llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp

2164 lines
80 KiB
C++

//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#include "ARMAsmPrinter.h"
#include "ARM.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "InstPrinter/ARMInstPrinter.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cctype>
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
InConstantPool(false), OptimizationGoals(-1) {}
void ARMAsmPrinter::EmitFunctionBodyEnd() {
// Make sure to terminate any constant pools that were at the end
// of the function.
if (!InConstantPool)
return;
InConstantPool = false;
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
}
void ARMAsmPrinter::EmitFunctionEntryLabel() {
if (AFI->isThumbFunction()) {
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
OutStreamer->EmitThumbFunc(CurrentFnSym);
} else {
OutStreamer->EmitAssemblerFlag(MCAF_Code32);
}
OutStreamer->EmitLabel(CurrentFnSym);
}
void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
assert(Size && "C++ constructor pointer had zero size!");
const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
assert(GV && "C++ constructor pointer was not a GlobalValue!");
const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
ARMII::MO_NO_FLAG),
(Subtarget->isTargetELF()
? MCSymbolRefExpr::VK_ARM_TARGET1
: MCSymbolRefExpr::VK_None),
OutContext);
OutStreamer->EmitValue(E, Size);
}
void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
if (PromotedGlobals.count(GV))
// The global was promoted into a constant pool. It should not be emitted.
return;
AsmPrinter::EmitGlobalVariable(GV);
}
/// runOnMachineFunction - This uses the EmitInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
Subtarget = &MF.getSubtarget<ARMSubtarget>();
SetupMachineFunction(MF);
const Function* F = MF.getFunction();
const TargetMachine& TM = MF.getTarget();
// Collect all globals that had their storage promoted to a constant pool.
// Functions are emitted before variables, so this accumulates promoted
// globals from all functions in PromotedGlobals.
for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
PromotedGlobals.insert(GV);
// Calculate this function's optimization goal.
unsigned OptimizationGoal;
if (F->hasFnAttribute(Attribute::OptimizeNone))
// For best debugging illusion, speed and small size sacrificed
OptimizationGoal = 6;
else if (F->optForMinSize())
// Aggressively for small size, speed and debug illusion sacrificed
OptimizationGoal = 4;
else if (F->optForSize())
// For small size, but speed and debugging illusion preserved
OptimizationGoal = 3;
else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
// Aggressively for speed, small size and debug illusion sacrificed
OptimizationGoal = 2;
else if (TM.getOptLevel() > CodeGenOpt::None)
// For speed, but small size and good debug illusion preserved
OptimizationGoal = 1;
else // TM.getOptLevel() == CodeGenOpt::None
// For good debugging, but speed and small size preserved
OptimizationGoal = 5;
// Combine a new optimization goal with existing ones.
if (OptimizationGoals == -1) // uninitialized goals
OptimizationGoals = OptimizationGoal;
else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
OptimizationGoals = 0;
if (Subtarget->isTargetCOFF()) {
bool Internal = F->hasInternalLinkage();
COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
: COFF::IMAGE_SYM_CLASS_EXTERNAL;
int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
OutStreamer->EmitCOFFSymbolStorageClass(Scl);
OutStreamer->EmitCOFFSymbolType(Type);
OutStreamer->EndCOFFSymbolDef();
}
// Emit the rest of the function body.
EmitFunctionBody();
// Emit the XRay table for this function.
EmitXRayTable();
// If we need V4T thumb mode Register Indirect Jump pads, emit them.
// These are created per function, rather than per TU, since it's
// relatively easy to exceed the thumb branch range within a TU.
if (! ThumbIndirectPads.empty()) {
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
EmitAlignment(1);
for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
.addReg(ThumbIndirectPads[i].first)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
}
ThumbIndirectPads.clear();
}
// We didn't modify anything.
return false;
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned TF = MO.getTargetFlags();
switch (MO.getType()) {
default: llvm_unreachable("<unknown operand type>");
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
assert(!MO.getSubReg() && "Subregs should be eliminated!");
if(ARM::GPRPairRegClass.contains(Reg)) {
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Reg = TRI->getSubReg(Reg, ARM::gsub_0);
}
O << ARMInstPrinter::getRegisterName(Reg);
break;
}
case MachineOperand::MO_Immediate: {
int64_t Imm = MO.getImm();
O << '#';
if (TF == ARMII::MO_LO16)
O << ":lower16:";
else if (TF == ARMII::MO_HI16)
O << ":upper16:";
O << Imm;
break;
}
case MachineOperand::MO_MachineBasicBlock:
MO.getMBB()->getSymbol()->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
if (TF & ARMII::MO_LO16)
O << ":lower16:";
else if (TF & ARMII::MO_HI16)
O << ":upper16:";
GetARMGVSymbol(GV, TF)->print(O, MAI);
printOffset(MO.getOffset(), O);
break;
}
case MachineOperand::MO_ConstantPoolIndex:
GetCPISymbol(MO.getIndex())->print(O, MAI);
break;
}
}
//===--------------------------------------------------------------------===//
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel(unsigned uid) const {
const DataLayout &DL = getDataLayout();
SmallString<60> Name;
raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid;
return OutContext.getOrCreateSymbol(Name);
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "["
<< ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
<< "]";
return false;
}
LLVM_FALLTHROUGH;
case 'c': // Don't print "#" before an immediate operand.
if (!MI->getOperand(OpNum).isImm())
return true;
O << MI->getOperand(OpNum).getImm();
return false;
case 'P': // Print a VFP double precision register.
case 'q': // Print a NEON quad precision register.
printOperand(MI, OpNum, O);
return false;
case 'y': // Print a VFP single precision register as indexed double.
if (MI->getOperand(OpNum).isReg()) {
unsigned Reg = MI->getOperand(OpNum).getReg();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
// Find the 'd' register that has this 's' register as a sub-register,
// and determine the lane number.
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
if (!ARM::DPRRegClass.contains(*SR))
continue;
bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
return false;
}
}
return true;
case 'B': // Bitwise inverse of integer or symbol without a preceding #.
if (!MI->getOperand(OpNum).isImm())
return true;
O << ~(MI->getOperand(OpNum).getImm());
return false;
case 'L': // The low 16 bits of an immediate constant.
if (!MI->getOperand(OpNum).isImm())
return true;
O << (MI->getOperand(OpNum).getImm() & 0xffff);
return false;
case 'M': { // A register range suitable for LDM/STM.
if (!MI->getOperand(OpNum).isReg())
return true;
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned RegBegin = MO.getReg();
// This takes advantage of the 2 operand-ness of ldm/stm and that we've
// already got the operands in registers that are operands to the
// inline asm statement.
O << "{";
if (ARM::GPRPairRegClass.contains(RegBegin)) {
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
}
O << ARMInstPrinter::getRegisterName(RegBegin);
// FIXME: The register allocator not only may not have given us the
// registers in sequence, but may not be in ascending registers. This
// will require changes in the register allocator that'll need to be
// propagated down here if the operands change.
unsigned RegOps = OpNum + 1;
while (MI->getOperand(RegOps).isReg()) {
O << ", "
<< ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
RegOps++;
}
O << "}";
return false;
}
case 'R': // The most significant register of a pair.
case 'Q': { // The least significant register of a pair.
if (OpNum == 0)
return true;
const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
if (!FlagsOP.isImm())
return true;
unsigned Flags = FlagsOP.getImm();
// This operand may not be the one that actually provides the register. If
// it's tied to a previous one then we should refer instead to that one
// for registers and their classes.
unsigned TiedIdx;
if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
unsigned OpFlags = MI->getOperand(OpNum).getImm();
OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
}
Flags = MI->getOperand(OpNum).getImm();
// Later code expects OpNum to be pointing at the register rather than
// the flags.
OpNum += 1;
}
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
unsigned RC;
InlineAsm::hasRegClassConstraint(Flags, RC);
if (RC == ARM::GPRPairRegClassID) {
if (NumVals != 1)
return true;
const MachineOperand &MO = MI->getOperand(OpNum);
if (!MO.isReg())
return true;
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
ARM::gsub_0 : ARM::gsub_1);
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
if (NumVals != 2)
return true;
unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
if (RegOp >= MI->getNumOperands())
return true;
const MachineOperand &MO = MI->getOperand(RegOp);
if (!MO.isReg())
return true;
unsigned Reg = MO.getReg();
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
case 'e': // The low doubleword register of a NEON quad register.
case 'f': { // The high doubleword register of a NEON quad register.
if (!MI->getOperand(OpNum).isReg())
return true;
unsigned Reg = MI->getOperand(OpNum).getReg();
if (!ARM::QPRRegClass.contains(Reg))
return true;
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
ARM::dsub_0 : ARM::dsub_1);
O << ARMInstPrinter::getRegisterName(SubReg);
return false;
}
// This modifier is not yet supported.
case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
return true;
case 'H': { // The highest-numbered register of a pair.
const MachineOperand &MO = MI->getOperand(OpNum);
if (!MO.isReg())
return true;
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
unsigned Reg = MO.getReg();
if(!ARM::GPRPairRegClass.contains(Reg))
return false;
Reg = TRI->getSubReg(Reg, ARM::gsub_1);
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
}
}
printOperand(MI, OpNum, O);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
case 'A': // A memory operand for a VLD1/VST1 instruction.
default: return true; // Unknown modifier.
case 'm': // The base register of a memory operand.
if (!MI->getOperand(OpNum).isReg())
return true;
O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
return false;
}
}
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
return false;
}
static bool isThumb(const MCSubtargetInfo& STI) {
return STI.getFeatureBits()[ARM::ModeThumb];
}
void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
const MCSubtargetInfo *EndInfo) const {
// If either end mode is unknown (EndInfo == NULL) or different than
// the start mode, then restore the start mode.
const bool WasThumb = isThumb(StartInfo);
if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
}
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
const Triple &TT = TM.getTargetTriple();
// Use unified assembler syntax.
OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
// Emit ARM Build Attributes
if (TT.isOSBinFormatELF())
emitAttributes();
// Use the triple's architecture and subarchitecture to determine
// if we're thumb for the purposes of the top level code16 assembler
// flag.
bool isThumb = TT.getArch() == Triple::thumb ||
TT.getArch() == Triple::thumbeb ||
TT.getSubArch() == Triple::ARMSubArch_v7m ||
TT.getSubArch() == Triple::ARMSubArch_v6m;
if (!M.getModuleInlineAsm().empty() && isThumb)
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
}
static void
emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
MachineModuleInfoImpl::StubValueTy &MCSym) {
// L_foo$stub:
OutStreamer.EmitLabel(StubLabel);
// .indirect_symbol _foo
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers need to be indirect and pc-rel. We accomplish this by
// using NLPs; however, sometimes the types are local to the file.
// We need to fill in the value for the NLP in those cases.
OutStreamer.EmitValue(
MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
4 /*size*/);
}
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
const Triple &TT = TM.getTargetTriple();
if (TT.isOSBinFormatMachO()) {
// All darwin targets use mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output non-lazy-pointers for external and common global variables.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (auto &Stub : Stubs)
emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
Stubs.clear();
OutStreamer->AddBlankLine();
}
Stubs = MMIMacho.GetThreadLocalGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
EmitAlignment(2);
for (auto &Stub : Stubs)
emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
Stubs.clear();
OutStreamer->AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
if (TT.isOSBinFormatCOFF()) {
const auto &TLOF =
static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering());
std::string Flags;
raw_string_ostream OS(Flags);
for (const auto &Function : M)
TLOF.emitLinkerFlagsForGlobal(OS, &Function);
for (const auto &Global : M.globals())
TLOF.emitLinkerFlagsForGlobal(OS, &Global);
for (const auto &Alias : M.aliases())
TLOF.emitLinkerFlagsForGlobal(OS, &Alias);
OS.flush();
// Output collected flags
if (!Flags.empty()) {
OutStreamer->SwitchSection(TLOF.getDrectveSection());
OutStreamer->EmitBytes(Flags);
}
}
// The last attribute to be emitted is ABI_optimization_goals
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
if (OptimizationGoals > 0 &&
(Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
Subtarget->isTargetMuslAEABI()))
ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
OptimizationGoals = -1;
ATS.finishAttributeSection();
}
static bool isV8M(const ARMSubtarget *Subtarget) {
// Note that v8M Baseline is a subset of v6T2!
return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) ||
Subtarget->hasV8MMainlineOps();
}
//===----------------------------------------------------------------------===//
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
// FIXME:
// The following seem like one-off assembler flags, but they actually need
// to appear in the .ARM.attributes section in ELF.
// Instead of subclassing the MCELFStreamer, we do the work here.
static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
const ARMSubtarget *Subtarget) {
if (CPU == "xscale")
return ARMBuildAttrs::v5TEJ;
if (Subtarget->hasV8Ops()) {
if (Subtarget->isRClass())
return ARMBuildAttrs::v8_R;
return ARMBuildAttrs::v8_A;
} else if (Subtarget->hasV8MMainlineOps())
return ARMBuildAttrs::v8_M_Main;
else if (Subtarget->hasV7Ops()) {
if (Subtarget->isMClass() && Subtarget->hasDSP())
return ARMBuildAttrs::v7E_M;
return ARMBuildAttrs::v7;
} else if (Subtarget->hasV6T2Ops())
return ARMBuildAttrs::v6T2;
else if (Subtarget->hasV8MBaselineOps())
return ARMBuildAttrs::v8_M_Base;
else if (Subtarget->hasV6MOps())
return ARMBuildAttrs::v6S_M;
else if (Subtarget->hasV6Ops())
return ARMBuildAttrs::v6;
else if (Subtarget->hasV5TEOps())
return ARMBuildAttrs::v5TE;
else if (Subtarget->hasV5TOps())
return ARMBuildAttrs::v5T;
else if (Subtarget->hasV4TOps())
return ARMBuildAttrs::v4T;
else
return ARMBuildAttrs::v4;
}
// Returns true if all functions have the same function attribute value.
// It also returns true when the module has no functions.
static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
StringRef Value) {
return !any_of(M, [&](const Function &F) {
return F.getFnAttribute(Attr).getValueAsString() != Value;
});
}
void ARMAsmPrinter::emitAttributes() {
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
ATS.switchVendor("aeabi");
// Compute ARM ELF Attributes based on the default subtarget that
// we'd have constructed. The existing ARM behavior isn't LTO clean
// anyhow.
// FIXME: For ifunc related functions we could iterate over and look
// for a feature string that doesn't match the default one.
const Triple &TT = TM.getTargetTriple();
StringRef CPU = TM.getTargetCPU();
StringRef FS = TM.getTargetFeatureString();
std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
else
ArchFS = FS;
}
const ARMBaseTargetMachine &ATM =
static_cast<const ARMBaseTargetMachine &>(TM);
const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
const std::string &CPUString = STI.getCPUString();
if (!StringRef(CPUString).startswith("generic")) {
// FIXME: remove krait check when GNU tools support krait cpu
if (STI.isKrait()) {
ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
// We consider krait as a "cortex-a9" + hwdiv CPU
// Enable hwdiv through ".arch_extension idiv"
if (STI.hasDivide() || STI.hasDivideInARMMode())
ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM);
} else
ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
}
ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
// Tag_CPU_arch_profile must have the default value of 0 when "Architecture
// profile is not applicable (e.g. pre v7, or cross-profile code)".
if (STI.hasV7Ops() || isV8M(&STI)) {
if (STI.isAClass()) {
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::ApplicationProfile);
} else if (STI.isRClass()) {
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::RealTimeProfile);
} else if (STI.isMClass()) {
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::MicroControllerProfile);
}
}
ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
STI.hasARMOps() ? ARMBuildAttrs::Allowed
: ARMBuildAttrs::Not_Allowed);
if (isV8M(&STI)) {
ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumbDerived);
} else if (STI.isThumb1Only()) {
ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
} else if (STI.hasThumb2()) {
ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumb32);
}
if (STI.hasNEON()) {
/* NEON is not exactly a VFP architecture, but GAS emit one of
* neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
if (STI.hasFPARMv8()) {
if (STI.hasCrypto())
ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
else
ATS.emitFPU(ARM::FK_NEON_FP_ARMV8);
} else if (STI.hasVFP4())
ATS.emitFPU(ARM::FK_NEON_VFPV4);
else
ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON);
// Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
if (STI.hasV8Ops())
ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a:
ARMBuildAttrs::AllowNeonARMv8);
} else {
if (STI.hasFPARMv8())
// FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
// FPU, but there are two different names for it depending on the CPU.
ATS.emitFPU(STI.hasD16()
? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16)
: ARM::FK_FP_ARMV8);
else if (STI.hasVFP4())
ATS.emitFPU(STI.hasD16()
? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16)
: ARM::FK_VFPV4);
else if (STI.hasVFP3())
ATS.emitFPU(STI.hasD16()
// +d16
? (STI.isFPOnlySP()
? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD)
: (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16))
// -d16
: (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3));
else if (STI.hasVFP2())
ATS.emitFPU(ARM::FK_VFPV2);
}
// RW data addressing.
if (isPositionIndependent()) {
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
ARMBuildAttrs::AddressRWPCRel);
} else if (STI.isRWPI()) {
// RWPI specific attributes.
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
ARMBuildAttrs::AddressRWSBRel);
}
// RO data addressing.
if (isPositionIndependent() || STI.isROPI()) {
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
ARMBuildAttrs::AddressROPCRel);
}
// GOT use.
if (isPositionIndependent()) {
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
ARMBuildAttrs::AddressGOT);
} else {
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
ARMBuildAttrs::AddressDirect);
}
// Set FP Denormals.
if (checkFunctionsAttributeConsistency(*MMI->getModule(),
"denormal-fp-math",
"preserve-sign") ||
TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::PreserveFPSign);
else if (checkFunctionsAttributeConsistency(*MMI->getModule(),
"denormal-fp-math",
"positive-zero") ||
TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::PositiveZero);
else if (!TM.Options.UnsafeFPMath)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::IEEEDenormals);
else {
if (!STI.hasVFP2()) {
// When the target doesn't have an FPU (by design or
// intention), the assumptions made on the software support
// mirror that of the equivalent hardware support *if it
// existed*. For v7 and better we indicate that denormals are
// flushed preserving sign, and for V6 we indicate that
// denormals are flushed to positive zero.
if (STI.hasV7Ops())
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::PreserveFPSign);
} else if (STI.hasVFP3()) {
// In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
// the sign bit of the zero matches the sign bit of the input or
// result that is being flushed to zero.
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::PreserveFPSign);
}
// For VFPv2 implementations it is implementation defined as
// to whether denormals are flushed to positive zero or to
// whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
// LLVM has chosen to flush this to positive zero (most likely for
// GCC compatibility), so that's the chosen value here (the
// absence of its emission implies zero).
}
// Set FP exceptions and rounding
if (checkFunctionsAttributeConsistency(*MMI->getModule(),
"no-trapping-math", "true") ||
TM.Options.NoTrappingFPMath)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
ARMBuildAttrs::Not_Allowed);
else if (!TM.Options.UnsafeFPMath) {
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
// If the user has permitted this code to choose the IEEE 754
// rounding at run-time, emit the rounding attribute.
if (TM.Options.HonorSignDependentRoundingFPMathOption)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
}
// TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
// equivalent of GCC's -ffinite-math-only flag.
if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::Allowed);
else
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::AllowIEE754);
if (STI.allowsUnalignedMem())
ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
ARMBuildAttrs::Allowed);
else
ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
ARMBuildAttrs::Not_Allowed);
// FIXME: add more flags to ARMBuildAttributes.h
// 8-bytes alignment stuff.
ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
// ABI_HardFP_use attribute to indicate single precision FP.
if (STI.isFPOnlySP())
ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
ARMBuildAttrs::HardFPSinglePrecision);
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
// FIXME: Should we signal R9 usage?
if (STI.hasFP16())
ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
// FIXME: To support emitting this build attribute as GCC does, the
// -mfp16-format option and associated plumbing must be
// supported. For now the __fp16 type is exposed by default, so this
// attribute should be emitted with value 1.
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
ARMBuildAttrs::FP16FormatIEEE);
if (STI.hasMPExtension())
ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
// Hardware divide in ARM mode is part of base arch, starting from ARMv8.
// If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
// It is not possible to produce DisallowDIV: if hwdiv is present in the base
// arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
// AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
// otherwise, the default value (AllowDIVIfExists) applies.
if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
if (STI.hasDSP() && isV8M(&STI))
ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
if (MMI) {
if (const Module *SourceModule = MMI->getModule()) {
// ABI_PCS_wchar_t to indicate wchar_t width
// FIXME: There is no way to emit value 0 (wchar_t prohibited).
if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
SourceModule->getModuleFlag("wchar_size"))) {
int WCharWidth = WCharWidthValue->getZExtValue();
assert((WCharWidth == 2 || WCharWidth == 4) &&
"wchar_t width must be 2 or 4 bytes");
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
}
// ABI_enum_size to indicate enum width
// FIXME: There is no way to emit value 0 (enums prohibited) or value 3
// (all enums contain a value needing 32 bits to encode).
if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
SourceModule->getModuleFlag("min_enum_size"))) {
int EnumWidth = EnumWidthValue->getZExtValue();
assert((EnumWidth == 1 || EnumWidth == 4) &&
"Minimum enum width must be 1 or 4 bytes");
int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
}
}
}
// We currently do not support using R9 as the TLS pointer.
if (STI.isRWPI())
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
ARMBuildAttrs::R9IsSB);
else if (STI.isR9Reserved())
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
ARMBuildAttrs::R9Reserved);
else
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
ARMBuildAttrs::R9IsGPR);
if (STI.hasTrustZone() && STI.hasVirtualization())
ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
ARMBuildAttrs::AllowTZVirtualization);
else if (STI.hasTrustZone())
ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
ARMBuildAttrs::AllowTZ);
else if (STI.hasVirtualization())
ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
ARMBuildAttrs::AllowVirtualization);
}
//===----------------------------------------------------------------------===//
static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
unsigned LabelId, MCContext &Ctx) {
MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
return Label;
}
static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
switch (Modifier) {
case ARMCP::no_modifier:
return MCSymbolRefExpr::VK_None;
case ARMCP::TLSGD:
return MCSymbolRefExpr::VK_TLSGD;
case ARMCP::TPOFF:
return MCSymbolRefExpr::VK_TPOFF;
case ARMCP::GOTTPOFF:
return MCSymbolRefExpr::VK_GOTTPOFF;
case ARMCP::SBREL:
return MCSymbolRefExpr::VK_ARM_SBREL;
case ARMCP::GOT_PREL:
return MCSymbolRefExpr::VK_ARM_GOT_PREL;
case ARMCP::SECREL:
return MCSymbolRefExpr::VK_SECREL;
}
llvm_unreachable("Invalid ARMCPModifier!");
}
MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
unsigned char TargetFlags) {
if (Subtarget->isTargetMachO()) {
bool IsIndirect =
(TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
if (!IsIndirect)
return getSymbol(GV);
// FIXME: Remove this when Darwin transition to @GOT like syntax.
MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoMachO &MMIMachO =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoImpl::StubValueTy &StubSym =
GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
: MMIMachO.getGVStubEntry(MCSym);
if (!StubSym.getPointer())
StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
!GV->hasInternalLinkage());
return MCSym;
} else if (Subtarget->isTargetCOFF()) {
assert(Subtarget->isTargetWindows() &&
"Windows is the only supported COFF target");
bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
if (!IsIndirect)
return getSymbol(GV);
SmallString<128> Name;
Name = "__imp_";
getNameWithPrefix(Name, GV);
return OutContext.getOrCreateSymbol(Name);
} else if (Subtarget->isTargetELF()) {
return getSymbol(GV);
}
llvm_unreachable("unexpected target");
}
void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
const DataLayout &DL = getDataLayout();
int Size = DL.getTypeAllocSize(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
if (ACPV->isPromotedGlobal()) {
// This constant pool entry is actually a global whose storage has been
// promoted into the constant pool. This global may be referenced still
// by debug information, and due to the way AsmPrinter is set up, the debug
// info is immutable by the time we decide to promote globals to constant
// pools. Because of this, we need to ensure we emit a symbol for the global
// with private linkage (the default) so debug info can refer to it.
//
// However, if this global is promoted into several functions we must ensure
// we don't try and emit duplicate symbols!
auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
auto *GV = ACPC->getPromotedGlobal();
if (!EmittedPromotedGlobalLabels.count(GV)) {
MCSymbol *GVSym = getSymbol(GV);
OutStreamer->EmitLabel(GVSym);
EmittedPromotedGlobalLabels.insert(GV);
}
return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
}
MCSymbol *MCSym;
if (ACPV->isLSDA()) {
MCSym = getCurExceptionSym();
} else if (ACPV->isBlockAddress()) {
const BlockAddress *BA =
cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
MCSym = GetBlockAddressSymbol(BA);
} else if (ACPV->isGlobalValue()) {
const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
// On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
// flag the global as MO_NONLAZY.
unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
MCSym = GetARMGVSymbol(GV, TF);
} else if (ACPV->isMachineBasicBlock()) {
const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
MCSym = MBB->getSymbol();
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
MCSym = GetExternalSymbolSymbol(Sym);
}
// Create an MCSymbol for the reference.
const MCExpr *Expr =
MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
OutContext);
if (ACPV->getPCAdjustment()) {
MCSymbol *PCLabel =
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
ACPV->getLabelId(), OutContext);
const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
PCRelExpr =
MCBinaryExpr::createAdd(PCRelExpr,
MCConstantExpr::create(ACPV->getPCAdjustment(),
OutContext),
OutContext);
if (ACPV->mustAddCurrentAddress()) {
// We want "(<expr> - .)", but MC doesn't have a concept of the '.'
// label, so just emit a local label end reference that instead.
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->EmitLabel(DotSym);
const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
}
Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
}
OutStreamer->EmitValue(Expr, Size);
}
void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
const MachineOperand &MO1 = MI->getOperand(1);
unsigned JTI = MO1.getIndex();
// Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
// ARM mode tables.
EmitAlignment(2);
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
OutStreamer->EmitLabel(JTISymbol);
// Mark the jump table as data-in-code.
OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
// Construct an MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr)
//
// For example, a table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .word (LBB0 - LJTI_0_0)
// .word (LBB1 - LJTI_0_0)
const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
if (isPositionIndependent() || Subtarget->isROPI())
Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
OutContext),
OutContext);
// If we're generating a table of Thumb addresses in static relocation
// model, we need to add one to keep interworking correctly.
else if (AFI->isThumbFunction())
Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
OutContext);
OutStreamer->EmitValue(Expr, 4);
}
// Mark the end of jump table data-in-code region.
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
}
void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
const MachineOperand &MO1 = MI->getOperand(1);
unsigned JTI = MO1.getIndex();
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
OutStreamer->EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
OutContext);
// If this isn't a TBB or TBH, the entries are direct branch instructions.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
.addExpr(MBBSymbolExpr)
.addImm(ARMCC::AL)
.addReg(0));
}
}
void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
unsigned OffsetWidth) {
assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
const MachineOperand &MO1 = MI->getOperand(1);
unsigned JTI = MO1.getIndex();
if (Subtarget->isThumb1Only())
EmitAlignment(2);
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
OutStreamer->EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
// Mark the jump table as data-in-code.
OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
: MCDR_DataRegionJT16);
for (auto MBB : JTBBs) {
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
OutContext);
// Otherwise it's an offset from the dispatch instruction. Construct an
// MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TBBInstAddr + 4) / 2
//
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .byte (LBB0 - (LCPI0_0 + 4)) / 2
// .byte (LBB1 - (LCPI0_0 + 4)) / 2
// where LCPI0_0 is a label defined just before the TBB instruction using
// this table.
MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
const MCExpr *Expr = MCBinaryExpr::createAdd(
MCSymbolRefExpr::create(TBInstPC, OutContext),
MCConstantExpr::create(4, OutContext), OutContext);
Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
OutContext);
OutStreamer->EmitValue(Expr, OffsetWidth);
}
// Mark the end of jump table data-in-code region. 32-bit offsets use
// actual branch instructions here, so we don't mark those as a data-region
// at all.
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
// Make sure the next instruction is 2-byte aligned.
EmitAlignment(1);
}
void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
assert(MI->getFlag(MachineInstr::FrameSetup) &&
"Only instruction which are involved into frame setup code are allowed");
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
unsigned Opc = MI->getOpcode();
unsigned SrcReg, DstReg;
if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
// Two special cases:
// 1) tPUSH does not have src/dst regs.
// 2) for Thumb1 code we sometimes materialize the constant via constpool
// load. Yes, this is pretty fragile, but for now I don't see better
// way... :(
SrcReg = DstReg = ARM::SP;
} else {
SrcReg = MI->getOperand(1).getReg();
DstReg = MI->getOperand(0).getReg();
}
// Try to figure out the unwinding opcode out of src / dst regs.
if (MI->mayStore()) {
// Register saves.
assert(DstReg == ARM::SP &&
"Only stack pointer as a destination reg is supported");
SmallVector<unsigned, 4> RegList;
// Skip src & dst reg, and pred ops.
unsigned StartOp = 2 + 2;
// Use all the operands.
unsigned NumOffset = 0;
switch (Opc) {
default:
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
case ARM::tPUSH:
// Special case here: no src & dst reg, but two extra imp ops.
StartOp = 2; NumOffset = 2;
case ARM::STMDB_UPD:
case ARM::t2STMDB_UPD:
case ARM::VSTMDDB_UPD:
assert(SrcReg == ARM::SP &&
"Only stack pointer as a source reg is supported");
for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
i != NumOps; ++i) {
const MachineOperand &MO = MI->getOperand(i);
// Actually, there should never be any impdef stuff here. Skip it
// temporary to workaround PR11902.
if (MO.isImplicit())
continue;
RegList.push_back(MO.getReg());
}
break;
case ARM::STR_PRE_IMM:
case ARM::STR_PRE_REG:
case ARM::t2STR_PRE:
assert(MI->getOperand(2).getReg() == ARM::SP &&
"Only stack pointer as a source reg is supported");
RegList.push_back(SrcReg);
break;
}
if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
} else {
// Changes of stack / frame pointer.
if (SrcReg == ARM::SP) {
int64_t Offset = 0;
switch (Opc) {
default:
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
case ARM::MOVr:
case ARM::tMOVr:
Offset = 0;
break;
case ARM::ADDri:
case ARM::t2ADDri:
Offset = -MI->getOperand(2).getImm();
break;
case ARM::SUBri:
case ARM::t2SUBri:
Offset = MI->getOperand(2).getImm();
break;
case ARM::tSUBspi:
Offset = MI->getOperand(2).getImm()*4;
break;
case ARM::tADDspi:
case ARM::tADDrSPi:
Offset = -MI->getOperand(2).getImm()*4;
break;
case ARM::tLDRpci: {
// Grab the constpool index and check, whether it corresponds to
// original or cloned constpool entry.
unsigned CPI = MI->getOperand(1).getIndex();
const MachineConstantPool *MCP = MF.getConstantPool();
if (CPI >= MCP->getConstants().size())
CPI = AFI.getOriginalCPIdx(CPI);
assert(CPI != -1U && "Invalid constpool index");
// Derive the actual offset.
const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
// FIXME: Check for user, it should be "add" instruction!
Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
break;
}
}
if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
if (DstReg == FramePtr && FramePtr != ARM::SP)
// Set-up of the frame pointer. Positive values correspond to "add"
// instruction.
ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
else if (DstReg == ARM::SP) {
// Change of SP by an offset. Positive values correspond to "sub"
// instruction.
ATS.emitPad(Offset);
} else {
// Move of SP to a register. Positive values correspond to an "add"
// instruction.
ATS.emitMovSP(DstReg, -Offset);
}
}
} else if (DstReg == ARM::SP) {
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
}
else {
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
}
}
}
// Simple pseudo-instructions have their lowering (with expansion to real
// instructions) auto-generated.
#include "ARMGenMCPseudoLowering.inc"
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
const DataLayout &DL = getDataLayout();
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
// If we just ended a constant pool, mark it as such.
if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
InConstantPool = false;
}
// Emit unwinding stuff for frame-related instructions
if (Subtarget->isTargetEHABICompatible() &&
MI->getFlag(MachineInstr::FrameSetup))
EmitUnwindingInstruction(MI);
// Do any auto-generated pseudo lowerings.
if (emitPseudoExpansionLowering(*OutStreamer, MI))
return;
assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
"Pseudo flag setting opcode should be expanded early");
// Check for manual lowerings.
unsigned Opc = MI->getOpcode();
switch (Opc) {
case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
case ARM::LEApcrel:
case ARM::tLEApcrel:
case ARM::t2LEApcrel: {
// FIXME: Need to also handle globals and externals
MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
ARM::t2LEApcrel ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
: ARM::ADR))
.addReg(MI->getOperand(0).getReg())
.addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
// Add predicate operands.
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg()));
return;
}
case ARM::LEApcrelJT:
case ARM::tLEApcrelJT:
case ARM::t2LEApcrelJT: {
MCSymbol *JTIPICSymbol =
GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
ARM::t2LEApcrelJT ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
: ARM::ADR))
.addReg(MI->getOperand(0).getReg())
.addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
// Add predicate operands.
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg()));
return;
}
// Darwin call instructions are just normal call instructions with different
// clobber semantics (they clobber R9).
case ARM::BX_CALL: {
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
.addReg(MI->getOperand(0).getReg()));
return;
}
case ARM::tBX_CALL: {
if (Subtarget->hasV5TOps())
llvm_unreachable("Expected BLX to be selected for v5t+");
// On ARM v4t, when doing a call from thumb mode, we need to ensure
// that the saved lr has its LSB set correctly (the arch doesn't
// have blx).
// So here we generate a bl to a small jump pad that does bx rN.
// The jump pads are emitted after the function body.
unsigned TReg = MI->getOperand(0).getReg();
MCSymbol *TRegSym = nullptr;
for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
if (ThumbIndirectPads[i].first == TReg) {
TRegSym = ThumbIndirectPads[i].second;
break;
}
}
if (!TRegSym) {
TRegSym = OutContext.createTempSymbol();
ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
}
// Create a link-saving branch to the Reg Indirect Jump Pad.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
// Predicate comes first here.
.addImm(ARMCC::AL).addReg(0)
.addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
return;
}
case ARM::BMOVPCRX_CALL: {
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
return;
}
case ARM::BMOVPCB_CALL: {
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
const MachineOperand &Op = MI->getOperand(0);
const GlobalValue *GV = Op.getGlobal();
const unsigned TF = Op.getTargetFlags();
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
.addExpr(GVSymExpr)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::MOVi16_ga_pcrel:
case ARM::t2MOVi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
unsigned TF = MI->getOperand(1).getTargetFlags();
const GlobalValue *GV = MI->getOperand(1).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
MCSymbol *LabelSym =
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
MCBinaryExpr::createAdd(LabelSymExpr,
MCConstantExpr::create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::MOVTi16_ga_pcrel:
case ARM::t2MOVTi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
? ARM::MOVTi16 : ARM::t2MOVTi16);
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
unsigned TF = MI->getOperand(2).getTargetFlags();
const GlobalValue *GV = MI->getOperand(2).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
MCSymbol *LabelSym =
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
MI->getOperand(3).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
MCBinaryExpr::createAdd(LabelSymExpr,
MCConstantExpr::create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::tPICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext));
// Form and emit the add.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::PICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc, r0
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext));
// Form and emit the add.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
.addReg(MI->getOperand(1).getReg())
// Add predicate operands.
.addImm(MI->getOperand(3).getImm())
.addReg(MI->getOperand(4).getReg())
// Add 's' bit operand (always reg0 for this)
.addReg(0));
return;
}
case ARM::PICSTR:
case ARM::PICSTRB:
case ARM::PICSTRH:
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICLDRH:
case ARM::PICLDRSB:
case ARM::PICLDRSH: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// OP r0, [pc, r0]
// The LCP0 label is referenced by a constant pool entry in order to get
// a PC-relative address at the ldr instruction.
// Emit the label.
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext));
// Form and emit the load
unsigned Opcode;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case ARM::PICSTR: Opcode = ARM::STRrs; break;
case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
case ARM::PICSTRH: Opcode = ARM::STRH; break;
case ARM::PICLDR: Opcode = ARM::LDRrs; break;
case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
}
EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
.addReg(MI->getOperand(1).getReg())
.addImm(0)
// Add predicate operands.
.addImm(MI->getOperand(3).getImm())
.addReg(MI->getOperand(4).getReg()));
return;
}
case ARM::CONSTPOOL_ENTRY: {
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
/// in the function. The first operand is the ID# for this instruction, the
/// second is the index into the MachineConstantPool that this is, the third
/// is the size in bytes of this constant pool entry.
/// The required alignment is specified on the basic block holding this MI.
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
// If this is the first entry of the pool, mark it.
if (!InConstantPool) {
OutStreamer->EmitDataRegion(MCDR_DataRegion);
InConstantPool = true;
}
OutStreamer->EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(DL, MCPE.Val.ConstVal);
return;
}
case ARM::JUMPTABLE_ADDRS:
EmitJumpTableAddrs(MI);
return;
case ARM::JUMPTABLE_INSTS:
EmitJumpTableInsts(MI);
return;
case ARM::JUMPTABLE_TBB:
case ARM::JUMPTABLE_TBH:
EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
return;
case ARM::t2BR_JT: {
// Lower and emit the instruction itself, then the jump table following it.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::t2TBB_JT:
case ARM::t2TBH_JT: {
unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
// Lower and emit the PC label, then the instruction itself.
OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tTBB_JT:
case ARM::tTBH_JT: {
bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
unsigned Base = MI->getOperand(0).getReg();
unsigned Idx = MI->getOperand(1).getReg();
assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
// Multiply up idx if necessary.
if (!Is8Bit)
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
.addReg(Idx)
.addReg(ARM::CPSR)
.addReg(Idx)
.addImm(1)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
if (Base == ARM::PC) {
// TBB [base, idx] =
// ADDS idx, idx, base
// LDRB idx, [idx, #4] ; or LDRH if TBH
// LSLS idx, #1
// ADDS pc, pc, idx
// When using PC as the base, it's important that there is no padding
// between the last ADDS and the start of the jump table. The jump table
// is 4-byte aligned, so we ensure we're 4 byte aligned here too.
//
// FIXME: Ideally we could vary the LDRB index based on the padding
// between the sequence and jump table, however that relies on MCExprs
// for load indexes which are currently not supported.
OutStreamer->EmitCodeAlignment(4);
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
.addReg(Idx)
.addReg(Idx)
.addReg(Base)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
.addReg(Idx)
.addReg(Idx)
.addImm(Is8Bit ? 4 : 2)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
} else {
// TBB [base, idx] =
// LDRB idx, [base, idx] ; or LDRH if TBH
// LSLS idx, #1
// ADDS pc, pc, idx
unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
.addReg(Idx)
.addReg(Base)
.addReg(Idx)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
}
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
.addReg(Idx)
.addReg(ARM::CPSR)
.addReg(Idx)
.addImm(1)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
.addReg(ARM::PC)
.addReg(ARM::PC)
.addReg(Idx)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tBR_JTr:
case ARM::BR_JTr: {
// Lower and emit the instruction itself, then the jump table following it.
// mov pc, target
MCInst TmpInst;
unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
ARM::MOVr : ARM::tMOVr;
TmpInst.setOpcode(Opc);
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
// Add 's' bit operand (always reg0 for this)
if (Opc == ARM::MOVr)
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::BR_JTm: {
// Lower and emit the instruction itself, then the jump table following it.
// ldr pc, target
MCInst TmpInst;
if (MI->getOperand(1).getReg() == 0) {
// literal offset
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
} else {
TmpInst.setOpcode(ARM::LDRrs);
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
TmpInst.addOperand(MCOperand::createImm(0));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::BR_JTadd: {
// Lower and emit the instruction itself, then the jump table following it.
// add pc, target, idx
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
return;
}
case ARM::SPACE:
OutStreamer->EmitZeros(MI->getOperand(1).getImm());
return;
case ARM::TRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetMachO()) {
uint32_t Val = 0xe7ffdefeUL;
OutStreamer->AddComment("trap");
ATS.emitInst(Val);
return;
}
break;
}
case ARM::TRAPNaCl: {
uint32_t Val = 0xe7fedef0UL;
OutStreamer->AddComment("trap");
ATS.emitInst(Val);
return;
}
case ARM::tTRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetMachO()) {
uint16_t Val = 0xdefe;
OutStreamer->AddComment("trap");
ATS.emitInst(Val, 'n');
return;
}
break;
}
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// mov $val, pc
// adds $val, #7
// str $val, [$src, #4]
// movs r0, #0
// b LSJLJEH
// movs r0, #1
// LSJLJEH:
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
OutStreamer->AddComment("eh_setjmp begin");
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
.addReg(ValReg)
.addReg(ARM::PC)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
.addReg(ValReg)
// 's' bit operand
.addReg(ARM::CPSR)
.addReg(ValReg)
.addImm(7)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
.addReg(ValReg)
.addReg(SrcReg)
// The offset immediate is #4. The operand value is scaled by 4 for the
// tSTR instruction.
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
.addReg(ARM::R0)
.addReg(ARM::CPSR)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
.addExpr(SymbolExpr)
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer->AddComment("eh_setjmp end");
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
.addReg(ARM::R0)
.addReg(ARM::CPSR)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer->EmitLabel(Label);
return;
}
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::Int_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// add $val, pc, #8
// str $val, [$src, #+4]
// mov r0, #0
// add pc, pc, #0
// mov r0, #1
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
OutStreamer->AddComment("eh_setjmp begin");
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
.addReg(ValReg)
.addReg(ARM::PC)
.addImm(8)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
.addReg(ValReg)
.addReg(SrcReg)
.addImm(4)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
.addReg(ARM::R0)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
.addReg(ARM::PC)
.addReg(ARM::PC)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
OutStreamer->AddComment("eh_setjmp end");
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
.addReg(ARM::R0)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
return;
}
case ARM::Int_eh_sjlj_longjmp: {
// ldr sp, [$src, #8]
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
.addReg(ARM::SP)
.addReg(SrcReg)
.addImm(8)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
.addReg(ScratchReg)
.addReg(SrcReg)
.addImm(4)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
.addReg(ARM::R7)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tInt_eh_sjlj_longjmp: {
// ldr $scratch, [$src, #8]
// mov sp, $scratch
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
.addReg(ScratchReg)
.addReg(SrcReg)
// The offset immediate is #8. The operand value is scaled by 4 for the
// tLDR instruction.
.addImm(2)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
.addReg(ARM::SP)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
.addReg(ScratchReg)
.addReg(SrcReg)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
.addReg(ARM::R7)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tInt_WIN_eh_sjlj_longjmp: {
// ldr.w r11, [$src, #0]
// ldr.w sp, [$src, #8]
// ldr.w pc, [$src, #4]
unsigned SrcReg = MI->getOperand(0).getReg();
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
.addReg(ARM::R11)
.addReg(SrcReg)
.addImm(0)
// Predicate
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
.addReg(ARM::SP)
.addReg(SrcReg)
.addImm(8)
// Predicate
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
.addReg(ARM::PC)
.addReg(SrcReg)
.addImm(4)
// Predicate
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::PATCHABLE_FUNCTION_ENTER:
LowerPATCHABLE_FUNCTION_ENTER(*MI);
return;
case ARM::PATCHABLE_FUNCTION_EXIT:
LowerPATCHABLE_FUNCTION_EXIT(*MI);
return;
case ARM::PATCHABLE_TAIL_CALL:
LowerPATCHABLE_TAIL_CALL(*MI);
return;
}
MCInst TmpInst;
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
EmitToStreamer(*OutStreamer, TmpInst);
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
}