llvm-project/llvm/lib/Target/Sparc/LeonPasses.cpp

414 lines
14 KiB
C++
Executable File

//===------ LeonPasses.cpp - Define passes specific to LEON ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "LeonPasses.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
LEONMachineFunctionPass::LEONMachineFunctionPass(TargetMachine &tm, char& ID) :
MachineFunctionPass(ID)
{
}
LEONMachineFunctionPass::LEONMachineFunctionPass(char& ID) :
MachineFunctionPass(ID)
{
}
int LEONMachineFunctionPass::GetRegIndexForOperand(MachineInstr& MI, int OperandIndex)
{
if (MI.getNumOperands() > 0) {
if (OperandIndex == LAST_OPERAND) {
OperandIndex = MI.getNumOperands() - 1;
}
if (MI.getNumOperands() > (unsigned) OperandIndex
&&
MI.getOperand(OperandIndex).isReg()) {
return (int) MI.getOperand(OperandIndex).getReg();
}
}
static int NotFoundIndex = -10;
// Return a different number each time to avoid any comparisons between the values returned.
NotFoundIndex -= 10;
return NotFoundIndex;
}
void LEONMachineFunctionPass::clearUsedRegisterList()
{
UsedRegisters.clear();
}
void LEONMachineFunctionPass::markRegisterUsed(int registerIndex)
{
UsedRegisters.push_back(registerIndex);
}
//finds a new free FP register
//checks also the AllocatedRegisters vector
int LEONMachineFunctionPass::getUnusedFPRegister(MachineRegisterInfo& MRI)
{
for (int RegisterIndex = SP::F0 ; RegisterIndex <= SP::F31 ; ++RegisterIndex) {
if (!MRI.isPhysRegUsed(RegisterIndex) &&
!(std::find(UsedRegisters.begin(), UsedRegisters.end(), RegisterIndex) != UsedRegisters.end())) {
return RegisterIndex;
}
}
return -1;
}
//*****************************************************************************
//**** InsertNOPLoad pass
//*****************************************************************************
//This pass inserts a NOP after any LD or LDF instruction.
//
char InsertNOPLoad::ID = 0;
InsertNOPLoad::InsertNOPLoad(TargetMachine &tm) :
LEONMachineFunctionPass(tm, ID)
{
}
bool InsertNOPLoad::runOnMachineFunction(MachineFunction& MF)
{
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo& TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++ MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode >= SP::LDDArr && Opcode <= SP::LDrr) {
//errs() << "Inserting NOP after LD instruction\n";
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
else if (MI.isInlineAsm()) {
// Look for an inline ld or ldf instruction.
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("ld")) {
//errs() << "Inserting NOP after LD instruction\n";
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixFSMULD pass
//*****************************************************************************
//this pass should convert the FSMULD operands to double precision in scratch registers,
//then calculate the result with the FMULD instruction. Therefore, the pass should replace operations of the form:
//fsmuld %f20,%f21,%f8
//with the sequence:
//fstod %f20,%f0
//fstod %f21,%f2
//fmuld %f0,%f2,%f8
//
char FixFSMULD::ID = 0;
FixFSMULD::FixFSMULD(TargetMachine &tm) :
LEONMachineFunctionPass(tm, ID)
{
}
bool FixFSMULD::runOnMachineFunction(MachineFunction& MF)
{
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo& TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
//errs() << "FixFSMULD on function " << MF.getName() << "\n";
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++ MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const int UNASSIGNED_INDEX = -1;
int Reg1Index = UNASSIGNED_INDEX;
int Reg2Index = UNASSIGNED_INDEX;
int Reg3Index = UNASSIGNED_INDEX;
if (Opcode == SP::FSMULD && MI.getNumOperands() == 3) {
//errs() << "Detected FSMULD\n";
//take the registers from fsmuld %f20,%f21,%f8
Reg1Index = MI.getOperand(0).getReg();
Reg2Index = MI.getOperand(1).getReg();
Reg3Index = MI.getOperand(2).getReg();
}
else if (MI.isInlineAsm()) {
std::string AsmString (MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName());
std::string FMULSOpCoode ("fsmuld");
std::transform(AsmString.begin(), AsmString.end(), AsmString.begin(), ::tolower);
if (AsmString.find(FMULSOpCoode) == 0) { // this is an inline FSMULD instruction
//errs() << "Detected InlineAsm FSMULD\n";
unsigned StartOp = InlineAsm::MIOp_FirstOperand;
//extracts the registers from the inline assembly instruction
for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (Reg1Index == UNASSIGNED_INDEX) Reg1Index = MO.getReg();
else if (Reg2Index == UNASSIGNED_INDEX) Reg2Index = MO.getReg();
else if (Reg3Index == UNASSIGNED_INDEX) Reg3Index = MO.getReg();
}
if (Reg3Index != UNASSIGNED_INDEX)
break;
}
}
}
if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX && Reg3Index != UNASSIGNED_INDEX) {
clearUsedRegisterList();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
//Whatever Reg3Index is hasn't been used yet, so we need to reserve it.
markRegisterUsed(Reg3Index);
const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg1Index);
const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg2Index);
if (ScratchReg1Index == UNASSIGNED_INDEX || ScratchReg2Index == UNASSIGNED_INDEX) {
//errs() << "Cannot allocate free scratch registers for the FixFSMULD pass." << "\n";
}
else {
//create fstod %f20,%f0
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg1Index)
.addReg(Reg1Index);
//create fstod %f21,%f2
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg2Index)
.addReg(Reg2Index);
//create fmuld %f0,%f2,%f8
BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD))
.addReg(Reg3Index)
.addReg(ScratchReg1Index)
.addReg(ScratchReg2Index);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** ReplaceFMULS pass
//*****************************************************************************
//This pass converts the FMULS operands to double precision in scratch registers,
//then calculates the result with the FMULD instruction.
//The pass should replace operations of the form:
//fmuls %f20,%f21,%f8
//with the sequence:
//fstod %f20,%f0
//fstod %f21,%f2
//fmuld %f0,%f2,%f8
//
char ReplaceFMULS::ID = 0;
ReplaceFMULS::ReplaceFMULS(TargetMachine &tm) :
LEONMachineFunctionPass(tm, ID)
{
}
bool ReplaceFMULS::runOnMachineFunction(MachineFunction& MF)
{
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo& TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
//errs() << "ReplaceFMULS on function " << MF.getName() << "\n";
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++ MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const int UNASSIGNED_INDEX = -1;
int Reg1Index = UNASSIGNED_INDEX;
int Reg2Index = UNASSIGNED_INDEX;
int Reg3Index = UNASSIGNED_INDEX;
if (Opcode == SP::FMULS && MI.getNumOperands() == 3) {
//errs() << "Detected FMULS\n";
//take the registers from fmuls %f20,%f21,%f8
Reg1Index = MI.getOperand(0).getReg();
Reg2Index = MI.getOperand(1).getReg();
Reg3Index = MI.getOperand(2).getReg();
}
else if (MI.isInlineAsm()) {
std::string AsmString (MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName());
std::string FMULSOpCoode ("fmuls");
std::transform(AsmString.begin(), AsmString.end(), AsmString.begin(), ::tolower);
if (AsmString.find(FMULSOpCoode) == 0) { // this is an inline FMULS instruction
//errs() << "Detected InlineAsm FMULS\n";
unsigned StartOp = InlineAsm::MIOp_FirstOperand;
//extracts the registers from the inline assembly instruction
for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (Reg1Index == UNASSIGNED_INDEX) Reg1Index = MO.getReg();
else if (Reg2Index == UNASSIGNED_INDEX) Reg2Index = MO.getReg();
else if (Reg3Index == UNASSIGNED_INDEX) Reg3Index = MO.getReg();
}
if (Reg3Index != UNASSIGNED_INDEX)
break;
}
}
}
if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX && Reg3Index != UNASSIGNED_INDEX) {
clearUsedRegisterList();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
//Whatever Reg3Index is hasn't been used yet, so we need to reserve it.
markRegisterUsed(Reg3Index);
const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg1Index);
const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg2Index);
if (ScratchReg1Index == UNASSIGNED_INDEX || ScratchReg2Index == UNASSIGNED_INDEX) {
//errs() << "Cannot allocate free scratch registers for the ReplaceFMULS pass." << "\n";
}
else {
//create fstod %f20,%f0
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg1Index)
.addReg(Reg1Index);
//create fstod %f21,%f2
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg2Index)
.addReg(Reg2Index);
//create fmuld %f0,%f2,%f8
BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD))
.addReg(Reg3Index)
.addReg(ScratchReg1Index)
.addReg(ScratchReg2Index);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixAllFDIVSQRT pass
//*****************************************************************************
//This pass implements two fixes:
// 1) fixing the FSQRTS and FSQRTD instructions;
// 2) fixing the FDIVS and FDIVD instructions.
//
char FixAllFDIVSQRT::ID = 0;
FixAllFDIVSQRT::FixAllFDIVSQRT(TargetMachine &tm) :
LEONMachineFunctionPass(tm, ID)
{
}
bool FixAllFDIVSQRT::runOnMachineFunction(MachineFunction& MF)
{
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo& TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
//errs() << "FixAllFDIVSQRT on function " << MF.getName() << "\n";
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
//MBB.print(errs());
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++ MBBI) {
MachineInstr &MI = *MBBI;
//MI.print(errs());
unsigned Opcode = MI.getOpcode();
if (MI.isInlineAsm()) {
std::string AsmString (MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName());
std::string FSQRTDOpCode ("fsqrtd");
std::string FDIVDOpCode ("fdivd");
std::transform(AsmString.begin(), AsmString.end(), AsmString.begin(), ::tolower);
if (AsmString.find(FSQRTDOpCode) == 0) { // this is an inline fsqrts instruction
//errs() << "Detected InlineAsm FSQRTD\n";
Opcode = SP::FSQRTD;
}
else if (AsmString.find(FDIVDOpCode) == 0) { // this is an inline fsqrts instruction
//errs() << "Detected InlineAsm FDIVD\n";
Opcode = SP::FDIVD;
}
}
// Note: FDIVS and FSQRTS cannot be generated when this erratum fix is switched on
// so we don't need to check for them here. They will already have been converted
// to FSQRTD or FDIVD earlier in the pipeline.
if (Opcode == SP::FSQRTD || Opcode == SP::FDIVD) {
//errs() << "Inserting 5 NOPs before FSQRTD,FDIVD.\n";
for (int InsertedCount=0; InsertedCount<5; InsertedCount++)
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
//errs() << "Inserting 28 NOPs after FSQRTD,FDIVD.\n";
for (int InsertedCount=0; InsertedCount<28; InsertedCount++)
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}