forked from OSchip/llvm-project
1520 lines
58 KiB
C++
1520 lines
58 KiB
C++
//===-- lib/Evaluate/tools.cpp --------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Evaluate/tools.h"
|
|
#include "flang/Common/idioms.h"
|
|
#include "flang/Evaluate/characteristics.h"
|
|
#include "flang/Evaluate/traverse.h"
|
|
#include "flang/Parser/message.h"
|
|
#include "flang/Semantics/tools.h"
|
|
#include <algorithm>
|
|
#include <variant>
|
|
|
|
using namespace Fortran::parser::literals;
|
|
|
|
namespace Fortran::evaluate {
|
|
|
|
// Can x*(a,b) be represented as (x*a,x*b)? This code duplication
|
|
// of the subexpression "x" cannot (yet?) be reliably undone by
|
|
// common subexpression elimination in lowering, so it's disabled
|
|
// here for now to avoid the risk of potential duplication of
|
|
// expensive subexpressions (e.g., large array expressions, references
|
|
// to expensive functions) in generate code.
|
|
static constexpr bool allowOperandDuplication{false};
|
|
|
|
std::optional<Expr<SomeType>> AsGenericExpr(DataRef &&ref) {
|
|
const Symbol &symbol{ref.GetLastSymbol()};
|
|
if (auto dyType{DynamicType::From(symbol)}) {
|
|
return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref));
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Expr<SomeType>> AsGenericExpr(const Symbol &symbol) {
|
|
return AsGenericExpr(DataRef{symbol});
|
|
}
|
|
|
|
Expr<SomeType> Parenthesize(Expr<SomeType> &&expr) {
|
|
return std::visit(
|
|
[&](auto &&x) {
|
|
using T = std::decay_t<decltype(x)>;
|
|
if constexpr (common::HasMember<T, TypelessExpression>) {
|
|
return expr; // no parentheses around typeless
|
|
} else if constexpr (std::is_same_v<T, Expr<SomeDerived>>) {
|
|
return AsGenericExpr(Parentheses<SomeDerived>{std::move(x)});
|
|
} else {
|
|
return std::visit(
|
|
[](auto &&y) {
|
|
using T = ResultType<decltype(y)>;
|
|
return AsGenericExpr(Parentheses<T>{std::move(y)});
|
|
},
|
|
std::move(x.u));
|
|
}
|
|
},
|
|
std::move(expr.u));
|
|
}
|
|
|
|
std::optional<DataRef> ExtractDataRef(
|
|
const ActualArgument &arg, bool intoSubstring) {
|
|
if (const Expr<SomeType> *expr{arg.UnwrapExpr()}) {
|
|
return ExtractDataRef(*expr, intoSubstring);
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
std::optional<DataRef> ExtractSubstringBase(const Substring &substring) {
|
|
return std::visit(
|
|
common::visitors{
|
|
[&](const DataRef &x) -> std::optional<DataRef> { return x; },
|
|
[&](const StaticDataObject::Pointer &) -> std::optional<DataRef> {
|
|
return std::nullopt;
|
|
},
|
|
},
|
|
substring.parent());
|
|
}
|
|
|
|
// IsVariable()
|
|
|
|
auto IsVariableHelper::operator()(const Symbol &symbol) const -> Result {
|
|
const Symbol &root{GetAssociationRoot(symbol)};
|
|
return !IsNamedConstant(root) && root.has<semantics::ObjectEntityDetails>();
|
|
}
|
|
auto IsVariableHelper::operator()(const Component &x) const -> Result {
|
|
const Symbol &comp{x.GetLastSymbol()};
|
|
return (*this)(comp) && (IsPointer(comp) || (*this)(x.base()));
|
|
}
|
|
auto IsVariableHelper::operator()(const ArrayRef &x) const -> Result {
|
|
return (*this)(x.base());
|
|
}
|
|
auto IsVariableHelper::operator()(const Substring &x) const -> Result {
|
|
return (*this)(x.GetBaseObject());
|
|
}
|
|
auto IsVariableHelper::operator()(const ProcedureDesignator &x) const
|
|
-> Result {
|
|
if (const Symbol * symbol{x.GetSymbol()}) {
|
|
const Symbol *result{FindFunctionResult(*symbol)};
|
|
return result && IsPointer(*result) && !IsProcedurePointer(*result);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Conversions of COMPLEX component expressions to REAL.
|
|
ConvertRealOperandsResult ConvertRealOperands(
|
|
parser::ContextualMessages &messages, Expr<SomeType> &&x,
|
|
Expr<SomeType> &&y, int defaultRealKind) {
|
|
return std::visit(
|
|
common::visitors{
|
|
[&](Expr<SomeInteger> &&ix,
|
|
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
|
|
// Can happen in a CMPLX() constructor. Per F'2018,
|
|
// both integer operands are converted to default REAL.
|
|
return {AsSameKindExprs<TypeCategory::Real>(
|
|
ConvertToKind<TypeCategory::Real>(
|
|
defaultRealKind, std::move(ix)),
|
|
ConvertToKind<TypeCategory::Real>(
|
|
defaultRealKind, std::move(iy)))};
|
|
},
|
|
[&](Expr<SomeInteger> &&ix,
|
|
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
|
|
return {AsSameKindExprs<TypeCategory::Real>(
|
|
ConvertTo(ry, std::move(ix)), std::move(ry))};
|
|
},
|
|
[&](Expr<SomeReal> &&rx,
|
|
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
|
|
return {AsSameKindExprs<TypeCategory::Real>(
|
|
std::move(rx), ConvertTo(rx, std::move(iy)))};
|
|
},
|
|
[&](Expr<SomeReal> &&rx,
|
|
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
|
|
return {AsSameKindExprs<TypeCategory::Real>(
|
|
std::move(rx), std::move(ry))};
|
|
},
|
|
[&](Expr<SomeInteger> &&ix,
|
|
BOZLiteralConstant &&by) -> ConvertRealOperandsResult {
|
|
return {AsSameKindExprs<TypeCategory::Real>(
|
|
ConvertToKind<TypeCategory::Real>(
|
|
defaultRealKind, std::move(ix)),
|
|
ConvertToKind<TypeCategory::Real>(
|
|
defaultRealKind, std::move(by)))};
|
|
},
|
|
[&](BOZLiteralConstant &&bx,
|
|
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
|
|
return {AsSameKindExprs<TypeCategory::Real>(
|
|
ConvertToKind<TypeCategory::Real>(
|
|
defaultRealKind, std::move(bx)),
|
|
ConvertToKind<TypeCategory::Real>(
|
|
defaultRealKind, std::move(iy)))};
|
|
},
|
|
[&](Expr<SomeReal> &&rx,
|
|
BOZLiteralConstant &&by) -> ConvertRealOperandsResult {
|
|
return {AsSameKindExprs<TypeCategory::Real>(
|
|
std::move(rx), ConvertTo(rx, std::move(by)))};
|
|
},
|
|
[&](BOZLiteralConstant &&bx,
|
|
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
|
|
return {AsSameKindExprs<TypeCategory::Real>(
|
|
ConvertTo(ry, std::move(bx)), std::move(ry))};
|
|
},
|
|
[&](auto &&, auto &&) -> ConvertRealOperandsResult { // C718
|
|
messages.Say("operands must be INTEGER or REAL"_err_en_US);
|
|
return std::nullopt;
|
|
},
|
|
},
|
|
std::move(x.u), std::move(y.u));
|
|
}
|
|
|
|
// Helpers for NumericOperation and its subroutines below.
|
|
static std::optional<Expr<SomeType>> NoExpr() { return std::nullopt; }
|
|
|
|
template <TypeCategory CAT>
|
|
std::optional<Expr<SomeType>> Package(Expr<SomeKind<CAT>> &&catExpr) {
|
|
return {AsGenericExpr(std::move(catExpr))};
|
|
}
|
|
template <TypeCategory CAT>
|
|
std::optional<Expr<SomeType>> Package(
|
|
std::optional<Expr<SomeKind<CAT>>> &&catExpr) {
|
|
if (catExpr) {
|
|
return {AsGenericExpr(std::move(*catExpr))};
|
|
}
|
|
return NoExpr();
|
|
}
|
|
|
|
// Mixed REAL+INTEGER operations. REAL**INTEGER is a special case that
|
|
// does not require conversion of the exponent expression.
|
|
template <template <typename> class OPR>
|
|
std::optional<Expr<SomeType>> MixedRealLeft(
|
|
Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
|
|
return Package(std::visit(
|
|
[&](auto &&rxk) -> Expr<SomeReal> {
|
|
using resultType = ResultType<decltype(rxk)>;
|
|
if constexpr (std::is_same_v<OPR<resultType>, Power<resultType>>) {
|
|
return AsCategoryExpr(
|
|
RealToIntPower<resultType>{std::move(rxk), std::move(iy)});
|
|
}
|
|
// G++ 8.1.0 emits bogus warnings about missing return statements if
|
|
// this statement is wrapped in an "else", as it should be.
|
|
return AsCategoryExpr(OPR<resultType>{
|
|
std::move(rxk), ConvertToType<resultType>(std::move(iy))});
|
|
},
|
|
std::move(rx.u)));
|
|
}
|
|
|
|
std::optional<Expr<SomeComplex>> ConstructComplex(
|
|
parser::ContextualMessages &messages, Expr<SomeType> &&real,
|
|
Expr<SomeType> &&imaginary, int defaultRealKind) {
|
|
if (auto converted{ConvertRealOperands(
|
|
messages, std::move(real), std::move(imaginary), defaultRealKind)}) {
|
|
return {std::visit(
|
|
[](auto &&pair) {
|
|
return MakeComplex(std::move(pair[0]), std::move(pair[1]));
|
|
},
|
|
std::move(*converted))};
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Expr<SomeComplex>> ConstructComplex(
|
|
parser::ContextualMessages &messages, std::optional<Expr<SomeType>> &&real,
|
|
std::optional<Expr<SomeType>> &&imaginary, int defaultRealKind) {
|
|
if (auto parts{common::AllPresent(std::move(real), std::move(imaginary))}) {
|
|
return ConstructComplex(messages, std::get<0>(std::move(*parts)),
|
|
std::get<1>(std::move(*parts)), defaultRealKind);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
Expr<SomeReal> GetComplexPart(const Expr<SomeComplex> &z, bool isImaginary) {
|
|
return std::visit(
|
|
[&](const auto &zk) {
|
|
static constexpr int kind{ResultType<decltype(zk)>::kind};
|
|
return AsCategoryExpr(ComplexComponent<kind>{isImaginary, zk});
|
|
},
|
|
z.u);
|
|
}
|
|
|
|
// Convert REAL to COMPLEX of the same kind. Preserving the real operand kind
|
|
// and then applying complex operand promotion rules allows the result to have
|
|
// the highest precision of REAL and COMPLEX operands as required by Fortran
|
|
// 2018 10.9.1.3.
|
|
Expr<SomeComplex> PromoteRealToComplex(Expr<SomeReal> &&someX) {
|
|
return std::visit(
|
|
[](auto &&x) {
|
|
using RT = ResultType<decltype(x)>;
|
|
return AsCategoryExpr(ComplexConstructor<RT::kind>{
|
|
std::move(x), AsExpr(Constant<RT>{Scalar<RT>{}})});
|
|
},
|
|
std::move(someX.u));
|
|
}
|
|
|
|
// Handle mixed COMPLEX+REAL (or INTEGER) operations in a better way
|
|
// than just converting the second operand to COMPLEX and performing the
|
|
// corresponding COMPLEX+COMPLEX operation.
|
|
template <template <typename> class OPR, TypeCategory RCAT>
|
|
std::optional<Expr<SomeType>> MixedComplexLeft(
|
|
parser::ContextualMessages &messages, Expr<SomeComplex> &&zx,
|
|
Expr<SomeKind<RCAT>> &&iry, [[maybe_unused]] int defaultRealKind) {
|
|
Expr<SomeReal> zr{GetComplexPart(zx, false)};
|
|
Expr<SomeReal> zi{GetComplexPart(zx, true)};
|
|
if constexpr (std::is_same_v<OPR<LargestReal>, Add<LargestReal>> ||
|
|
std::is_same_v<OPR<LargestReal>, Subtract<LargestReal>>) {
|
|
// (a,b) + x -> (a+x, b)
|
|
// (a,b) - x -> (a-x, b)
|
|
if (std::optional<Expr<SomeType>> rr{
|
|
NumericOperation<OPR>(messages, AsGenericExpr(std::move(zr)),
|
|
AsGenericExpr(std::move(iry)), defaultRealKind)}) {
|
|
return Package(ConstructComplex(messages, std::move(*rr),
|
|
AsGenericExpr(std::move(zi)), defaultRealKind));
|
|
}
|
|
} else if constexpr (allowOperandDuplication &&
|
|
(std::is_same_v<OPR<LargestReal>, Multiply<LargestReal>> ||
|
|
std::is_same_v<OPR<LargestReal>, Divide<LargestReal>>)) {
|
|
// (a,b) * x -> (a*x, b*x)
|
|
// (a,b) / x -> (a/x, b/x)
|
|
auto copy{iry};
|
|
auto rr{NumericOperation<OPR>(messages, AsGenericExpr(std::move(zr)),
|
|
AsGenericExpr(std::move(iry)), defaultRealKind)};
|
|
auto ri{NumericOperation<OPR>(messages, AsGenericExpr(std::move(zi)),
|
|
AsGenericExpr(std::move(copy)), defaultRealKind)};
|
|
if (auto parts{common::AllPresent(std::move(rr), std::move(ri))}) {
|
|
return Package(ConstructComplex(messages, std::get<0>(std::move(*parts)),
|
|
std::get<1>(std::move(*parts)), defaultRealKind));
|
|
}
|
|
} else if constexpr (RCAT == TypeCategory::Integer &&
|
|
std::is_same_v<OPR<LargestReal>, Power<LargestReal>>) {
|
|
// COMPLEX**INTEGER is a special case that doesn't convert the exponent.
|
|
static_assert(RCAT == TypeCategory::Integer);
|
|
return Package(std::visit(
|
|
[&](auto &&zxk) {
|
|
using Ty = ResultType<decltype(zxk)>;
|
|
return AsCategoryExpr(
|
|
AsExpr(RealToIntPower<Ty>{std::move(zxk), std::move(iry)}));
|
|
},
|
|
std::move(zx.u)));
|
|
} else {
|
|
// (a,b) ** x -> (a,b) ** (x,0)
|
|
if constexpr (RCAT == TypeCategory::Integer) {
|
|
Expr<SomeComplex> zy{ConvertTo(zx, std::move(iry))};
|
|
return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
|
|
} else {
|
|
Expr<SomeComplex> zy{PromoteRealToComplex(std::move(iry))};
|
|
return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
|
|
}
|
|
}
|
|
return NoExpr();
|
|
}
|
|
|
|
// Mixed COMPLEX operations with the COMPLEX operand on the right.
|
|
// x + (a,b) -> (x+a, b)
|
|
// x - (a,b) -> (x-a, -b)
|
|
// x * (a,b) -> (x*a, x*b)
|
|
// x / (a,b) -> (x,0) / (a,b) (and **)
|
|
template <template <typename> class OPR, TypeCategory LCAT>
|
|
std::optional<Expr<SomeType>> MixedComplexRight(
|
|
parser::ContextualMessages &messages, Expr<SomeKind<LCAT>> &&irx,
|
|
Expr<SomeComplex> &&zy, [[maybe_unused]] int defaultRealKind) {
|
|
if constexpr (std::is_same_v<OPR<LargestReal>, Add<LargestReal>>) {
|
|
// x + (a,b) -> (a,b) + x -> (a+x, b)
|
|
return MixedComplexLeft<OPR, LCAT>(
|
|
messages, std::move(zy), std::move(irx), defaultRealKind);
|
|
} else if constexpr (allowOperandDuplication &&
|
|
std::is_same_v<OPR<LargestReal>, Multiply<LargestReal>>) {
|
|
// x * (a,b) -> (a,b) * x -> (a*x, b*x)
|
|
return MixedComplexLeft<OPR, LCAT>(
|
|
messages, std::move(zy), std::move(irx), defaultRealKind);
|
|
} else if constexpr (std::is_same_v<OPR<LargestReal>,
|
|
Subtract<LargestReal>>) {
|
|
// x - (a,b) -> (x-a, -b)
|
|
Expr<SomeReal> zr{GetComplexPart(zy, false)};
|
|
Expr<SomeReal> zi{GetComplexPart(zy, true)};
|
|
if (std::optional<Expr<SomeType>> rr{
|
|
NumericOperation<Subtract>(messages, AsGenericExpr(std::move(irx)),
|
|
AsGenericExpr(std::move(zr)), defaultRealKind)}) {
|
|
return Package(ConstructComplex(messages, std::move(*rr),
|
|
AsGenericExpr(-std::move(zi)), defaultRealKind));
|
|
}
|
|
} else {
|
|
// x / (a,b) -> (x,0) / (a,b)
|
|
if constexpr (LCAT == TypeCategory::Integer) {
|
|
Expr<SomeComplex> zx{ConvertTo(zy, std::move(irx))};
|
|
return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
|
|
} else {
|
|
Expr<SomeComplex> zx{PromoteRealToComplex(std::move(irx))};
|
|
return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
|
|
}
|
|
}
|
|
return NoExpr();
|
|
}
|
|
|
|
// N.B. When a "typeless" BOZ literal constant appears as one (not both!) of
|
|
// the operands to a dyadic operation where one is permitted, it assumes the
|
|
// type and kind of the other operand.
|
|
template <template <typename> class OPR>
|
|
std::optional<Expr<SomeType>> NumericOperation(
|
|
parser::ContextualMessages &messages, Expr<SomeType> &&x,
|
|
Expr<SomeType> &&y, int defaultRealKind) {
|
|
return std::visit(
|
|
common::visitors{
|
|
[](Expr<SomeInteger> &&ix, Expr<SomeInteger> &&iy) {
|
|
return Package(PromoteAndCombine<OPR, TypeCategory::Integer>(
|
|
std::move(ix), std::move(iy)));
|
|
},
|
|
[](Expr<SomeReal> &&rx, Expr<SomeReal> &&ry) {
|
|
return Package(PromoteAndCombine<OPR, TypeCategory::Real>(
|
|
std::move(rx), std::move(ry)));
|
|
},
|
|
// Mixed REAL/INTEGER operations
|
|
[](Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
|
|
return MixedRealLeft<OPR>(std::move(rx), std::move(iy));
|
|
},
|
|
[](Expr<SomeInteger> &&ix, Expr<SomeReal> &&ry) {
|
|
return Package(std::visit(
|
|
[&](auto &&ryk) -> Expr<SomeReal> {
|
|
using resultType = ResultType<decltype(ryk)>;
|
|
return AsCategoryExpr(
|
|
OPR<resultType>{ConvertToType<resultType>(std::move(ix)),
|
|
std::move(ryk)});
|
|
},
|
|
std::move(ry.u)));
|
|
},
|
|
// Homogeneous and mixed COMPLEX operations
|
|
[](Expr<SomeComplex> &&zx, Expr<SomeComplex> &&zy) {
|
|
return Package(PromoteAndCombine<OPR, TypeCategory::Complex>(
|
|
std::move(zx), std::move(zy)));
|
|
},
|
|
[&](Expr<SomeComplex> &&zx, Expr<SomeInteger> &&iy) {
|
|
return MixedComplexLeft<OPR>(
|
|
messages, std::move(zx), std::move(iy), defaultRealKind);
|
|
},
|
|
[&](Expr<SomeComplex> &&zx, Expr<SomeReal> &&ry) {
|
|
return MixedComplexLeft<OPR>(
|
|
messages, std::move(zx), std::move(ry), defaultRealKind);
|
|
},
|
|
[&](Expr<SomeInteger> &&ix, Expr<SomeComplex> &&zy) {
|
|
return MixedComplexRight<OPR>(
|
|
messages, std::move(ix), std::move(zy), defaultRealKind);
|
|
},
|
|
[&](Expr<SomeReal> &&rx, Expr<SomeComplex> &&zy) {
|
|
return MixedComplexRight<OPR>(
|
|
messages, std::move(rx), std::move(zy), defaultRealKind);
|
|
},
|
|
// Operations with one typeless operand
|
|
[&](BOZLiteralConstant &&bx, Expr<SomeInteger> &&iy) {
|
|
return NumericOperation<OPR>(messages,
|
|
AsGenericExpr(ConvertTo(iy, std::move(bx))), std::move(y),
|
|
defaultRealKind);
|
|
},
|
|
[&](BOZLiteralConstant &&bx, Expr<SomeReal> &&ry) {
|
|
return NumericOperation<OPR>(messages,
|
|
AsGenericExpr(ConvertTo(ry, std::move(bx))), std::move(y),
|
|
defaultRealKind);
|
|
},
|
|
[&](Expr<SomeInteger> &&ix, BOZLiteralConstant &&by) {
|
|
return NumericOperation<OPR>(messages, std::move(x),
|
|
AsGenericExpr(ConvertTo(ix, std::move(by))), defaultRealKind);
|
|
},
|
|
[&](Expr<SomeReal> &&rx, BOZLiteralConstant &&by) {
|
|
return NumericOperation<OPR>(messages, std::move(x),
|
|
AsGenericExpr(ConvertTo(rx, std::move(by))), defaultRealKind);
|
|
},
|
|
// Default case
|
|
[&](auto &&, auto &&) {
|
|
// TODO: defined operator
|
|
messages.Say("non-numeric operands to numeric operation"_err_en_US);
|
|
return NoExpr();
|
|
},
|
|
},
|
|
std::move(x.u), std::move(y.u));
|
|
}
|
|
|
|
template std::optional<Expr<SomeType>> NumericOperation<Power>(
|
|
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
|
|
int defaultRealKind);
|
|
template std::optional<Expr<SomeType>> NumericOperation<Multiply>(
|
|
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
|
|
int defaultRealKind);
|
|
template std::optional<Expr<SomeType>> NumericOperation<Divide>(
|
|
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
|
|
int defaultRealKind);
|
|
template std::optional<Expr<SomeType>> NumericOperation<Add>(
|
|
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
|
|
int defaultRealKind);
|
|
template std::optional<Expr<SomeType>> NumericOperation<Subtract>(
|
|
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
|
|
int defaultRealKind);
|
|
|
|
std::optional<Expr<SomeType>> Negation(
|
|
parser::ContextualMessages &messages, Expr<SomeType> &&x) {
|
|
return std::visit(
|
|
common::visitors{
|
|
[&](BOZLiteralConstant &&) {
|
|
messages.Say("BOZ literal cannot be negated"_err_en_US);
|
|
return NoExpr();
|
|
},
|
|
[&](NullPointer &&) {
|
|
messages.Say("NULL() cannot be negated"_err_en_US);
|
|
return NoExpr();
|
|
},
|
|
[&](ProcedureDesignator &&) {
|
|
messages.Say("Subroutine cannot be negated"_err_en_US);
|
|
return NoExpr();
|
|
},
|
|
[&](ProcedureRef &&) {
|
|
messages.Say("Pointer to subroutine cannot be negated"_err_en_US);
|
|
return NoExpr();
|
|
},
|
|
[&](Expr<SomeInteger> &&x) { return Package(-std::move(x)); },
|
|
[&](Expr<SomeReal> &&x) { return Package(-std::move(x)); },
|
|
[&](Expr<SomeComplex> &&x) { return Package(-std::move(x)); },
|
|
[&](Expr<SomeCharacter> &&) {
|
|
// TODO: defined operator
|
|
messages.Say("CHARACTER cannot be negated"_err_en_US);
|
|
return NoExpr();
|
|
},
|
|
[&](Expr<SomeLogical> &&) {
|
|
// TODO: defined operator
|
|
messages.Say("LOGICAL cannot be negated"_err_en_US);
|
|
return NoExpr();
|
|
},
|
|
[&](Expr<SomeDerived> &&) {
|
|
// TODO: defined operator
|
|
messages.Say("Operand cannot be negated"_err_en_US);
|
|
return NoExpr();
|
|
},
|
|
},
|
|
std::move(x.u));
|
|
}
|
|
|
|
Expr<SomeLogical> LogicalNegation(Expr<SomeLogical> &&x) {
|
|
return std::visit(
|
|
[](auto &&xk) { return AsCategoryExpr(LogicalNegation(std::move(xk))); },
|
|
std::move(x.u));
|
|
}
|
|
|
|
template <TypeCategory CAT>
|
|
Expr<LogicalResult> PromoteAndRelate(
|
|
RelationalOperator opr, Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
|
|
return std::visit(
|
|
[=](auto &&xy) {
|
|
return PackageRelation(opr, std::move(xy[0]), std::move(xy[1]));
|
|
},
|
|
AsSameKindExprs(std::move(x), std::move(y)));
|
|
}
|
|
|
|
std::optional<Expr<LogicalResult>> Relate(parser::ContextualMessages &messages,
|
|
RelationalOperator opr, Expr<SomeType> &&x, Expr<SomeType> &&y) {
|
|
return std::visit(
|
|
common::visitors{
|
|
[=](Expr<SomeInteger> &&ix,
|
|
Expr<SomeInteger> &&iy) -> std::optional<Expr<LogicalResult>> {
|
|
return PromoteAndRelate(opr, std::move(ix), std::move(iy));
|
|
},
|
|
[=](Expr<SomeReal> &&rx,
|
|
Expr<SomeReal> &&ry) -> std::optional<Expr<LogicalResult>> {
|
|
return PromoteAndRelate(opr, std::move(rx), std::move(ry));
|
|
},
|
|
[&](Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
|
|
return Relate(messages, opr, std::move(x),
|
|
AsGenericExpr(ConvertTo(rx, std::move(iy))));
|
|
},
|
|
[&](Expr<SomeInteger> &&ix, Expr<SomeReal> &&ry) {
|
|
return Relate(messages, opr,
|
|
AsGenericExpr(ConvertTo(ry, std::move(ix))), std::move(y));
|
|
},
|
|
[&](Expr<SomeComplex> &&zx,
|
|
Expr<SomeComplex> &&zy) -> std::optional<Expr<LogicalResult>> {
|
|
if (opr == RelationalOperator::EQ ||
|
|
opr == RelationalOperator::NE) {
|
|
return PromoteAndRelate(opr, std::move(zx), std::move(zy));
|
|
} else {
|
|
messages.Say(
|
|
"COMPLEX data may be compared only for equality"_err_en_US);
|
|
return std::nullopt;
|
|
}
|
|
},
|
|
[&](Expr<SomeComplex> &&zx, Expr<SomeInteger> &&iy) {
|
|
return Relate(messages, opr, std::move(x),
|
|
AsGenericExpr(ConvertTo(zx, std::move(iy))));
|
|
},
|
|
[&](Expr<SomeComplex> &&zx, Expr<SomeReal> &&ry) {
|
|
return Relate(messages, opr, std::move(x),
|
|
AsGenericExpr(ConvertTo(zx, std::move(ry))));
|
|
},
|
|
[&](Expr<SomeInteger> &&ix, Expr<SomeComplex> &&zy) {
|
|
return Relate(messages, opr,
|
|
AsGenericExpr(ConvertTo(zy, std::move(ix))), std::move(y));
|
|
},
|
|
[&](Expr<SomeReal> &&rx, Expr<SomeComplex> &&zy) {
|
|
return Relate(messages, opr,
|
|
AsGenericExpr(ConvertTo(zy, std::move(rx))), std::move(y));
|
|
},
|
|
[&](Expr<SomeCharacter> &&cx, Expr<SomeCharacter> &&cy) {
|
|
return std::visit(
|
|
[&](auto &&cxk,
|
|
auto &&cyk) -> std::optional<Expr<LogicalResult>> {
|
|
using Ty = ResultType<decltype(cxk)>;
|
|
if constexpr (std::is_same_v<Ty, ResultType<decltype(cyk)>>) {
|
|
return PackageRelation(opr, std::move(cxk), std::move(cyk));
|
|
} else {
|
|
messages.Say(
|
|
"CHARACTER operands do not have same KIND"_err_en_US);
|
|
return std::nullopt;
|
|
}
|
|
},
|
|
std::move(cx.u), std::move(cy.u));
|
|
},
|
|
// Default case
|
|
[&](auto &&, auto &&) {
|
|
DIE("invalid types for relational operator");
|
|
return std::optional<Expr<LogicalResult>>{};
|
|
},
|
|
},
|
|
std::move(x.u), std::move(y.u));
|
|
}
|
|
|
|
Expr<SomeLogical> BinaryLogicalOperation(
|
|
LogicalOperator opr, Expr<SomeLogical> &&x, Expr<SomeLogical> &&y) {
|
|
CHECK(opr != LogicalOperator::Not);
|
|
return std::visit(
|
|
[=](auto &&xy) {
|
|
using Ty = ResultType<decltype(xy[0])>;
|
|
return Expr<SomeLogical>{BinaryLogicalOperation<Ty::kind>(
|
|
opr, std::move(xy[0]), std::move(xy[1]))};
|
|
},
|
|
AsSameKindExprs(std::move(x), std::move(y)));
|
|
}
|
|
|
|
template <TypeCategory TO>
|
|
std::optional<Expr<SomeType>> ConvertToNumeric(int kind, Expr<SomeType> &&x) {
|
|
static_assert(common::IsNumericTypeCategory(TO));
|
|
return std::visit(
|
|
[=](auto &&cx) -> std::optional<Expr<SomeType>> {
|
|
using cxType = std::decay_t<decltype(cx)>;
|
|
if constexpr (!common::HasMember<cxType, TypelessExpression>) {
|
|
if constexpr (IsNumericTypeCategory(ResultType<cxType>::category)) {
|
|
return Expr<SomeType>{ConvertToKind<TO>(kind, std::move(cx))};
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
},
|
|
std::move(x.u));
|
|
}
|
|
|
|
std::optional<Expr<SomeType>> ConvertToType(
|
|
const DynamicType &type, Expr<SomeType> &&x) {
|
|
if (type.IsTypelessIntrinsicArgument()) {
|
|
return std::nullopt;
|
|
}
|
|
switch (type.category()) {
|
|
case TypeCategory::Integer:
|
|
if (auto *boz{std::get_if<BOZLiteralConstant>(&x.u)}) {
|
|
// Extension to C7109: allow BOZ literals to appear in integer contexts
|
|
// when the type is unambiguous.
|
|
return Expr<SomeType>{
|
|
ConvertToKind<TypeCategory::Integer>(type.kind(), std::move(*boz))};
|
|
}
|
|
return ConvertToNumeric<TypeCategory::Integer>(type.kind(), std::move(x));
|
|
case TypeCategory::Real:
|
|
if (auto *boz{std::get_if<BOZLiteralConstant>(&x.u)}) {
|
|
return Expr<SomeType>{
|
|
ConvertToKind<TypeCategory::Real>(type.kind(), std::move(*boz))};
|
|
}
|
|
return ConvertToNumeric<TypeCategory::Real>(type.kind(), std::move(x));
|
|
case TypeCategory::Complex:
|
|
return ConvertToNumeric<TypeCategory::Complex>(type.kind(), std::move(x));
|
|
case TypeCategory::Character:
|
|
if (auto *cx{UnwrapExpr<Expr<SomeCharacter>>(x)}) {
|
|
auto converted{
|
|
ConvertToKind<TypeCategory::Character>(type.kind(), std::move(*cx))};
|
|
if (auto length{type.GetCharLength()}) {
|
|
converted = std::visit(
|
|
[&](auto &&x) {
|
|
using Ty = std::decay_t<decltype(x)>;
|
|
using CharacterType = typename Ty::Result;
|
|
return Expr<SomeCharacter>{
|
|
Expr<CharacterType>{SetLength<CharacterType::kind>{
|
|
std::move(x), std::move(*length)}}};
|
|
},
|
|
std::move(converted.u));
|
|
}
|
|
return Expr<SomeType>{std::move(converted)};
|
|
}
|
|
break;
|
|
case TypeCategory::Logical:
|
|
if (auto *cx{UnwrapExpr<Expr<SomeLogical>>(x)}) {
|
|
return Expr<SomeType>{
|
|
ConvertToKind<TypeCategory::Logical>(type.kind(), std::move(*cx))};
|
|
}
|
|
break;
|
|
case TypeCategory::Derived:
|
|
if (auto fromType{x.GetType()}) {
|
|
if (type == *fromType) {
|
|
return std::move(x);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Expr<SomeType>> ConvertToType(
|
|
const DynamicType &to, std::optional<Expr<SomeType>> &&x) {
|
|
if (x) {
|
|
return ConvertToType(to, std::move(*x));
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
std::optional<Expr<SomeType>> ConvertToType(
|
|
const Symbol &symbol, Expr<SomeType> &&x) {
|
|
if (auto symType{DynamicType::From(symbol)}) {
|
|
return ConvertToType(*symType, std::move(x));
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Expr<SomeType>> ConvertToType(
|
|
const Symbol &to, std::optional<Expr<SomeType>> &&x) {
|
|
if (x) {
|
|
return ConvertToType(to, std::move(*x));
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
bool IsAssumedRank(const Symbol &original) {
|
|
if (const auto *assoc{original.detailsIf<semantics::AssocEntityDetails>()}) {
|
|
if (assoc->rank()) {
|
|
return false; // in SELECT RANK case
|
|
}
|
|
}
|
|
const Symbol &symbol{semantics::ResolveAssociations(original)};
|
|
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
|
|
return details->IsAssumedRank();
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool IsAssumedRank(const ActualArgument &arg) {
|
|
if (const auto *expr{arg.UnwrapExpr()}) {
|
|
return IsAssumedRank(*expr);
|
|
} else {
|
|
const Symbol *assumedTypeDummy{arg.GetAssumedTypeDummy()};
|
|
CHECK(assumedTypeDummy);
|
|
return IsAssumedRank(*assumedTypeDummy);
|
|
}
|
|
}
|
|
|
|
bool IsCoarray(const ActualArgument &arg) {
|
|
const auto *expr{arg.UnwrapExpr()};
|
|
return expr && IsCoarray(*expr);
|
|
}
|
|
|
|
bool IsCoarray(const Symbol &symbol) {
|
|
return GetAssociationRoot(symbol).Corank() > 0;
|
|
}
|
|
|
|
bool IsProcedure(const Expr<SomeType> &expr) {
|
|
return std::holds_alternative<ProcedureDesignator>(expr.u);
|
|
}
|
|
bool IsFunction(const Expr<SomeType> &expr) {
|
|
const auto *designator{std::get_if<ProcedureDesignator>(&expr.u)};
|
|
return designator && designator->GetType().has_value();
|
|
}
|
|
|
|
bool IsProcedurePointerTarget(const Expr<SomeType> &expr) {
|
|
return std::visit(common::visitors{
|
|
[](const NullPointer &) { return true; },
|
|
[](const ProcedureDesignator &) { return true; },
|
|
[](const ProcedureRef &) { return true; },
|
|
[&](const auto &) {
|
|
const Symbol *last{GetLastSymbol(expr)};
|
|
return last && IsProcedurePointer(*last);
|
|
},
|
|
},
|
|
expr.u);
|
|
}
|
|
|
|
template <typename A> inline const ProcedureRef *UnwrapProcedureRef(const A &) {
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
inline const ProcedureRef *UnwrapProcedureRef(const FunctionRef<T> &func) {
|
|
return &func;
|
|
}
|
|
|
|
template <typename T>
|
|
inline const ProcedureRef *UnwrapProcedureRef(const Expr<T> &expr) {
|
|
return std::visit(
|
|
[](const auto &x) { return UnwrapProcedureRef(x); }, expr.u);
|
|
}
|
|
|
|
// IsObjectPointer()
|
|
bool IsObjectPointer(const Expr<SomeType> &expr, FoldingContext &context) {
|
|
if (IsNullPointer(expr)) {
|
|
return true;
|
|
} else if (IsProcedurePointerTarget(expr)) {
|
|
return false;
|
|
} else if (const auto *funcRef{UnwrapProcedureRef(expr)}) {
|
|
return IsVariable(*funcRef);
|
|
} else if (const Symbol * symbol{GetLastSymbol(expr)}) {
|
|
return IsPointer(symbol->GetUltimate());
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool IsBareNullPointer(const Expr<SomeType> *expr) {
|
|
return expr && std::holds_alternative<NullPointer>(expr->u);
|
|
}
|
|
|
|
// IsNullPointer()
|
|
struct IsNullPointerHelper {
|
|
template <typename A> bool operator()(const A &) const { return false; }
|
|
template <typename T> bool operator()(const FunctionRef<T> &call) const {
|
|
const auto *intrinsic{call.proc().GetSpecificIntrinsic()};
|
|
return intrinsic &&
|
|
intrinsic->characteristics.value().attrs.test(
|
|
characteristics::Procedure::Attr::NullPointer);
|
|
}
|
|
bool operator()(const NullPointer &) const { return true; }
|
|
template <typename T> bool operator()(const Parentheses<T> &x) const {
|
|
return (*this)(x.left());
|
|
}
|
|
template <typename T> bool operator()(const Expr<T> &x) const {
|
|
return std::visit(*this, x.u);
|
|
}
|
|
};
|
|
|
|
bool IsNullPointer(const Expr<SomeType> &expr) {
|
|
return IsNullPointerHelper{}(expr);
|
|
}
|
|
|
|
// GetSymbolVector()
|
|
auto GetSymbolVectorHelper::operator()(const Symbol &x) const -> Result {
|
|
if (const auto *details{x.detailsIf<semantics::AssocEntityDetails>()}) {
|
|
return (*this)(details->expr());
|
|
} else {
|
|
return {x.GetUltimate()};
|
|
}
|
|
}
|
|
auto GetSymbolVectorHelper::operator()(const Component &x) const -> Result {
|
|
Result result{(*this)(x.base())};
|
|
result.emplace_back(x.GetLastSymbol());
|
|
return result;
|
|
}
|
|
auto GetSymbolVectorHelper::operator()(const ArrayRef &x) const -> Result {
|
|
return GetSymbolVector(x.base());
|
|
}
|
|
auto GetSymbolVectorHelper::operator()(const CoarrayRef &x) const -> Result {
|
|
return x.base();
|
|
}
|
|
|
|
const Symbol *GetLastTarget(const SymbolVector &symbols) {
|
|
auto end{std::crend(symbols)};
|
|
// N.B. Neither clang nor g++ recognizes "symbols.crbegin()" here.
|
|
auto iter{std::find_if(std::crbegin(symbols), end, [](const Symbol &x) {
|
|
return x.attrs().HasAny(
|
|
{semantics::Attr::POINTER, semantics::Attr::TARGET});
|
|
})};
|
|
return iter == end ? nullptr : &**iter;
|
|
}
|
|
|
|
struct CollectSymbolsHelper
|
|
: public SetTraverse<CollectSymbolsHelper, semantics::UnorderedSymbolSet> {
|
|
using Base = SetTraverse<CollectSymbolsHelper, semantics::UnorderedSymbolSet>;
|
|
CollectSymbolsHelper() : Base{*this} {}
|
|
using Base::operator();
|
|
semantics::UnorderedSymbolSet operator()(const Symbol &symbol) const {
|
|
return {symbol};
|
|
}
|
|
};
|
|
template <typename A> semantics::UnorderedSymbolSet CollectSymbols(const A &x) {
|
|
return CollectSymbolsHelper{}(x);
|
|
}
|
|
template semantics::UnorderedSymbolSet CollectSymbols(const Expr<SomeType> &);
|
|
template semantics::UnorderedSymbolSet CollectSymbols(
|
|
const Expr<SomeInteger> &);
|
|
template semantics::UnorderedSymbolSet CollectSymbols(
|
|
const Expr<SubscriptInteger> &);
|
|
|
|
// HasVectorSubscript()
|
|
struct HasVectorSubscriptHelper : public AnyTraverse<HasVectorSubscriptHelper> {
|
|
using Base = AnyTraverse<HasVectorSubscriptHelper>;
|
|
HasVectorSubscriptHelper() : Base{*this} {}
|
|
using Base::operator();
|
|
bool operator()(const Subscript &ss) const {
|
|
return !std::holds_alternative<Triplet>(ss.u) && ss.Rank() > 0;
|
|
}
|
|
bool operator()(const ProcedureRef &) const {
|
|
return false; // don't descend into function call arguments
|
|
}
|
|
};
|
|
|
|
bool HasVectorSubscript(const Expr<SomeType> &expr) {
|
|
return HasVectorSubscriptHelper{}(expr);
|
|
}
|
|
|
|
parser::Message *AttachDeclaration(
|
|
parser::Message &message, const Symbol &symbol) {
|
|
const Symbol *unhosted{&symbol};
|
|
while (
|
|
const auto *assoc{unhosted->detailsIf<semantics::HostAssocDetails>()}) {
|
|
unhosted = &assoc->symbol();
|
|
}
|
|
if (const auto *binding{
|
|
unhosted->detailsIf<semantics::ProcBindingDetails>()}) {
|
|
if (binding->symbol().name() != symbol.name()) {
|
|
message.Attach(binding->symbol().name(),
|
|
"Procedure '%s' of type '%s' is bound to '%s'"_en_US, symbol.name(),
|
|
symbol.owner().GetName().value(), binding->symbol().name());
|
|
return &message;
|
|
}
|
|
unhosted = &binding->symbol();
|
|
}
|
|
if (const auto *use{symbol.detailsIf<semantics::UseDetails>()}) {
|
|
message.Attach(use->location(),
|
|
"'%s' is USE-associated with '%s' in module '%s'"_en_US, symbol.name(),
|
|
unhosted->name(), GetUsedModule(*use).name());
|
|
} else {
|
|
message.Attach(
|
|
unhosted->name(), "Declaration of '%s'"_en_US, unhosted->name());
|
|
}
|
|
return &message;
|
|
}
|
|
|
|
parser::Message *AttachDeclaration(
|
|
parser::Message *message, const Symbol &symbol) {
|
|
return message ? AttachDeclaration(*message, symbol) : nullptr;
|
|
}
|
|
|
|
class FindImpureCallHelper
|
|
: public AnyTraverse<FindImpureCallHelper, std::optional<std::string>> {
|
|
using Result = std::optional<std::string>;
|
|
using Base = AnyTraverse<FindImpureCallHelper, Result>;
|
|
|
|
public:
|
|
explicit FindImpureCallHelper(FoldingContext &c) : Base{*this}, context_{c} {}
|
|
using Base::operator();
|
|
Result operator()(const ProcedureRef &call) const {
|
|
if (auto chars{
|
|
characteristics::Procedure::Characterize(call.proc(), context_)}) {
|
|
if (chars->attrs.test(characteristics::Procedure::Attr::Pure)) {
|
|
return (*this)(call.arguments());
|
|
}
|
|
}
|
|
return call.proc().GetName();
|
|
}
|
|
|
|
private:
|
|
FoldingContext &context_;
|
|
};
|
|
|
|
std::optional<std::string> FindImpureCall(
|
|
FoldingContext &context, const Expr<SomeType> &expr) {
|
|
return FindImpureCallHelper{context}(expr);
|
|
}
|
|
std::optional<std::string> FindImpureCall(
|
|
FoldingContext &context, const ProcedureRef &proc) {
|
|
return FindImpureCallHelper{context}(proc);
|
|
}
|
|
|
|
// Compare procedure characteristics for equality except that rhs may be
|
|
// Pure or Elemental when lhs is not.
|
|
static bool CharacteristicsMatch(const characteristics::Procedure &lhs,
|
|
const characteristics::Procedure &rhs) {
|
|
using Attr = characteristics::Procedure::Attr;
|
|
auto lhsAttrs{lhs.attrs};
|
|
lhsAttrs.set(
|
|
Attr::Pure, lhs.attrs.test(Attr::Pure) || rhs.attrs.test(Attr::Pure));
|
|
lhsAttrs.set(Attr::Elemental,
|
|
lhs.attrs.test(Attr::Elemental) || rhs.attrs.test(Attr::Elemental));
|
|
return lhsAttrs == rhs.attrs && lhs.functionResult == rhs.functionResult &&
|
|
lhs.dummyArguments == rhs.dummyArguments;
|
|
}
|
|
|
|
// Common handling for procedure pointer compatibility of left- and right-hand
|
|
// sides. Returns nullopt if they're compatible. Otherwise, it returns a
|
|
// message that needs to be augmented by the names of the left and right sides
|
|
std::optional<parser::MessageFixedText> CheckProcCompatibility(bool isCall,
|
|
const std::optional<characteristics::Procedure> &lhsProcedure,
|
|
const characteristics::Procedure *rhsProcedure) {
|
|
std::optional<parser::MessageFixedText> msg;
|
|
if (!lhsProcedure) {
|
|
msg = "In assignment to object %s, the target '%s' is a procedure"
|
|
" designator"_err_en_US;
|
|
} else if (!rhsProcedure) {
|
|
msg = "In assignment to procedure %s, the characteristics of the target"
|
|
" procedure '%s' could not be determined"_err_en_US;
|
|
} else if (CharacteristicsMatch(*lhsProcedure, *rhsProcedure)) {
|
|
// OK
|
|
} else if (isCall) {
|
|
msg = "Procedure %s associated with result of reference to function '%s'"
|
|
" that is an incompatible procedure pointer"_err_en_US;
|
|
} else if (lhsProcedure->IsPure() && !rhsProcedure->IsPure()) {
|
|
msg = "PURE procedure %s may not be associated with non-PURE"
|
|
" procedure designator '%s'"_err_en_US;
|
|
} else if (lhsProcedure->IsFunction() && !rhsProcedure->IsFunction()) {
|
|
msg = "Function %s may not be associated with subroutine"
|
|
" designator '%s'"_err_en_US;
|
|
} else if (!lhsProcedure->IsFunction() && rhsProcedure->IsFunction()) {
|
|
msg = "Subroutine %s may not be associated with function"
|
|
" designator '%s'"_err_en_US;
|
|
} else if (lhsProcedure->HasExplicitInterface() &&
|
|
!rhsProcedure->HasExplicitInterface()) {
|
|
// Section 10.2.2.4, paragraph 3 prohibits associating a procedure pointer
|
|
// with an explicit interface with a procedure whose characteristics don't
|
|
// match. That's the case if the target procedure has an implicit
|
|
// interface. But this case is allowed by several other compilers as long
|
|
// as the explicit interface can be called via an implicit interface.
|
|
if (!lhsProcedure->CanBeCalledViaImplicitInterface()) {
|
|
msg = "Procedure %s with explicit interface that cannot be called via "
|
|
"an implicit interface cannot be associated with procedure "
|
|
"designator with an implicit interface"_err_en_US;
|
|
}
|
|
} else if (!lhsProcedure->HasExplicitInterface() &&
|
|
rhsProcedure->HasExplicitInterface()) {
|
|
// OK if the target can be called via an implicit interface
|
|
if (!rhsProcedure->CanBeCalledViaImplicitInterface()) {
|
|
msg = "Procedure %s with implicit interface may not be associated "
|
|
"with procedure designator '%s' with explicit interface that "
|
|
"cannot be called via an implicit interface"_err_en_US;
|
|
}
|
|
} else {
|
|
msg = "Procedure %s associated with incompatible procedure"
|
|
" designator '%s'"_err_en_US;
|
|
}
|
|
return msg;
|
|
}
|
|
|
|
// GetLastPointerSymbol()
|
|
static const Symbol *GetLastPointerSymbol(const Symbol &symbol) {
|
|
return IsPointer(GetAssociationRoot(symbol)) ? &symbol : nullptr;
|
|
}
|
|
static const Symbol *GetLastPointerSymbol(const SymbolRef &symbol) {
|
|
return GetLastPointerSymbol(*symbol);
|
|
}
|
|
static const Symbol *GetLastPointerSymbol(const Component &x) {
|
|
const Symbol &c{x.GetLastSymbol()};
|
|
return IsPointer(c) ? &c : GetLastPointerSymbol(x.base());
|
|
}
|
|
static const Symbol *GetLastPointerSymbol(const NamedEntity &x) {
|
|
const auto *c{x.UnwrapComponent()};
|
|
return c ? GetLastPointerSymbol(*c) : GetLastPointerSymbol(x.GetLastSymbol());
|
|
}
|
|
static const Symbol *GetLastPointerSymbol(const ArrayRef &x) {
|
|
return GetLastPointerSymbol(x.base());
|
|
}
|
|
static const Symbol *GetLastPointerSymbol(const CoarrayRef &x) {
|
|
return nullptr;
|
|
}
|
|
const Symbol *GetLastPointerSymbol(const DataRef &x) {
|
|
return std::visit([](const auto &y) { return GetLastPointerSymbol(y); }, x.u);
|
|
}
|
|
|
|
template <TypeCategory TO, TypeCategory FROM>
|
|
static std::optional<Expr<SomeType>> DataConstantConversionHelper(
|
|
FoldingContext &context, const DynamicType &toType,
|
|
const Expr<SomeType> &expr) {
|
|
DynamicType sizedType{FROM, toType.kind()};
|
|
if (auto sized{
|
|
Fold(context, ConvertToType(sizedType, Expr<SomeType>{expr}))}) {
|
|
if (const auto *someExpr{UnwrapExpr<Expr<SomeKind<FROM>>>(*sized)}) {
|
|
return std::visit(
|
|
[](const auto &w) -> std::optional<Expr<SomeType>> {
|
|
using FromType = typename std::decay_t<decltype(w)>::Result;
|
|
static constexpr int kind{FromType::kind};
|
|
if constexpr (IsValidKindOfIntrinsicType(TO, kind)) {
|
|
if (const auto *fromConst{UnwrapExpr<Constant<FromType>>(w)}) {
|
|
using FromWordType = typename FromType::Scalar;
|
|
using LogicalType = value::Logical<FromWordType::bits>;
|
|
using ElementType =
|
|
std::conditional_t<TO == TypeCategory::Logical, LogicalType,
|
|
typename LogicalType::Word>;
|
|
std::vector<ElementType> values;
|
|
auto at{fromConst->lbounds()};
|
|
auto shape{fromConst->shape()};
|
|
for (auto n{GetSize(shape)}; n-- > 0;
|
|
fromConst->IncrementSubscripts(at)) {
|
|
auto elt{fromConst->At(at)};
|
|
if constexpr (TO == TypeCategory::Logical) {
|
|
values.emplace_back(std::move(elt));
|
|
} else {
|
|
values.emplace_back(elt.word());
|
|
}
|
|
}
|
|
return {AsGenericExpr(AsExpr(Constant<Type<TO, kind>>{
|
|
std::move(values), std::move(shape)}))};
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
},
|
|
someExpr->u);
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Expr<SomeType>> DataConstantConversionExtension(
|
|
FoldingContext &context, const DynamicType &toType,
|
|
const Expr<SomeType> &expr0) {
|
|
Expr<SomeType> expr{Fold(context, Expr<SomeType>{expr0})};
|
|
if (!IsActuallyConstant(expr)) {
|
|
return std::nullopt;
|
|
}
|
|
if (auto fromType{expr.GetType()}) {
|
|
if (toType.category() == TypeCategory::Logical &&
|
|
fromType->category() == TypeCategory::Integer) {
|
|
return DataConstantConversionHelper<TypeCategory::Logical,
|
|
TypeCategory::Integer>(context, toType, expr);
|
|
}
|
|
if (toType.category() == TypeCategory::Integer &&
|
|
fromType->category() == TypeCategory::Logical) {
|
|
return DataConstantConversionHelper<TypeCategory::Integer,
|
|
TypeCategory::Logical>(context, toType, expr);
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool IsAllocatableOrPointerObject(
|
|
const Expr<SomeType> &expr, FoldingContext &context) {
|
|
const semantics::Symbol *sym{UnwrapWholeSymbolOrComponentDataRef(expr)};
|
|
return (sym && semantics::IsAllocatableOrPointer(*sym)) ||
|
|
evaluate::IsObjectPointer(expr, context);
|
|
}
|
|
|
|
bool MayBePassedAsAbsentOptional(
|
|
const Expr<SomeType> &expr, FoldingContext &context) {
|
|
const semantics::Symbol *sym{UnwrapWholeSymbolOrComponentDataRef(expr)};
|
|
// 15.5.2.12 1. is pretty clear that an unallocated allocatable/pointer actual
|
|
// may be passed to a non-allocatable/non-pointer optional dummy. Note that
|
|
// other compilers (like nag, nvfortran, ifort, gfortran and xlf) seems to
|
|
// ignore this point in intrinsic contexts (e.g CMPLX argument).
|
|
return (sym && semantics::IsOptional(*sym)) ||
|
|
IsAllocatableOrPointerObject(expr, context);
|
|
}
|
|
|
|
} // namespace Fortran::evaluate
|
|
|
|
namespace Fortran::semantics {
|
|
|
|
const Symbol &ResolveAssociations(const Symbol &original) {
|
|
const Symbol &symbol{original.GetUltimate()};
|
|
if (const auto *details{symbol.detailsIf<AssocEntityDetails>()}) {
|
|
if (const Symbol * nested{UnwrapWholeSymbolDataRef(details->expr())}) {
|
|
return ResolveAssociations(*nested);
|
|
}
|
|
}
|
|
return symbol;
|
|
}
|
|
|
|
// When a construct association maps to a variable, and that variable
|
|
// is not an array with a vector-valued subscript, return the base
|
|
// Symbol of that variable, else nullptr. Descends into other construct
|
|
// associations when one associations maps to another.
|
|
static const Symbol *GetAssociatedVariable(const AssocEntityDetails &details) {
|
|
if (const auto &expr{details.expr()}) {
|
|
if (IsVariable(*expr) && !HasVectorSubscript(*expr)) {
|
|
if (const Symbol * varSymbol{GetFirstSymbol(*expr)}) {
|
|
return &GetAssociationRoot(*varSymbol);
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const Symbol &GetAssociationRoot(const Symbol &original) {
|
|
const Symbol &symbol{ResolveAssociations(original)};
|
|
if (const auto *details{symbol.detailsIf<AssocEntityDetails>()}) {
|
|
if (const Symbol * root{GetAssociatedVariable(*details)}) {
|
|
return *root;
|
|
}
|
|
}
|
|
return symbol;
|
|
}
|
|
|
|
const Symbol *GetMainEntry(const Symbol *symbol) {
|
|
if (symbol) {
|
|
if (const auto *subpDetails{symbol->detailsIf<SubprogramDetails>()}) {
|
|
if (const Scope * scope{subpDetails->entryScope()}) {
|
|
if (const Symbol * main{scope->symbol()}) {
|
|
return main;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return symbol;
|
|
}
|
|
|
|
bool IsVariableName(const Symbol &original) {
|
|
const Symbol &symbol{ResolveAssociations(original)};
|
|
if (symbol.has<ObjectEntityDetails>()) {
|
|
return !IsNamedConstant(symbol);
|
|
} else if (const auto *assoc{symbol.detailsIf<AssocEntityDetails>()}) {
|
|
const auto &expr{assoc->expr()};
|
|
return expr && IsVariable(*expr) && !HasVectorSubscript(*expr);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool IsPureProcedure(const Symbol &original) {
|
|
// An ENTRY is pure if its containing subprogram is
|
|
const Symbol &symbol{DEREF(GetMainEntry(&original.GetUltimate()))};
|
|
if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
|
|
if (const Symbol * procInterface{procDetails->interface().symbol()}) {
|
|
// procedure component with a pure interface
|
|
return IsPureProcedure(*procInterface);
|
|
}
|
|
} else if (const auto *details{symbol.detailsIf<ProcBindingDetails>()}) {
|
|
return IsPureProcedure(details->symbol());
|
|
} else if (!IsProcedure(symbol)) {
|
|
return false;
|
|
}
|
|
if (IsStmtFunction(symbol)) {
|
|
// Section 15.7(1) states that a statement function is PURE if it does not
|
|
// reference an IMPURE procedure or a VOLATILE variable
|
|
if (const auto &expr{symbol.get<SubprogramDetails>().stmtFunction()}) {
|
|
for (const SymbolRef &ref : evaluate::CollectSymbols(*expr)) {
|
|
if (IsFunction(*ref) && !IsPureProcedure(*ref)) {
|
|
return false;
|
|
}
|
|
if (ref->GetUltimate().attrs().test(Attr::VOLATILE)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true; // statement function was not found to be impure
|
|
}
|
|
return symbol.attrs().test(Attr::PURE) ||
|
|
(symbol.attrs().test(Attr::ELEMENTAL) &&
|
|
!symbol.attrs().test(Attr::IMPURE));
|
|
}
|
|
|
|
bool IsPureProcedure(const Scope &scope) {
|
|
const Symbol *symbol{scope.GetSymbol()};
|
|
return symbol && IsPureProcedure(*symbol);
|
|
}
|
|
|
|
bool IsFunction(const Symbol &symbol) {
|
|
const Symbol &ultimate{symbol.GetUltimate()};
|
|
return ultimate.test(Symbol::Flag::Function) ||
|
|
std::visit(common::visitors{
|
|
[](const SubprogramDetails &x) { return x.isFunction(); },
|
|
[](const ProcEntityDetails &x) {
|
|
const auto &ifc{x.interface()};
|
|
return ifc.type() ||
|
|
(ifc.symbol() && IsFunction(*ifc.symbol()));
|
|
},
|
|
[](const ProcBindingDetails &x) {
|
|
return IsFunction(x.symbol());
|
|
},
|
|
[](const auto &) { return false; },
|
|
},
|
|
ultimate.details());
|
|
}
|
|
|
|
bool IsFunction(const Scope &scope) {
|
|
const Symbol *symbol{scope.GetSymbol()};
|
|
return symbol && IsFunction(*symbol);
|
|
}
|
|
|
|
bool IsProcedure(const Symbol &symbol) {
|
|
return std::visit(common::visitors{
|
|
[](const SubprogramDetails &) { return true; },
|
|
[](const SubprogramNameDetails &) { return true; },
|
|
[](const ProcEntityDetails &) { return true; },
|
|
[](const GenericDetails &) { return true; },
|
|
[](const ProcBindingDetails &) { return true; },
|
|
[](const auto &) { return false; },
|
|
},
|
|
symbol.GetUltimate().details());
|
|
}
|
|
|
|
bool IsProcedure(const Scope &scope) {
|
|
const Symbol *symbol{scope.GetSymbol()};
|
|
return symbol && IsProcedure(*symbol);
|
|
}
|
|
|
|
const Symbol *FindCommonBlockContaining(const Symbol &original) {
|
|
const Symbol &root{GetAssociationRoot(original)};
|
|
const auto *details{root.detailsIf<ObjectEntityDetails>()};
|
|
return details ? details->commonBlock() : nullptr;
|
|
}
|
|
|
|
bool IsProcedurePointer(const Symbol &original) {
|
|
const Symbol &symbol{GetAssociationRoot(original)};
|
|
return symbol.has<ProcEntityDetails>() && IsPointer(symbol);
|
|
}
|
|
|
|
// 3.11 automatic data object
|
|
bool IsAutomatic(const Symbol &original) {
|
|
const Symbol &symbol{original.GetUltimate()};
|
|
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
if (!object->isDummy() && !IsAllocatable(symbol) && !IsPointer(symbol)) {
|
|
if (const DeclTypeSpec * type{symbol.GetType()}) {
|
|
// If a type parameter value is not a constant expression, the
|
|
// object is automatic.
|
|
if (type->category() == DeclTypeSpec::Character) {
|
|
if (const auto &length{
|
|
type->characterTypeSpec().length().GetExplicit()}) {
|
|
if (!evaluate::IsConstantExpr(*length)) {
|
|
return true;
|
|
}
|
|
}
|
|
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
|
|
for (const auto &pair : derived->parameters()) {
|
|
if (const auto &value{pair.second.GetExplicit()}) {
|
|
if (!evaluate::IsConstantExpr(*value)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// If an array bound is not a constant expression, the object is
|
|
// automatic.
|
|
for (const ShapeSpec &dim : object->shape()) {
|
|
if (const auto &lb{dim.lbound().GetExplicit()}) {
|
|
if (!evaluate::IsConstantExpr(*lb)) {
|
|
return true;
|
|
}
|
|
}
|
|
if (const auto &ub{dim.ubound().GetExplicit()}) {
|
|
if (!evaluate::IsConstantExpr(*ub)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IsSaved(const Symbol &original) {
|
|
const Symbol &symbol{GetAssociationRoot(original)};
|
|
const Scope &scope{symbol.owner()};
|
|
auto scopeKind{scope.kind()};
|
|
if (symbol.has<AssocEntityDetails>()) {
|
|
return false; // ASSOCIATE(non-variable)
|
|
} else if (scopeKind == Scope::Kind::DerivedType) {
|
|
return false; // this is a component
|
|
} else if (symbol.attrs().test(Attr::SAVE)) {
|
|
return true; // explicit SAVE attribute
|
|
} else if (IsDummy(symbol) || IsFunctionResult(symbol) ||
|
|
IsAutomatic(symbol) || IsNamedConstant(symbol)) {
|
|
return false;
|
|
} else if (scopeKind == Scope::Kind::Module ||
|
|
(scopeKind == Scope::Kind::MainProgram &&
|
|
(symbol.attrs().test(Attr::TARGET) || evaluate::IsCoarray(symbol)))) {
|
|
// 8.5.16p4
|
|
// In main programs, implied SAVE matters only for pointer
|
|
// initialization targets and coarrays.
|
|
// BLOCK DATA entities must all be in COMMON,
|
|
// which was checked above.
|
|
return true;
|
|
} else if (scope.kind() == Scope::Kind::Subprogram &&
|
|
scope.context().languageFeatures().IsEnabled(
|
|
common::LanguageFeature::DefaultSave) &&
|
|
!(scope.symbol() && scope.symbol()->attrs().test(Attr::RECURSIVE))) {
|
|
// -fno-automatic/-save/-Msave option applies to objects in
|
|
// executable subprograms unless they are explicitly RECURSIVE.
|
|
return true;
|
|
} else if (symbol.test(Symbol::Flag::InDataStmt)) {
|
|
return true;
|
|
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
|
|
object && object->init()) {
|
|
return true;
|
|
} else if (IsProcedurePointer(symbol) &&
|
|
symbol.get<ProcEntityDetails>().init()) {
|
|
return true;
|
|
} else if (scope.hasSAVE()) {
|
|
return true; // bare SAVE statement
|
|
} else if (const Symbol * block{FindCommonBlockContaining(symbol)};
|
|
block && block->attrs().test(Attr::SAVE)) {
|
|
return true; // in COMMON with SAVE
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool IsDummy(const Symbol &symbol) {
|
|
return std::visit(
|
|
common::visitors{[](const EntityDetails &x) { return x.isDummy(); },
|
|
[](const ObjectEntityDetails &x) { return x.isDummy(); },
|
|
[](const ProcEntityDetails &x) { return x.isDummy(); },
|
|
[](const SubprogramDetails &x) { return x.isDummy(); },
|
|
[](const auto &) { return false; }},
|
|
ResolveAssociations(symbol).details());
|
|
}
|
|
|
|
bool IsAssumedShape(const Symbol &symbol) {
|
|
const Symbol &ultimate{ResolveAssociations(symbol)};
|
|
const auto *object{ultimate.detailsIf<ObjectEntityDetails>()};
|
|
return object && object->CanBeAssumedShape() &&
|
|
!evaluate::IsAllocatableOrPointer(ultimate);
|
|
}
|
|
|
|
bool IsDeferredShape(const Symbol &symbol) {
|
|
const Symbol &ultimate{ResolveAssociations(symbol)};
|
|
const auto *object{ultimate.detailsIf<ObjectEntityDetails>()};
|
|
return object && object->CanBeDeferredShape() &&
|
|
evaluate::IsAllocatableOrPointer(ultimate);
|
|
}
|
|
|
|
bool IsFunctionResult(const Symbol &original) {
|
|
const Symbol &symbol{GetAssociationRoot(original)};
|
|
return (symbol.has<ObjectEntityDetails>() &&
|
|
symbol.get<ObjectEntityDetails>().isFuncResult()) ||
|
|
(symbol.has<ProcEntityDetails>() &&
|
|
symbol.get<ProcEntityDetails>().isFuncResult());
|
|
}
|
|
|
|
bool IsKindTypeParameter(const Symbol &symbol) {
|
|
const auto *param{symbol.GetUltimate().detailsIf<TypeParamDetails>()};
|
|
return param && param->attr() == common::TypeParamAttr::Kind;
|
|
}
|
|
|
|
bool IsLenTypeParameter(const Symbol &symbol) {
|
|
const auto *param{symbol.GetUltimate().detailsIf<TypeParamDetails>()};
|
|
return param && param->attr() == common::TypeParamAttr::Len;
|
|
}
|
|
|
|
bool IsExtensibleType(const DerivedTypeSpec *derived) {
|
|
return derived && !IsIsoCType(derived) &&
|
|
!derived->typeSymbol().attrs().test(Attr::BIND_C) &&
|
|
!derived->typeSymbol().get<DerivedTypeDetails>().sequence();
|
|
}
|
|
|
|
bool IsBuiltinDerivedType(const DerivedTypeSpec *derived, const char *name) {
|
|
if (!derived) {
|
|
return false;
|
|
} else {
|
|
const auto &symbol{derived->typeSymbol()};
|
|
return &symbol.owner() == symbol.owner().context().GetBuiltinsScope() &&
|
|
symbol.name() == "__builtin_"s + name;
|
|
}
|
|
}
|
|
|
|
bool IsIsoCType(const DerivedTypeSpec *derived) {
|
|
return IsBuiltinDerivedType(derived, "c_ptr") ||
|
|
IsBuiltinDerivedType(derived, "c_funptr");
|
|
}
|
|
|
|
bool IsTeamType(const DerivedTypeSpec *derived) {
|
|
return IsBuiltinDerivedType(derived, "team_type");
|
|
}
|
|
|
|
bool IsBadCoarrayType(const DerivedTypeSpec *derived) {
|
|
return IsTeamType(derived) || IsIsoCType(derived);
|
|
}
|
|
|
|
bool IsEventTypeOrLockType(const DerivedTypeSpec *derivedTypeSpec) {
|
|
return IsBuiltinDerivedType(derivedTypeSpec, "event_type") ||
|
|
IsBuiltinDerivedType(derivedTypeSpec, "lock_type");
|
|
}
|
|
|
|
int CountLenParameters(const DerivedTypeSpec &type) {
|
|
return std::count_if(type.parameters().begin(), type.parameters().end(),
|
|
[](const auto &pair) { return pair.second.isLen(); });
|
|
}
|
|
|
|
int CountNonConstantLenParameters(const DerivedTypeSpec &type) {
|
|
return std::count_if(
|
|
type.parameters().begin(), type.parameters().end(), [](const auto &pair) {
|
|
if (!pair.second.isLen()) {
|
|
return false;
|
|
} else if (const auto &expr{pair.second.GetExplicit()}) {
|
|
return !IsConstantExpr(*expr);
|
|
} else {
|
|
return true;
|
|
}
|
|
});
|
|
}
|
|
|
|
// Are the type parameters of type1 compile-time compatible with the
|
|
// corresponding kind type parameters of type2? Return true if all constant
|
|
// valued parameters are equal.
|
|
// Used to check assignment statements and argument passing. See 15.5.2.4(4)
|
|
bool AreTypeParamCompatible(const semantics::DerivedTypeSpec &type1,
|
|
const semantics::DerivedTypeSpec &type2) {
|
|
for (const auto &[name, param1] : type1.parameters()) {
|
|
if (semantics::MaybeIntExpr paramExpr1{param1.GetExplicit()}) {
|
|
if (IsConstantExpr(*paramExpr1)) {
|
|
const semantics::ParamValue *param2{type2.FindParameter(name)};
|
|
if (param2) {
|
|
if (semantics::MaybeIntExpr paramExpr2{param2->GetExplicit()}) {
|
|
if (IsConstantExpr(*paramExpr2)) {
|
|
if (ToInt64(*paramExpr1) != ToInt64(*paramExpr2)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const Symbol &GetUsedModule(const UseDetails &details) {
|
|
return DEREF(details.symbol().owner().symbol());
|
|
}
|
|
|
|
static const Symbol *FindFunctionResult(
|
|
const Symbol &original, UnorderedSymbolSet &seen) {
|
|
const Symbol &root{GetAssociationRoot(original)};
|
|
;
|
|
if (!seen.insert(root).second) {
|
|
return nullptr; // don't loop
|
|
}
|
|
return std::visit(
|
|
common::visitors{[](const SubprogramDetails &subp) {
|
|
return subp.isFunction() ? &subp.result() : nullptr;
|
|
},
|
|
[&](const ProcEntityDetails &proc) {
|
|
const Symbol *iface{proc.interface().symbol()};
|
|
return iface ? FindFunctionResult(*iface, seen) : nullptr;
|
|
},
|
|
[&](const ProcBindingDetails &binding) {
|
|
return FindFunctionResult(binding.symbol(), seen);
|
|
},
|
|
[](const auto &) -> const Symbol * { return nullptr; }},
|
|
root.details());
|
|
}
|
|
|
|
const Symbol *FindFunctionResult(const Symbol &symbol) {
|
|
UnorderedSymbolSet seen;
|
|
return FindFunctionResult(symbol, seen);
|
|
}
|
|
|
|
// These are here in Evaluate/tools.cpp so that Evaluate can use
|
|
// them; they cannot be defined in symbol.h due to the dependence
|
|
// on Scope.
|
|
|
|
bool SymbolSourcePositionCompare::operator()(
|
|
const SymbolRef &x, const SymbolRef &y) const {
|
|
return x->GetSemanticsContext().allCookedSources().Precedes(
|
|
x->name(), y->name());
|
|
}
|
|
bool SymbolSourcePositionCompare::operator()(
|
|
const MutableSymbolRef &x, const MutableSymbolRef &y) const {
|
|
return x->GetSemanticsContext().allCookedSources().Precedes(
|
|
x->name(), y->name());
|
|
}
|
|
|
|
SemanticsContext &Symbol::GetSemanticsContext() const {
|
|
return DEREF(owner_).context();
|
|
}
|
|
|
|
} // namespace Fortran::semantics
|