llvm-project/llvm/lib/Target/X86/X86AsmPrinter.cpp

662 lines
23 KiB
C++

//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to X86 machine code.
//
//===----------------------------------------------------------------------===//
#include "X86AsmPrinter.h"
#include "InstPrinter/X86ATTInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Primitive Helper Functions.
//===----------------------------------------------------------------------===//
/// runOnMachineFunction - Emit the function body.
///
bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<X86Subtarget>();
SMShadowTracker.startFunction(MF);
CodeEmitter.reset(TM.getTarget().createMCCodeEmitter(
*MF.getSubtarget().getInstrInfo(), *MF.getSubtarget().getRegisterInfo(),
MF.getContext()));
SetupMachineFunction(MF);
if (Subtarget->isTargetCOFF()) {
bool Local = MF.getFunction()->hasLocalLinkage();
OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
OutStreamer->EmitCOFFSymbolStorageClass(
Local ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL);
OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
<< COFF::SCT_COMPLEX_TYPE_SHIFT);
OutStreamer->EndCOFFSymbolDef();
}
// Emit the rest of the function body.
EmitFunctionBody();
// Emit the XRay table for this function.
emitXRayTable();
// We didn't modify anything.
return false;
}
/// printSymbolOperand - Print a raw symbol reference operand. This handles
/// jump tables, constant pools, global address and external symbols, all of
/// which print to a label with various suffixes for relocation types etc.
static void printSymbolOperand(X86AsmPrinter &P, const MachineOperand &MO,
raw_ostream &O) {
switch (MO.getType()) {
default: llvm_unreachable("unknown symbol type!");
case MachineOperand::MO_ConstantPoolIndex:
P.GetCPISymbol(MO.getIndex())->print(O, P.MAI);
P.printOffset(MO.getOffset(), O);
break;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
MCSymbol *GVSym;
if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE)
GVSym = P.getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
else
GVSym = P.getSymbol(GV);
// Handle dllimport linkage.
if (MO.getTargetFlags() == X86II::MO_DLLIMPORT)
GVSym =
P.OutContext.getOrCreateSymbol(Twine("__imp_") + GVSym->getName());
if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) {
MCSymbol *Sym = P.getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoImpl::StubValueTy &StubSym =
P.MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(Sym);
if (!StubSym.getPointer())
StubSym = MachineModuleInfoImpl::
StubValueTy(P.getSymbol(GV), !GV->hasInternalLinkage());
}
// If the name begins with a dollar-sign, enclose it in parens. We do this
// to avoid having it look like an integer immediate to the assembler.
if (GVSym->getName()[0] != '$')
GVSym->print(O, P.MAI);
else {
O << '(';
GVSym->print(O, P.MAI);
O << ')';
}
P.printOffset(MO.getOffset(), O);
break;
}
}
switch (MO.getTargetFlags()) {
default:
llvm_unreachable("Unknown target flag on GV operand");
case X86II::MO_NO_FLAG: // No flag.
break;
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DLLIMPORT:
// These affect the name of the symbol, not any suffix.
break;
case X86II::MO_GOT_ABSOLUTE_ADDRESS:
O << " + [.-";
P.MF->getPICBaseSymbol()->print(O, P.MAI);
O << ']';
break;
case X86II::MO_PIC_BASE_OFFSET:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
O << '-';
P.MF->getPICBaseSymbol()->print(O, P.MAI);
break;
case X86II::MO_TLSGD: O << "@TLSGD"; break;
case X86II::MO_TLSLD: O << "@TLSLD"; break;
case X86II::MO_TLSLDM: O << "@TLSLDM"; break;
case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break;
case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break;
case X86II::MO_TPOFF: O << "@TPOFF"; break;
case X86II::MO_DTPOFF: O << "@DTPOFF"; break;
case X86II::MO_NTPOFF: O << "@NTPOFF"; break;
case X86II::MO_GOTNTPOFF: O << "@GOTNTPOFF"; break;
case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break;
case X86II::MO_GOT: O << "@GOT"; break;
case X86II::MO_GOTOFF: O << "@GOTOFF"; break;
case X86II::MO_PLT: O << "@PLT"; break;
case X86II::MO_TLVP: O << "@TLVP"; break;
case X86II::MO_TLVP_PIC_BASE:
O << "@TLVP" << '-';
P.MF->getPICBaseSymbol()->print(O, P.MAI);
break;
case X86II::MO_SECREL: O << "@SECREL32"; break;
}
}
static void printOperand(X86AsmPrinter &P, const MachineInstr *MI,
unsigned OpNo, raw_ostream &O,
const char *Modifier = nullptr, unsigned AsmVariant = 0);
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value. These print slightly differently, for
/// example, a $ is not emitted.
static void printPCRelImm(X86AsmPrinter &P, const MachineInstr *MI,
unsigned OpNo, raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
default: llvm_unreachable("Unknown pcrel immediate operand");
case MachineOperand::MO_Register:
// pc-relativeness was handled when computing the value in the reg.
printOperand(P, MI, OpNo, O);
return;
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_GlobalAddress:
printSymbolOperand(P, MO, O);
return;
}
}
static void printOperand(X86AsmPrinter &P, const MachineInstr *MI,
unsigned OpNo, raw_ostream &O, const char *Modifier,
unsigned AsmVariant) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
default: llvm_unreachable("unknown operand type!");
case MachineOperand::MO_Register: {
// FIXME: Enumerating AsmVariant, so we can remove magic number.
if (AsmVariant == 0) O << '%';
unsigned Reg = MO.getReg();
if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
unsigned Size = (strcmp(Modifier+6,"64") == 0) ? 64 :
(strcmp(Modifier+6,"32") == 0) ? 32 :
(strcmp(Modifier+6,"16") == 0) ? 16 : 8;
Reg = getX86SubSuperRegister(Reg, Size);
}
O << X86ATTInstPrinter::getRegisterName(Reg);
return;
}
case MachineOperand::MO_Immediate:
if (AsmVariant == 0) O << '$';
O << MO.getImm();
return;
case MachineOperand::MO_GlobalAddress: {
if (AsmVariant == 0) O << '$';
printSymbolOperand(P, MO, O);
break;
}
}
}
static void printLeaMemReference(X86AsmPrinter &P, const MachineInstr *MI,
unsigned Op, raw_ostream &O,
const char *Modifier = nullptr) {
const MachineOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
const MachineOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
const MachineOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
// If we really don't want to print out (rip), don't.
bool HasBaseReg = BaseReg.getReg() != 0;
if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") &&
BaseReg.getReg() == X86::RIP)
HasBaseReg = false;
// HasParenPart - True if we will print out the () part of the mem ref.
bool HasParenPart = IndexReg.getReg() || HasBaseReg;
switch (DispSpec.getType()) {
default:
llvm_unreachable("unknown operand type!");
case MachineOperand::MO_Immediate: {
int DispVal = DispSpec.getImm();
if (DispVal || !HasParenPart)
O << DispVal;
break;
}
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ConstantPoolIndex:
printSymbolOperand(P, DispSpec, O);
}
if (Modifier && strcmp(Modifier, "H") == 0)
O << "+8";
if (HasParenPart) {
assert(IndexReg.getReg() != X86::ESP &&
"X86 doesn't allow scaling by ESP");
O << '(';
if (HasBaseReg)
printOperand(P, MI, Op+X86::AddrBaseReg, O, Modifier);
if (IndexReg.getReg()) {
O << ',';
printOperand(P, MI, Op+X86::AddrIndexReg, O, Modifier);
unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
if (ScaleVal != 1)
O << ',' << ScaleVal;
}
O << ')';
}
}
static void printMemReference(X86AsmPrinter &P, const MachineInstr *MI,
unsigned Op, raw_ostream &O,
const char *Modifier = nullptr) {
assert(isMem(*MI, Op) && "Invalid memory reference!");
const MachineOperand &Segment = MI->getOperand(Op+X86::AddrSegmentReg);
if (Segment.getReg()) {
printOperand(P, MI, Op+X86::AddrSegmentReg, O, Modifier);
O << ':';
}
printLeaMemReference(P, MI, Op, O, Modifier);
}
static void printIntelMemReference(X86AsmPrinter &P, const MachineInstr *MI,
unsigned Op, raw_ostream &O,
const char *Modifier = nullptr,
unsigned AsmVariant = 1) {
const MachineOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
const MachineOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
const MachineOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
const MachineOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg);
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(P, MI, Op+X86::AddrSegmentReg, O, Modifier, AsmVariant);
O << ':';
}
O << '[';
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOperand(P, MI, Op+X86::AddrBaseReg, O, Modifier, AsmVariant);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
O << ScaleVal << '*';
printOperand(P, MI, Op+X86::AddrIndexReg, O, Modifier, AsmVariant);
NeedPlus = true;
}
if (!DispSpec.isImm()) {
if (NeedPlus) O << " + ";
printOperand(P, MI, Op+X86::AddrDisp, O, Modifier, AsmVariant);
} else {
int64_t DispVal = DispSpec.getImm();
if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
if (NeedPlus) {
if (DispVal > 0)
O << " + ";
else {
O << " - ";
DispVal = -DispVal;
}
}
O << DispVal;
}
}
O << ']';
}
static bool printAsmMRegister(X86AsmPrinter &P, const MachineOperand &MO,
char Mode, raw_ostream &O) {
unsigned Reg = MO.getReg();
switch (Mode) {
default: return true; // Unknown mode.
case 'b': // Print QImode register
Reg = getX86SubSuperRegister(Reg, 8);
break;
case 'h': // Print QImode high register
Reg = getX86SubSuperRegister(Reg, 8, true);
break;
case 'w': // Print HImode register
Reg = getX86SubSuperRegister(Reg, 16);
break;
case 'k': // Print SImode register
Reg = getX86SubSuperRegister(Reg, 32);
break;
case 'q':
// Print 64-bit register names if 64-bit integer registers are available.
// Otherwise, print 32-bit register names.
Reg = getX86SubSuperRegister(Reg, P.getSubtarget().is64Bit() ? 64 : 32);
break;
}
O << '%' << X86ATTInstPrinter::getRegisterName(Reg);
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool X86AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNo);
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'a': // This is an address. Currently only 'i' and 'r' are expected.
switch (MO.getType()) {
default:
return true;
case MachineOperand::MO_Immediate:
O << MO.getImm();
return false;
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ExternalSymbol:
llvm_unreachable("unexpected operand type!");
case MachineOperand::MO_GlobalAddress:
printSymbolOperand(*this, MO, O);
if (Subtarget->isPICStyleRIPRel())
O << "(%rip)";
return false;
case MachineOperand::MO_Register:
O << '(';
printOperand(*this, MI, OpNo, O);
O << ')';
return false;
}
case 'c': // Don't print "$" before a global var name or constant.
switch (MO.getType()) {
default:
printOperand(*this, MI, OpNo, O);
break;
case MachineOperand::MO_Immediate:
O << MO.getImm();
break;
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ExternalSymbol:
llvm_unreachable("unexpected operand type!");
case MachineOperand::MO_GlobalAddress:
printSymbolOperand(*this, MO, O);
break;
}
return false;
case 'A': // Print '*' before a register (it must be a register)
if (MO.isReg()) {
O << '*';
printOperand(*this, MI, OpNo, O);
return false;
}
return true;
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
case 'q': // Print DImode register
if (MO.isReg())
return printAsmMRegister(*this, MO, ExtraCode[0], O);
printOperand(*this, MI, OpNo, O);
return false;
case 'P': // This is the operand of a call, treat specially.
printPCRelImm(*this, MI, OpNo, O);
return false;
case 'n': // Negate the immediate or print a '-' before the operand.
// Note: this is a temporary solution. It should be handled target
// independently as part of the 'MC' work.
if (MO.isImm()) {
O << -MO.getImm();
return false;
}
O << '-';
}
}
printOperand(*this, MI, OpNo, O, /*Modifier*/ nullptr, AsmVariant);
return false;
}
bool X86AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (AsmVariant) {
printIntelMemReference(*this, MI, OpNo, O);
return false;
}
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
case 'q': // Print SImode register
// These only apply to registers, ignore on mem.
break;
case 'H':
printMemReference(*this, MI, OpNo, O, "H");
return false;
case 'P': // Don't print @PLT, but do print as memory.
printMemReference(*this, MI, OpNo, O, "no-rip");
return false;
}
}
printMemReference(*this, MI, OpNo, O);
return false;
}
void X86AsmPrinter::EmitStartOfAsmFile(Module &M) {
const Triple &TT = TM.getTargetTriple();
if (TT.isOSBinFormatMachO())
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
if (TT.isOSBinFormatCOFF()) {
// Emit an absolute @feat.00 symbol. This appears to be some kind of
// compiler features bitfield read by link.exe.
if (TT.getArch() == Triple::x86) {
MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00"));
OutStreamer->BeginCOFFSymbolDef(S);
OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC);
OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
OutStreamer->EndCOFFSymbolDef();
// According to the PE-COFF spec, the LSB of this value marks the object
// for "registered SEH". This means that all SEH handler entry points
// must be registered in .sxdata. Use of any unregistered handlers will
// cause the process to terminate immediately. LLVM does not know how to
// register any SEH handlers, so its object files should be safe.
OutStreamer->EmitSymbolAttribute(S, MCSA_Global);
OutStreamer->EmitAssignment(
S, MCConstantExpr::create(int64_t(1), MMI->getContext()));
}
}
OutStreamer->EmitSyntaxDirective();
// If this is not inline asm and we're in 16-bit
// mode prefix assembly with .code16.
bool is16 = TT.getEnvironment() == Triple::CODE16;
if (M.getModuleInlineAsm().empty() && is16)
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
}
static void
emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
MachineModuleInfoImpl::StubValueTy &MCSym) {
// L_foo$stub:
OutStreamer.EmitLabel(StubLabel);
// .indirect_symbol _foo
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers need to be indirect and pc-rel. We accomplish this by
// using NLPs; however, sometimes the types are local to the file.
// We need to fill in the value for the NLP in those cases.
OutStreamer.EmitValue(
MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
4 /*size*/);
}
MCSymbol *X86AsmPrinter::GetCPISymbol(unsigned CPID) const {
if (Subtarget->isTargetKnownWindowsMSVC()) {
const MachineConstantPoolEntry &CPE =
MF->getConstantPool()->getConstants()[CPID];
if (!CPE.isMachineConstantPoolEntry()) {
const DataLayout &DL = MF->getDataLayout();
SectionKind Kind = CPE.getSectionKind(&DL);
const Constant *C = CPE.Val.ConstVal;
unsigned Align = CPE.Alignment;
if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
if (MCSymbol *Sym = S->getCOMDATSymbol()) {
if (Sym->isUndefined())
OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
return Sym;
}
}
}
}
return AsmPrinter::GetCPISymbol(CPID);
}
void X86AsmPrinter::EmitEndOfAsmFile(Module &M) {
const Triple &TT = TM.getTargetTriple();
if (TT.isOSBinFormatMachO()) {
// All darwin targets use mach-o.
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output stubs for dynamically-linked functions.
MachineModuleInfoMachO::SymbolListTy Stubs;
// Output stubs for external and common global variables.
Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
MCSection *TheSection = OutContext.getMachOSection(
"__IMPORT", "__pointers", MachO::S_NON_LAZY_SYMBOL_POINTERS,
SectionKind::getMetadata());
OutStreamer->SwitchSection(TheSection);
for (auto &Stub : Stubs)
emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
Stubs.clear();
OutStreamer->AddBlankLine();
}
SM.serializeToStackMapSection();
FM.serializeToFaultMapSection();
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
if (TT.isKnownWindowsMSVCEnvironment() && MMI->usesVAFloatArgument()) {
StringRef SymbolName =
(TT.getArch() == Triple::x86_64) ? "_fltused" : "__fltused";
MCSymbol *S = MMI->getContext().getOrCreateSymbol(SymbolName);
OutStreamer->EmitSymbolAttribute(S, MCSA_Global);
}
if (TT.isOSBinFormatCOFF()) {
const TargetLoweringObjectFileCOFF &TLOFCOFF =
static_cast<const TargetLoweringObjectFileCOFF&>(getObjFileLowering());
std::string Flags;
raw_string_ostream FlagsOS(Flags);
for (const auto &Function : M)
TLOFCOFF.emitLinkerFlagsForGlobal(FlagsOS, &Function);
for (const auto &Global : M.globals())
TLOFCOFF.emitLinkerFlagsForGlobal(FlagsOS, &Global);
for (const auto &Alias : M.aliases())
TLOFCOFF.emitLinkerFlagsForGlobal(FlagsOS, &Alias);
FlagsOS.flush();
// Output collected flags.
if (!Flags.empty()) {
OutStreamer->SwitchSection(TLOFCOFF.getDrectveSection());
OutStreamer->EmitBytes(Flags);
}
SM.serializeToStackMapSection();
}
if (TT.isOSBinFormatELF()) {
SM.serializeToStackMapSection();
FM.serializeToFaultMapSection();
}
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
// Force static initialization.
extern "C" void LLVMInitializeX86AsmPrinter() {
RegisterAsmPrinter<X86AsmPrinter> X(getTheX86_32Target());
RegisterAsmPrinter<X86AsmPrinter> Y(getTheX86_64Target());
}