llvm-project/llvm/tools/lli/OrcLazyJIT.h

253 lines
9.3 KiB
C++

//===- OrcLazyJIT.h - Basic Orc-based JIT for lazy execution ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Simple Orc-based JIT. Uses the compile-on-demand layer to break up and
// lazily compile modules.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLI_ORCLAZYJIT_H
#define LLVM_TOOLS_LLI_ORCLAZYJIT_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <functional>
#include <memory>
#include <set>
#include <string>
#include <vector>
namespace llvm {
class OrcLazyJIT {
public:
using CompileCallbackMgr = orc::JITCompileCallbackManager;
using ObjLayerT = orc::RTDyldObjectLinkingLayer;
using CompileLayerT = orc::IRCompileLayer<ObjLayerT, orc::SimpleCompiler>;
using TransformFtor =
std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>;
using IRDumpLayerT = orc::IRTransformLayer<CompileLayerT, TransformFtor>;
using CODLayerT = orc::CompileOnDemandLayer<IRDumpLayerT, CompileCallbackMgr>;
using IndirectStubsManagerBuilder = CODLayerT::IndirectStubsManagerBuilderT;
OrcLazyJIT(std::unique_ptr<TargetMachine> TM,
std::unique_ptr<CompileCallbackMgr> CCMgr,
IndirectStubsManagerBuilder IndirectStubsMgrBuilder,
bool InlineStubs)
: TM(std::move(TM)),
DL(this->TM->createDataLayout()),
CCMgr(std::move(CCMgr)),
ObjectLayer(ES,
[this](orc::VModuleKey K) {
auto ResolverI = Resolvers.find(K);
assert(ResolverI != Resolvers.end() &&
"Missing resolver for module K");
auto Resolver = std::move(ResolverI->second);
Resolvers.erase(ResolverI);
return ObjLayerT::Resources{
std::make_shared<SectionMemoryManager>(),
std::move(Resolver)};
}),
CompileLayer(ObjectLayer, orc::SimpleCompiler(*this->TM)),
IRDumpLayer(CompileLayer, createDebugDumper()),
CODLayer(
ES, IRDumpLayer,
[&](orc::VModuleKey K) {
auto ResolverI = Resolvers.find(K);
assert(ResolverI != Resolvers.end() &&
"Missing resolver for module K");
auto Resolver = std::move(ResolverI->second);
Resolvers.erase(ResolverI);
return Resolver;
},
[&](orc::VModuleKey K, std::shared_ptr<orc::SymbolResolver> R) {
assert(!Resolvers.count(K) && "Resolver already present");
Resolvers[K] = std::move(R);
},
extractSingleFunction, *this->CCMgr,
std::move(IndirectStubsMgrBuilder), InlineStubs),
CXXRuntimeOverrides(
[this](const std::string &S) { return mangle(S); }) {}
~OrcLazyJIT() {
// Run any destructors registered with __cxa_atexit.
CXXRuntimeOverrides.runDestructors();
// Run any IR destructors.
for (auto &DtorRunner : IRStaticDestructorRunners)
if (auto Err = DtorRunner.runViaLayer(CODLayer)) {
// FIXME: OrcLazyJIT should probably take a "shutdownError" callback to
// report these errors on.
report_fatal_error(std::move(Err));
}
}
Error addModule(std::unique_ptr<Module> M) {
if (M->getDataLayout().isDefault())
M->setDataLayout(DL);
// Rename, bump linkage and record static constructors and destructors.
// We have to do this before we hand over ownership of the module to the
// JIT.
std::vector<std::string> CtorNames, DtorNames;
{
unsigned CtorId = 0, DtorId = 0;
for (auto Ctor : orc::getConstructors(*M)) {
std::string NewCtorName = ("$static_ctor." + Twine(CtorId++)).str();
Ctor.Func->setName(NewCtorName);
Ctor.Func->setLinkage(GlobalValue::ExternalLinkage);
Ctor.Func->setVisibility(GlobalValue::HiddenVisibility);
CtorNames.push_back(mangle(NewCtorName));
}
for (auto Dtor : orc::getDestructors(*M)) {
std::string NewDtorName = ("$static_dtor." + Twine(DtorId++)).str();
Dtor.Func->setLinkage(GlobalValue::ExternalLinkage);
Dtor.Func->setVisibility(GlobalValue::HiddenVisibility);
DtorNames.push_back(mangle(Dtor.Func->getName()));
Dtor.Func->setName(NewDtorName);
}
}
// Symbol resolution order:
// 1) Search the JIT symbols.
// 2) Check for C++ runtime overrides.
// 3) Search the host process (LLI)'s symbol table.
if (!ModulesKey) {
auto LegacyLookupInDylib = [this](const std::string &Name) -> JITSymbol {
if (auto Sym = CODLayer.findSymbol(Name, true))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
return CXXRuntimeOverrides.searchOverrides(Name);
};
auto LegacyLookup =
[LegacyLookupInDylib](const std::string &Name) -> JITSymbol {
if (auto Sym = LegacyLookupInDylib(Name))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
if (auto Addr = RTDyldMemoryManager::getSymbolAddressInProcess(Name))
return JITSymbol(Addr, JITSymbolFlags::Exported);
return nullptr;
};
ModulesKey = ES.allocateVModule();
assert(!Resolvers.count(*ModulesKey) && "Resolver already present");
Resolvers[*ModulesKey] = orc::createSymbolResolver(
[LegacyLookupInDylib](orc::SymbolFlagsMap &SymbolFlags,
const orc::SymbolNameSet &Symbols) {
auto NotFoundViaLegacyLookup = lookupFlagsWithLegacyFn(
SymbolFlags, Symbols, LegacyLookupInDylib);
if (!NotFoundViaLegacyLookup) {
logAllUnhandledErrors(NotFoundViaLegacyLookup.takeError(), errs(),
"OrcLazyJIT lookupFlags error: ");
SymbolFlags.clear();
return orc::SymbolNameSet();
}
return std::move(*NotFoundViaLegacyLookup);
},
[LegacyLookup](std::shared_ptr<orc::AsynchronousSymbolQuery> Query,
orc::SymbolNameSet Symbols) {
return lookupWithLegacyFn(*Query, Symbols, LegacyLookup);
});
// Add the module to the JIT.
if (auto Err = CODLayer.addModule(*ModulesKey, std::move(M)))
return Err;
} else if (auto Err = CODLayer.addExtraModule(*ModulesKey, std::move(M)))
return Err;
// Run the static constructors, and save the static destructor runner for
// execution when the JIT is torn down.
orc::CtorDtorRunner<CODLayerT> CtorRunner(std::move(CtorNames),
*ModulesKey);
if (auto Err = CtorRunner.runViaLayer(CODLayer))
return Err;
IRStaticDestructorRunners.emplace_back(std::move(DtorNames), *ModulesKey);
return Error::success();
}
JITSymbol findSymbol(const std::string &Name) {
return CODLayer.findSymbol(mangle(Name), true);
}
JITSymbol findSymbolIn(orc::VModuleKey K, const std::string &Name) {
return CODLayer.findSymbolIn(K, mangle(Name), true);
}
private:
std::string mangle(const std::string &Name) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
}
return MangledName;
}
static std::set<Function*> extractSingleFunction(Function &F) {
std::set<Function*> Partition;
Partition.insert(&F);
return Partition;
}
static TransformFtor createDebugDumper();
orc::SymbolStringPool SSP;
orc::ExecutionSession ES;
std::map<orc::VModuleKey, std::shared_ptr<orc::SymbolResolver>> Resolvers;
std::unique_ptr<TargetMachine> TM;
DataLayout DL;
SectionMemoryManager CCMgrMemMgr;
std::unique_ptr<CompileCallbackMgr> CCMgr;
ObjLayerT ObjectLayer;
CompileLayerT CompileLayer;
IRDumpLayerT IRDumpLayer;
CODLayerT CODLayer;
orc::LocalCXXRuntimeOverrides CXXRuntimeOverrides;
std::vector<orc::CtorDtorRunner<CODLayerT>> IRStaticDestructorRunners;
llvm::Optional<orc::VModuleKey> ModulesKey;
};
int runOrcLazyJIT(std::vector<std::unique_ptr<Module>> Ms,
const std::vector<std::string> &Args);
} // end namespace llvm
#endif // LLVM_TOOLS_LLI_ORCLAZYJIT_H