llvm-project/lldb/source/Symbol/Symtab.cpp

596 lines
18 KiB
C++

//===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <map>
#include "lldb/Core/Module.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/Timer.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symtab.h"
using namespace lldb;
using namespace lldb_private;
Symtab::Symtab(ObjectFile *objfile) :
m_objfile(objfile),
m_symbols(),
m_addr_indexes(),
m_name_to_index()
{
}
Symtab::~Symtab()
{
}
void
Symtab::Reserve(uint32_t count)
{
m_symbols.reserve (count);
}
Symbol *
Symtab::Resize(uint32_t count)
{
m_symbols.resize (count);
return &m_symbols[0];
}
uint32_t
Symtab::AddSymbol(const Symbol& symbol)
{
uint32_t symbol_idx = m_symbols.size();
m_name_to_index.Clear();
m_addr_indexes.clear();
m_symbols.push_back(symbol);
return symbol_idx;
}
size_t
Symtab::GetNumSymbols() const
{
return m_symbols.size();
}
void
Symtab::Dump(Stream *s, Process *process) const
{
const_iterator pos;
s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
const FileSpec &file_spec = m_objfile->GetFileSpec();
const char * object_name = NULL;
if (m_objfile->GetModule())
object_name = m_objfile->GetModule()->GetObjectName().GetCString();
if (file_spec)
s->Printf("Symtab, file = %s/%s%s%s%s, num_symbols = %u:\n",
file_spec.GetDirectory().AsCString(),
file_spec.GetFilename().AsCString(),
object_name ? "(" : "",
object_name ? object_name : "",
object_name ? ")" : "",
m_symbols.size());
else
s->Printf("Symtab, num_symbols = %u:\n", m_symbols.size());
s->IndentMore();
if (!m_symbols.empty())
{
const_iterator begin = m_symbols.begin();
const_iterator end = m_symbols.end();
DumpSymbolHeader (s);
for (pos = m_symbols.begin(); pos != end; ++pos)
{
s->Indent();
pos->Dump(s, process, std::distance(begin, pos));
}
}
s->IndentLess ();
}
void
Symtab::Dump(Stream *s, Process *process, std::vector<uint32_t>& indexes) const
{
const size_t num_symbols = GetNumSymbols();
s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
s->Printf("Symtab %u symbol indexes (%u symbols total):\n", indexes.size(), m_symbols.size());
s->IndentMore();
if (!indexes.empty())
{
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = indexes.end();
DumpSymbolHeader (s);
for (pos = indexes.begin(); pos != end; ++pos)
{
uint32_t idx = *pos;
if (idx < num_symbols)
{
s->Indent();
m_symbols[idx].Dump(s, process, idx);
}
}
}
s->IndentLess ();
}
void
Symtab::DumpSymbolHeader (Stream *s)
{
s->Indent(" Debug symbol\n");
s->Indent(" |Synthetic symbol\n");
s->Indent(" ||Externally Visible\n");
s->Indent(" |||\n");
s->Indent("Index UserID DSX Type File Address/Value Load Address Size Flags Name\n");
s->Indent("------- ------ --- ------------ ------------------ ------------------ ------------------ ---------- ----------------------------------\n");
}
Symbol *
Symtab::SymbolAtIndex(uint32_t idx)
{
if (idx < m_symbols.size())
return &m_symbols[idx];
return NULL;
}
const Symbol *
Symtab::SymbolAtIndex(uint32_t idx) const
{
if (idx < m_symbols.size())
return &m_symbols[idx];
return NULL;
}
//----------------------------------------------------------------------
// InitNameIndexes
//----------------------------------------------------------------------
void
Symtab::InitNameIndexes()
{
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
// Create the name index vector to be able to quickly search by name
const size_t count = m_symbols.size();
assert(m_objfile != NULL);
assert(m_objfile->GetModule() != NULL);
m_name_to_index.Reserve (count);
UniqueCStringMap<uint32_t>::Entry entry;
for (entry.value = 0; entry.value < count; ++entry.value)
{
const Symbol *symbol = &m_symbols[entry.value];
// Don't let trampolines get into the lookup by name map
// If we ever need the trampoline symbols to be searchable by name
// we can remove this and then possibly add a new bool to any of the
// Symtab functions that lookup symbols by name to indicate if they
// want trampolines.
if (symbol->IsTrampoline())
continue;
const Mangled &mangled = symbol->GetMangled();
entry.cstring = mangled.GetMangledName().GetCString();
if (entry.cstring && entry.cstring[0])
m_name_to_index.Append (entry);
entry.cstring = mangled.GetDemangledName().GetCString();
if (entry.cstring && entry.cstring[0])
m_name_to_index.Append (entry);
}
m_name_to_index.Sort();
}
uint32_t
Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, std::vector<uint32_t>& indexes, uint32_t start_idx, uint32_t end_index) const
{
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t> (m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
indexes.push_back(i);
}
return indexes.size() - prev_size;
}
struct SymbolSortInfo
{
const bool sort_by_load_addr;
const Symbol *symbols;
};
namespace {
struct SymbolIndexComparator {
const std::vector<Symbol>& symbols;
SymbolIndexComparator(const std::vector<Symbol>& s) : symbols(s) { }
bool operator()(uint32_t index_a, uint32_t index_b) {
addr_t value_a;
addr_t value_b;
if (symbols[index_a].GetValue().GetSection() == symbols[index_b].GetValue().GetSection()) {
value_a = symbols[index_a].GetValue ().GetOffset();
value_b = symbols[index_b].GetValue ().GetOffset();
} else {
value_a = symbols[index_a].GetValue ().GetFileAddress();
value_b = symbols[index_b].GetValue ().GetFileAddress();
}
if (value_a == value_b) {
// The if the values are equal, use the original symbol user ID
lldb::user_id_t uid_a = symbols[index_a].GetID();
lldb::user_id_t uid_b = symbols[index_b].GetID();
if (uid_a < uid_b)
return true;
if (uid_a > uid_b)
return false;
return false;
} else if (value_a < value_b)
return true;
return false;
}
};
}
void
Symtab::SortSymbolIndexesByValue (std::vector<uint32_t>& indexes, bool remove_duplicates) const
{
Timer scoped_timer (__PRETTY_FUNCTION__,__PRETTY_FUNCTION__);
// No need to sort if we have zero or one items...
if (indexes.size() <= 1)
return;
// Sort the indexes in place using std::stable_sort.
// NOTE: The use of std::stable_sort instead of std::sort here is strictly for performance,
// not correctness. The indexes vector tends to be "close" to sorted, which the
// stable sort handles better.
std::stable_sort(indexes.begin(), indexes.end(), SymbolIndexComparator(m_symbols));
// Remove any duplicates if requested
if (remove_duplicates)
std::unique(indexes.begin(), indexes.end());
}
uint32_t
Symtab::AppendSymbolIndexesWithName(const ConstString& symbol_name, std::vector<uint32_t>& indexes)
{
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
if (symbol_name)
{
const size_t old_size = indexes.size();
if (m_name_to_index.IsEmpty())
InitNameIndexes();
const char *symbol_cstr = symbol_name.GetCString();
const UniqueCStringMap<uint32_t>::Entry *entry_ptr;
for (entry_ptr = m_name_to_index.FindFirstValueForName (symbol_cstr);
entry_ptr!= NULL;
entry_ptr = m_name_to_index.FindNextValueForName (symbol_cstr, entry_ptr))
{
indexes.push_back (entry_ptr->value);
}
return indexes.size() - old_size;
}
return 0;
}
uint32_t
Symtab::AppendSymbolIndexesWithNameAndType(const ConstString& symbol_name, SymbolType symbol_type, std::vector<uint32_t>& indexes)
{
if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0)
{
std::vector<uint32_t>::iterator pos = indexes.begin();
while (pos != indexes.end())
{
if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type)
++pos;
else
indexes.erase(pos);
}
}
return indexes.size();
}
uint32_t
Symtab::AppendSymbolIndexesMatchingRegExAndType (const RegularExpression &regexp, SymbolType symbol_type, std::vector<uint32_t>& indexes)
{
uint32_t prev_size = indexes.size();
uint32_t sym_end = m_symbols.size();
for (int i = 0; i < sym_end; i++)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
{
const char *name = m_symbols[i].GetMangled().GetName().AsCString();
if (name)
{
if (regexp.Execute (name))
indexes.push_back(i);
}
}
}
return indexes.size() - prev_size;
}
Symbol *
Symtab::FindSymbolWithType(SymbolType symbol_type, uint32_t& start_idx)
{
const size_t count = m_symbols.size();
for (uint32_t idx = start_idx; idx < count; ++idx)
{
if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type)
{
start_idx = idx;
return &m_symbols[idx];
}
}
return NULL;
}
const Symbol *
Symtab::FindSymbolWithType(SymbolType symbol_type, uint32_t& start_idx) const
{
const size_t count = m_symbols.size();
for (uint32_t idx = start_idx; idx < count; ++idx)
{
if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type)
{
start_idx = idx;
return &m_symbols[idx];
}
}
return NULL;
}
size_t
Symtab::FindAllSymbolsWithNameAndType (const ConstString &name, SymbolType symbol_type, std::vector<uint32_t>& symbol_indexes)
{
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
// Initialize all of the lookup by name indexes before converting NAME
// to a uniqued string NAME_STR below.
if (m_name_to_index.IsEmpty())
InitNameIndexes();
if (name)
{
// The string table did have a string that matched, but we need
// to check the symbols and match the symbol_type if any was given.
AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
}
return symbol_indexes.size();
}
size_t
Symtab::FindAllSymbolsMatchingRexExAndType (const RegularExpression &regex, SymbolType symbol_type, std::vector<uint32_t>& symbol_indexes)
{
AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_indexes);
return symbol_indexes.size();
}
Symbol *
Symtab::FindFirstSymbolWithNameAndType (const ConstString &name, SymbolType symbol_type)
{
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
if (m_name_to_index.IsEmpty())
InitNameIndexes();
if (name)
{
std::vector<uint32_t> matching_indexes;
// The string table did have a string that matched, but we need
// to check the symbols and match the symbol_type if any was given.
if (AppendSymbolIndexesWithNameAndType(name, symbol_type, matching_indexes))
{
std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
for (pos = matching_indexes.begin(); pos != end; ++pos)
{
Symbol *symbol = SymbolAtIndex(*pos);
if (symbol->Compare(name, symbol_type))
return symbol;
}
}
}
return NULL;
}
typedef struct
{
const Symtab *symtab;
const addr_t file_addr;
Symbol *match_symbol;
const uint32_t *match_index_ptr;
addr_t match_offset;
} SymbolSearchInfo;
static int
SymbolWithFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr)
{
const Symbol *curr_symbol = info->symtab->SymbolAtIndex (index_ptr[0]);
if (curr_symbol == NULL)
return -1;
const addr_t info_file_addr = info->file_addr;
// lldb::Symbol::GetAddressRangePtr() will only return a non NULL address
// range if the symbol has a section!
const AddressRange *curr_range = curr_symbol->GetAddressRangePtr();
if (curr_range)
{
const addr_t curr_file_addr = curr_range->GetBaseAddress().GetFileAddress();
if (info_file_addr < curr_file_addr)
return -1;
if (info_file_addr > curr_file_addr)
return +1;
info->match_symbol = const_cast<Symbol *>(curr_symbol);
info->match_index_ptr = index_ptr;
return 0;
}
return -1;
}
static int
SymbolWithClosestFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr)
{
const Symbol *symbol = info->symtab->SymbolAtIndex (index_ptr[0]);
if (symbol == NULL)
return -1;
const addr_t info_file_addr = info->file_addr;
const AddressRange *curr_range = symbol->GetAddressRangePtr();
if (curr_range)
{
const addr_t curr_file_addr = curr_range->GetBaseAddress().GetFileAddress();
if (info_file_addr < curr_file_addr)
return -1;
// Since we are finding the closest symbol that is greater than or equal
// to 'info->file_addr' we set the symbol here. This will get set
// multiple times, but after the search is done it will contain the best
// symbol match
info->match_symbol = const_cast<Symbol *>(symbol);
info->match_index_ptr = index_ptr;
info->match_offset = info_file_addr - curr_file_addr;
if (info_file_addr > curr_file_addr)
return +1;
return 0;
}
return -1;
}
static SymbolSearchInfo
FindIndexPtrForSymbolContainingAddress(Symtab* symtab, addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes)
{
SymbolSearchInfo info = { symtab, file_addr, NULL, NULL, 0 };
bsearch(&info, indexes, num_indexes, sizeof(uint32_t), (comparison_function)SymbolWithClosestFileAddress);
return info;
}
void
Symtab::InitAddressIndexes()
{
if (m_addr_indexes.empty())
{
AppendSymbolIndexesWithType (eSymbolTypeFunction, m_addr_indexes);
AppendSymbolIndexesWithType (eSymbolTypeGlobal, m_addr_indexes);
AppendSymbolIndexesWithType (eSymbolTypeStatic, m_addr_indexes);
AppendSymbolIndexesWithType (eSymbolTypeCode, m_addr_indexes);
AppendSymbolIndexesWithType (eSymbolTypeTrampoline, m_addr_indexes);
AppendSymbolIndexesWithType (eSymbolTypeData, m_addr_indexes);
SortSymbolIndexesByValue(m_addr_indexes, true);
m_addr_indexes.push_back(UINT32_MAX); // Terminator for bsearch since we might need to look at the next symbol
}
}
size_t
Symtab::CalculateSymbolSize (Symbol *symbol)
{
// Make sure this symbol is from this symbol table...
if (symbol < m_symbols.data() && symbol >= m_symbols.data() + m_symbols.size())
return 0;
// See if this symbol already has a byte size?
size_t byte_size = symbol->GetByteSize();
if (byte_size)
{
// It does, just return it
return byte_size;
}
// Else if this is an address based symbol, figure out the delta between
// it and the next address based symbol
if (symbol->GetAddressRangePtr())
{
if (m_addr_indexes.empty())
InitAddressIndexes();
const size_t num_addr_indexes = m_addr_indexes.size();
SymbolSearchInfo info = FindIndexPtrForSymbolContainingAddress(this, symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress(), m_addr_indexes.data(), num_addr_indexes);
if (info.match_index_ptr != NULL)
{
const lldb::addr_t curr_file_addr = symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress();
// We can figure out the address range of all symbols except the
// last one by taking the delta between the current symbol and
// the next symbol
for (uint32_t addr_index = info.match_index_ptr - m_addr_indexes.data() + 1;
addr_index < num_addr_indexes;
++addr_index)
{
Symbol *next_symbol = SymbolAtIndex(m_addr_indexes[addr_index]);
if (next_symbol == NULL)
break;
assert (next_symbol->GetAddressRangePtr());
const lldb::addr_t next_file_addr = next_symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress();
if (next_file_addr > curr_file_addr)
{
byte_size = next_file_addr - curr_file_addr;
symbol->GetAddressRangePtr()->SetByteSize(byte_size);
symbol->SetSizeIsSynthesized(true);
break;
}
}
}
}
return byte_size;
}
Symbol *
Symtab::FindSymbolWithFileAddress (addr_t file_addr)
{
if (m_addr_indexes.empty())
InitAddressIndexes();
SymbolSearchInfo info = { this, file_addr, NULL, NULL, 0 };
uint32_t* match = (uint32_t*)bsearch(&info, &m_addr_indexes[0], m_addr_indexes.size(), sizeof(uint32_t), (comparison_function)SymbolWithFileAddress);
if (match)
return SymbolAtIndex (*match);
return NULL;
}
Symbol *
Symtab::FindSymbolContainingFileAddress (addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes)
{
SymbolSearchInfo info = { this, file_addr, NULL, NULL, 0 };
bsearch(&info, indexes, num_indexes, sizeof(uint32_t), (comparison_function)SymbolWithClosestFileAddress);
if (info.match_symbol)
{
if (info.match_offset < CalculateSymbolSize(info.match_symbol))
return info.match_symbol;
}
return NULL;
}
Symbol *
Symtab::FindSymbolContainingFileAddress (addr_t file_addr)
{
if (m_addr_indexes.empty())
InitAddressIndexes();
return FindSymbolContainingFileAddress (file_addr, &m_addr_indexes[0], m_addr_indexes.size());
}