adding an update, we cancel the last update in the queue if it didn't
// have any reads.
// There is probably a optimal ways to do that. One approach we might take is
// the following:
// - For each update we remember the pending inputs, but delay rebuild of the
// AST for some timeout.
// - If subsequent updates come before rebuild was started, we replace the
// pending inputs and reset the timer.
// - If any reads of the AST are scheduled, we start building the AST
// immediately.
#include "TUScheduler.h"
#include "Logger.h"
#include "Trace.h"
#include "clang/Frontend/PCHContainerOperations.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Path.h"
#include <memory>
#include <queue>
#include <thread>
namespace clang {
namespace clangd {
using std::chrono::steady_clock;
namespace {
class ASTWorkerHandle;
/// Owns one instance of the AST, schedules updates and reads of it.
/// Also responsible for building and providing access to the preamble.
/// Each ASTWorker processes the async requests sent to it on a separate
/// dedicated thread.
/// The ASTWorker that manages the AST is shared by both the processing thread
/// and the TUScheduler. The TUScheduler should discard an ASTWorker when
/// remove() is called, but its thread may be busy and we don't want to block.
/// So the workers are accessed via an ASTWorkerHandle. Destroying the handle
/// signals the worker to exit its run loop and gives up shared ownership of the
/// worker.
class ASTWorker {
friend class ASTWorkerHandle;
ASTWorker(llvm::StringRef File, Semaphore &Barrier, CppFile AST, bool RunSync,
steady_clock::duration UpdateDebounce);
public:
/// Create a new ASTWorker and return a handle to it.
/// The processing thread is spawned using \p Tasks. However, when \p Tasks
/// is null, all requests will be processed on the calling thread
/// synchronously instead. \p Barrier is acquired when processing each
/// request, it is be used to limit the number of actively running threads.
static ASTWorkerHandle Create(llvm::StringRef File, AsyncTaskRunner *Tasks,
Semaphore &Barrier, CppFile AST,
steady_clock::duration UpdateDebounce);
~ASTWorker();
void update(ParseInputs Inputs, WantDiagnostics,
UniqueFunction<void(std::vector<DiagWithFixIts>)> OnUpdated);
void runWithAST(llvm::StringRef Name,
UniqueFunction<void(llvm::Expected<InputsAndAST>)> Action);
bool blockUntilIdle(Deadline Timeout) const;
std::shared_ptr<const PreambleData> getPossiblyStalePreamble() const;
std::size_t getUsedBytes() const;
private:
// Must be called exactly once on processing thread. Will return after
// stop() is called on a separate thread and all pending requests are
// processed.
void run();
/// Signal that run() should finish processing pending requests and exit.
void stop();
/// Adds a new task to the end of the request queue.
void startTask(llvm::StringRef Name, UniqueFunction<void()> Task,
llvm::Optional<WantDiagnostics> UpdateType);
/// Determines the next action to perform.
/// All actions that should never run are disarded.
/// Returns a deadline for the next action. If it's expired, run now.
/// scheduleLocked() is called again at the deadline, or if requests arrive.
Deadline scheduleLocked();
/// Should the first task in the queue be skipped instead of run?
bool shouldSkipHeadLocked() const;
struct Request {
UniqueFunction<void()> Action;
std::string Name;
steady_clock::time_point AddTime;
Context Ctx;
llvm::Optional<WantDiagnostics> UpdateType;
};
const std::string File;
const bool RunSync;
// Time to wait after an update to see whether another update obsoletes it.
const steady_clock::duration UpdateDebounce;
Semaphore &Barrier;
// AST and FileInputs are only accessed on the processing thread from run().
CppFile AST;
// Inputs, corresponding to the current state of AST.
ParseInputs FileInputs;
// Guards members used by both TUScheduler and the worker thread.
mutable std::mutex Mutex;
std::shared_ptr<const PreambleData> LastBuiltPreamble; /* GUARDED_BY(Mutex) */
// Result of getUsedBytes() after the last rebuild or read of AST.
std::size_t LastASTSize; /* GUARDED_BY(Mutex) */
// Set to true to signal run() to finish processing.
bool Done; /* GUARDED_BY(Mutex) */
std::deque<Request> Requests; /* GUARDED_BY(Mutex) */
mutable std::condition_variable RequestsCV;
};
/// A smart-pointer-like class that points to an active ASTWorker.
/// In destructor, signals to the underlying ASTWorker that no new requests will
/// be sent and the processing loop may exit (after running all pending
/// requests).
class ASTWorkerHandle {
friend class ASTWorker;
ASTWorkerHandle(std::shared_ptr<ASTWorker> Worker)
: Worker(std::move(Worker)) {
assert(this->Worker);
}
public:
ASTWorkerHandle(const ASTWorkerHandle &) = delete;
ASTWorkerHandle &operator=(const ASTWorkerHandle &) = delete;
ASTWorkerHandle(ASTWorkerHandle &&) = default;
ASTWorkerHandle &operator=(ASTWorkerHandle &&) = default;
~ASTWorkerHandle() {
if (Worker)
Worker->stop();
}
ASTWorker &operator*() {
assert(Worker && "Handle was moved from");
return *Worker;
}
ASTWorker *operator->() {
assert(Worker && "Handle was moved from");
return Worker.get();
}
/// Returns an owning reference to the underlying ASTWorker that can outlive
/// the ASTWorkerHandle. However, no new requests to an active ASTWorker can
/// be schedule via the returned reference, i.e. only reads of the preamble
/// are possible.
std::shared_ptr<const ASTWorker> lock() { return Worker; }
private:
std::shared_ptr<ASTWorker> Worker;
};
ASTWorkerHandle ASTWorker::Create(llvm::StringRef File, AsyncTaskRunner *Tasks,
Semaphore &Barrier, CppFile AST,
steady_clock::duration UpdateDebounce) {
std::shared_ptr<ASTWorker> Worker(new ASTWorker(
File, Barrier, std::move(AST), /*RunSync=*/!Tasks, UpdateDebounce));
if (Tasks)
Tasks->runAsync("worker:" + llvm::sys::path::filename(File),
[Worker]() { Worker->run(); });
return ASTWorkerHandle(std::move(Worker));
}
ASTWorker::ASTWorker(llvm::StringRef File, Semaphore &Barrier, CppFile AST,
bool RunSync, steady_clock::duration UpdateDebounce)
: File(File), RunSync(RunSync), UpdateDebounce(UpdateDebounce),
Barrier(Barrier), AST(std::move(AST)), Done(false) {
if (RunSync)
return;
}
ASTWorker::~ASTWorker() {
#ifndef NDEBUG
std::lock_guard<std::mutex> Lock(Mutex);
assert(Done && "handle was not destroyed");
assert(Requests.empty() && "unprocessed requests when destroying ASTWorker");
#endif
}
void ASTWorker::update(
ParseInputs Inputs, WantDiagnostics WantDiags,
UniqueFunction<void(std::vector<DiagWithFixIts>)> OnUpdated) {
auto Task = [=](decltype(OnUpdated) OnUpdated) mutable {
FileInputs = Inputs;
auto Diags = AST.rebuild(std::move(Inputs));
{
std::lock_guard<std::mutex> Lock(Mutex);
if (AST.getPreamble())
LastBuiltPreamble = AST.getPreamble();
LastASTSize = AST.getUsedBytes();
}
// We want to report the diagnostics even if this update was cancelled.
// It seems more useful than making the clients wait indefinitely if they
// spam us with updates.
if (Diags && WantDiags != WantDiagnostics::No)
OnUpdated(std::move(*Diags));
};
startTask("Update", Bind(Task, std::move(OnUpdated)), WantDiags);
}
void ASTWorker::runWithAST(
llvm::StringRef Name,
UniqueFunction<void(llvm::Expected<InputsAndAST>)> Action) {
auto Task = [=](decltype(Action) Action) {
ParsedAST *ActualAST = AST.getAST();
if (!ActualAST) {
Action(llvm::make_error<llvm::StringError>("invalid AST",
llvm::errc::invalid_argument));
return;
}
Action(InputsAndAST{FileInputs, *ActualAST});
// Size of the AST might have changed after reads too, e.g. if some decls
// were deserialized from preamble.
std::lock_guard<std::mutex> Lock(Mutex);
LastASTSize = ActualAST->getUsedBytes();
};
startTask(Name, Bind(Task, std::move(Action)),
/*UpdateType=*/llvm::None);
}
std::shared_ptr<const PreambleData>
ASTWorker::getPossiblyStalePreamble() const {
std::lock_guard<std::mutex> Lock(Mutex);
return LastBuiltPreamble;
}
std::size_t ASTWorker::getUsedBytes() const {
std::lock_guard<std::mutex> Lock(Mutex);
return LastASTSize;
}
void ASTWorker::stop() {
{
std::lock_guard<std::mutex> Lock(Mutex);
assert(!Done && "stop() called twice");
Done = true;
}
RequestsCV.notify_all();
}
void ASTWorker::startTask(llvm::StringRef Name, UniqueFunction<void()> Task,
llvm::Optional<WantDiagnostics> UpdateType) {
if (RunSync) {
assert(!Done && "running a task after stop()");
trace::Span Tracer(Name + ":" + llvm::sys::path::filename(File));
Task();
return;
}
{
std::lock_guard<std::mutex> Lock(Mutex);
assert(!Done && "running a task after stop()");
Requests.push_back({std::move(Task), Name, steady_clock::now(),
Context::current().clone(), UpdateType});
}
RequestsCV.notify_all();
}
void ASTWorker::run() {
while (true) {
Request Req;
{
std::unique_lock<std::mutex> Lock(Mutex);
for (auto Wait = scheduleLocked(); !Wait.expired();
Wait = scheduleLocked()) {
if (Done) {
if (Requests.empty())
return;
else // Even though Done is set, finish pending requests.
break; // However, skip delays to shutdown fast.
}
// Tracing: we have a next request, attribute this sleep to it.
Optional<WithContext> Ctx;
Optional<trace::Span> Tracer;
if (!Requests.empty()) {
Ctx.emplace(Requests.front().Ctx.clone());
Tracer.emplace("Debounce");
SPAN_ATTACH(*Tracer, "next_request", Requests.front().Name);
if (!(Wait == Deadline::infinity()))
SPAN_ATTACH(*Tracer, "sleep_ms",
std::chrono::duration_cast<std::chrono::milliseconds>(
Wait.time() - steady_clock::now())
.count());
}
wait(Lock, RequestsCV, Wait);
}
Req = std::move(Requests.front());
// Leave it on the queue for now, so waiters don't see an empty queue.
} // unlock Mutex
{
std::lock_guard<Semaphore> BarrierLock(Barrier);
WithContext Guard(std::move(Req.Ctx));
trace::Span Tracer(Req.Name);
Req.Action();
}
{
std::lock_guard<std::mutex> Lock(Mutex);
Requests.pop_front();
}
RequestsCV.notify_all();
}
}
Deadline ASTWorker::scheduleLocked() {
if (Requests.empty())
return Deadline::infinity(); // Wait for new requests.
while (shouldSkipHeadLocked())
Requests.pop_front();
assert(!Requests.empty() && "skipped the whole queue");
// Some updates aren't dead yet, but never end up being used.
// e.g. the first keystroke is live until obsoleted by the second.
// We debounce "maybe-unused" writes, sleeping 500ms in case they become dead.
// But don't delay reads (including updates where diagnostics are needed).
for (const auto &R : Requests)
if (R.UpdateType == None || R.UpdateType == WantDiagnostics::Yes)
return Deadline::zero();
// Front request needs to be debounced, so determine when we're ready.
Deadline D(Requests.front().AddTime + UpdateDebounce);
return D;
}
// Returns true if Requests.front() is a dead update that can be skipped.
bool ASTWorker::shouldSkipHeadLocked() const {
assert(!Requests.empty());
auto Next = Requests.begin();
auto UpdateType = Next->UpdateType;
if (!UpdateType) // Only skip updates.
return false;
++Next;
// An update is live if its AST might still be read.
// That is, if it's not immediately followed by another update.
if (Next == Requests.end() || !Next->UpdateType)
return false;
// The other way an update can be live is if its diagnostics might be used.
switch (*UpdateType) {
case WantDiagnostics::Yes:
return false; // Always used.
case WantDiagnostics::No:
return true; // Always dead.
case WantDiagnostics::Auto:
// Used unless followed by an update that generates diagnostics.
for (; Next != Requests.end(); ++Next)
if (Next->UpdateType == WantDiagnostics::Yes ||
Next->UpdateType == WantDiagnostics::Auto)
return true; // Prefer later diagnostics.
return false;
}
llvm_unreachable("Unknown WantDiagnostics");
}
bool ASTWorker::blockUntilIdle(Deadline Timeout) const {
std::unique_lock<std::mutex> Lock(Mutex);
return wait(Lock, RequestsCV, Timeout, [&] { return Requests.empty(); });
}
} // namespace
unsigned getDefaultAsyncThreadsCount() {
unsigned HardwareConcurrency = std::thread::hardware_concurrency();
// C++ standard says that hardware_concurrency()
// may return 0, fallback to 1 worker thread in
// that case.
if (HardwareConcurrency == 0)
return 1;
return HardwareConcurrency;
}
struct TUScheduler::FileData {
/// Latest inputs, passed to TUScheduler::update().
ParseInputs Inputs;
ASTWorkerHandle Worker;
};
TUScheduler::TUScheduler(unsigned AsyncThreadsCount,
bool StorePreamblesInMemory,
ASTParsedCallback ASTCallback,
steady_clock::duration UpdateDebounce)
: StorePreamblesInMemory(StorePreamblesInMemory),
PCHOps(std::make_shared<PCHContainerOperations>()),
ASTCallback(std::move(ASTCallback)), Barrier(AsyncThreadsCount),
UpdateDebounce(UpdateDebounce) {
if (0 < AsyncThreadsCount) {
PreambleTasks.emplace();
WorkerThreads.emplace();
}
}
TUScheduler::~TUScheduler() {
// Notify all workers that they need to stop.
Files.clear();
// Wait for all in-flight tasks to finish.
if (PreambleTasks)
PreambleTasks->wait();
if (WorkerThreads)
WorkerThreads->wait();
}
bool TUScheduler::blockUntilIdle(Deadline D) const {
for (auto &File : Files)
if (!File.getValue()->Worker->blockUntilIdle(D))
return false;
if (PreambleTasks)
if (!PreambleTasks->wait(D))
return false;
return true;
}
void TUScheduler::update(
PathRef File, ParseInputs Inputs, WantDiagnostics WantDiags,
UniqueFunction<void(std::vector<DiagWithFixIts>)> OnUpdated) {
std::unique_ptr<FileData> &FD = Files[File];
if (!FD) {
// Create a new worker to process the AST-related tasks.
ASTWorkerHandle Worker = ASTWorker::Create(
File, WorkerThreads ? WorkerThreads.getPointer() : nullptr, Barrier,
CppFile(File, StorePreamblesInMemory, PCHOps, ASTCallback),
UpdateDebounce);
FD = std::unique_ptr<FileData>(new FileData{Inputs, std::move(Worker)});
} else {
FD->Inputs = Inputs;
}
FD->Worker->update(std::move(Inputs), WantDiags, std::move(OnUpdated));
}
void TUScheduler::remove(PathRef File) {
bool Removed = Files.erase(File);
if (!Removed)
log("Trying to remove file from TUScheduler that is not tracked. File:" +
File);
}
void TUScheduler::runWithAST(
llvm::StringRef Name, PathRef File,
UniqueFunction<void(llvm::Expected<InputsAndAST>)> Action) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<llvm::StringError>(
"trying to get AST for non-added document",
llvm::errc::invalid_argument));
return;
}
It->second->Worker->runWithAST(Name, std::move(Action));
}
void TUScheduler::runWithPreamble(
llvm::StringRef Name, PathRef File,
UniqueFunction<void(llvm::Expected<InputsAndPreamble>)> Action) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<llvm::StringError>(
"trying to get preamble for non-added document",
llvm::errc::invalid_argument));
return;
}
if (!PreambleTasks) {
trace::Span Tracer(Name);
SPAN_ATTACH(Tracer, "file", File);
std::shared_ptr<const PreambleData> Preamble =
It->second->Worker->getPossiblyStalePreamble();
Action(InputsAndPreamble{It->second->Inputs, Preamble.get()});
return;
}
ParseInputs InputsCopy = It->second->Inputs;
std::shared_ptr<const ASTWorker> Worker = It->second->Worker.lock();
auto Task = [InputsCopy, Worker, this](std::string Name, std::string File,
Context Ctx,
decltype(Action) Action) mutable {
std::lock_guard<Semaphore> BarrierLock(Barrier);
WithContext Guard(std::move(Ctx));
trace::Span Tracer(Name);
SPAN_ATTACH(Tracer, "file", File);
std::shared_ptr<const PreambleData> Preamble =
Worker->getPossiblyStalePreamble();
Action(InputsAndPreamble{InputsCopy, Preamble.get()});
};
PreambleTasks->runAsync("task:" + llvm::sys::path::filename(File),
Bind(Task, std::string(Name), std::string(File),
Context::current().clone(), std::move(Action)));
}
std::vector<std::pair<Path, std::size_t>>
TUScheduler::getUsedBytesPerFile() const {
std::vector<std::pair<Path, std::size_t>> Result;
Result.reserve(Files.size());
for (auto &&PathAndFile : Files)
Result.push_back(
{PathAndFile.first(), PathAndFile.second->Worker->getUsedBytes()});
return Result;
}
} // namespace clangd
} // namespace clang