llvm-project/llvm/tools/llvm-reduce/deltas/ReduceOperandsSkip.cpp

224 lines
7.4 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ReduceOperandsSkip.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
using namespace llvm;
/// Collect all values that are directly or indirectly referenced by @p Root,
/// including Root itself. This is a BF search such that the more steps needed
/// to get to the reference, the more behind it is found in @p Collection. Each
/// step could be its own reduction, therefore we consider later values "more
/// reduced".
static SetVector<Value *> collectReferencedValues(Value *Root) {
SetVector<Value *> Refs;
std::deque<Value *> Worklist;
Worklist.push_back(Root);
while (!Worklist.empty()) {
Value *Val = Worklist.front();
Worklist.pop_front();
if (!Refs.insert(Val))
continue;
if (auto *O = dyn_cast<Operator>(Val)) {
for (Use &Op : O->operands())
Worklist.push_back(Op.get());
}
}
return Refs;
}
static bool shouldReduceOperand(Use &Op) {
Type *Ty = Op->getType();
if (Ty->isLabelTy() || Ty->isMetadataTy())
return false;
// TODO: be more precise about which GEP operands we can reduce (e.g. array
// indexes)
if (isa<GEPOperator>(Op.getUser()))
return false;
if (auto *CB = dyn_cast<CallBase>(Op.getUser())) {
if (&CB->getCalledOperandUse() == &Op)
return false;
}
return true;
}
/// Return a reduction priority for @p V. A higher values means "more reduced".
static int classifyReductivePower(Value *V) {
if (auto *C = dyn_cast<ConstantData>(V)) {
if (isa<UndefValue>(V))
return 4;
if (C->isNullValue())
return 7;
if (C->isOneValue())
return 6;
return 5;
}
if (isa<Argument>(V))
return 3;
if (isa<GlobalValue>(V))
return 2;
if (isa<Constant>(V))
return 1;
if (isa<Instruction>(V))
return -1;
return 0;
}
/// Calls @p Callback for every reduction opportunity in @p F. Used by
/// countOperands() and extractOperandsFromModule() to ensure consistency
/// between the two.
static void
opportunities(Function &F,
function_ref<void(Use &, ArrayRef<Value *>)> Callback) {
if (F.isDeclaration())
return;
// Need DominatorTree to find out whether an SSA value can be referenced.
DominatorTree DT(F);
// Return whether @p LHS is "more reduced" that @p RHS. That is, whether
// @p RHS should be preferred over @p LHS in a reduced output. This is a
// partial order, a Value may not be preferable over another.
auto IsMoreReduced = [&DT](Value *LHS, Value *RHS) -> bool {
// A value is not more reduced than itself.
if (LHS == RHS)
return false;
int ReductivePowerDiff =
classifyReductivePower(RHS) - classifyReductivePower(LHS);
if (ReductivePowerDiff != 0)
return ReductivePowerDiff < 0;
// LHS is more reduced if it is defined further up the dominance tree. In a
// chain of definitions,
//
// %a = ..
// %b = op %a
// %c = op %b
//
// every use of %b can be replaced by %a, but not by a use of %c. That is, a
// use %c can be replaced in steps first by %b, then by %a, making %a the
// "more reduced" choice that skips over more instructions.
auto *LHSInst = dyn_cast<Instruction>(LHS);
auto *RHSInst = dyn_cast<Instruction>(RHS);
if (LHSInst && RHSInst) {
if (DT.dominates(LHSInst, RHSInst))
return true;
}
// Compress the number of used arguments by prefering the first ones. Unused
// trailing argument can be removed by the arguments pass.
auto *LHSArg = dyn_cast<Argument>(LHS);
auto *RHSArg = dyn_cast<Argument>(RHS);
if (LHSArg && RHSArg) {
if (LHSArg->getArgNo() < RHSArg->getArgNo())
return true;
}
return false;
};
for (Instruction &I : instructions(&F)) {
for (Use &Op : I.operands()) {
if (!shouldReduceOperand(Op))
continue;
Value *OpVal = Op.get();
// Collect refenced values as potential replacement candidates.
SetVector<Value *> ReferencedVals = collectReferencedValues(OpVal);
// Regardless whether referenced, add the function arguments as
// replacement possibility with the goal of reducing the number of (used)
// function arguments, possibly created by the the operands-to-args.
for (Argument &Arg : F.args())
ReferencedVals.insert(&Arg);
// After all candidates have been added, it doesn't need to be a set
// anymore.
std::vector<Value *> Candidates = ReferencedVals.takeVector();
// Remove ineligible candidates.
llvm::erase_if(Candidates, [&, OpVal](Value *V) {
// Candidate value must have the same type.
if (OpVal->getType() != V->getType())
return true;
// Only consider candidates that are "more reduced" than the original
// value. This explicitly also rules out candidates with the same
// reduction power. This is to ensure that repeated invocations of this
// pass eventually reach a fixpoint without switch back and forth
// between two opportunities with the same reductive power.
return !IsMoreReduced(V, OpVal);
});
if (Candidates.empty())
continue;
// collectReferencedValues pushed the more reductive values to the end of
// the collection, but we need them at the front.
std::reverse(Candidates.begin(), Candidates.end());
// Independency of collectReferencedValues's idea of reductive power,
// ensure the the partial order of IsMoreReduced is enforced.
llvm::stable_sort(Candidates, IsMoreReduced);
Callback(Op, Candidates);
}
}
}
static void extractOperandsFromModule(Oracle &O, Module &Program) {
for (Function &F : Program.functions()) {
SmallVector<std::pair<Use *, Value *>> Replacements;
opportunities(F, [&](Use &Op, ArrayRef<Value *> Candidates) {
// Only apply the candidate the Oracle selected to keep that is the most
// reduced. Candidates with less reductive power can be interpreted as an
// intermediate step that is immediately replaced with the more reduced
// one. The number of shouldKeep() calls must be independent of the result
// of previous shouldKeep() calls to keep the total number of calls
// in-sync with what countOperands() has computed.
bool AlreadyReplaced = false;
for (Value *C : Candidates) {
bool Keep = O.shouldKeep();
if (AlreadyReplaced || Keep)
continue;
// Replacing the operand value immediately would influence the candidate
// set for the following operands. Delay it until after all candidates
// have been determined.
Replacements.push_back({&Op, C});
AlreadyReplaced = true;
}
});
for (std::pair<Use *, Value *> P : Replacements)
P.first->set(P.second);
}
}
void llvm::reduceOperandsSkipDeltaPass(TestRunner &Test) {
errs() << "*** Reducing operands by skipping over instructions ...\n";
runDeltaPass(Test, extractOperandsFromModule);
}