llvm-project/llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp

522 lines
16 KiB
C++

//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass adds instructions to enable whole quad mode for pixel
/// shaders.
///
/// Whole quad mode is required for derivative computations, but it interferes
/// with shader side effects (stores and atomics). This pass is run on the
/// scheduled machine IR but before register coalescing, so that machine SSA is
/// available for analysis. It ensures that WQM is enabled when necessary, but
/// disabled around stores and atomics.
///
/// When necessary, this pass creates a function prolog
///
/// S_MOV_B64 LiveMask, EXEC
/// S_WQM_B64 EXEC, EXEC
///
/// to enter WQM at the top of the function and surrounds blocks of Exact
/// instructions by
///
/// S_AND_SAVEEXEC_B64 Tmp, LiveMask
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// In order to avoid excessive switching during sequences of Exact
/// instructions, the pass first analyzes which instructions must be run in WQM
/// (aka which instructions produce values that lead to derivative
/// computations).
///
/// Basic blocks are always exited in WQM as long as some successor needs WQM.
///
/// There is room for improvement given better control flow analysis:
///
/// (1) at the top level (outside of control flow statements, and as long as
/// kill hasn't been used), one SGPR can be saved by recovering WQM from
/// the LiveMask (this is implemented for the entry block).
///
/// (2) when entire regions (e.g. if-else blocks or entire loops) only
/// consist of exact and don't-care instructions, the switch only has to
/// be done at the entry and exit points rather than potentially in each
/// block of the region.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
using namespace llvm;
#define DEBUG_TYPE "si-wqm"
namespace {
enum {
StateWQM = 0x1,
StateExact = 0x2,
};
struct InstrInfo {
char Needs = 0;
char OutNeeds = 0;
};
struct BlockInfo {
char Needs = 0;
char InNeeds = 0;
char OutNeeds = 0;
};
struct WorkItem {
const MachineBasicBlock *MBB = nullptr;
const MachineInstr *MI = nullptr;
WorkItem() {}
WorkItem(const MachineBasicBlock *MBB) : MBB(MBB) {}
WorkItem(const MachineInstr *MI) : MI(MI) {}
};
class SIWholeQuadMode : public MachineFunctionPass {
private:
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
MachineRegisterInfo *MRI;
DenseMap<const MachineInstr *, InstrInfo> Instructions;
DenseMap<const MachineBasicBlock *, BlockInfo> Blocks;
SmallVector<const MachineInstr *, 2> ExecExports;
SmallVector<MachineInstr *, 1> LiveMaskQueries;
char scanInstructions(MachineFunction &MF, std::vector<WorkItem>& Worklist);
void propagateInstruction(const MachineInstr &MI, std::vector<WorkItem>& Worklist);
void propagateBlock(const MachineBasicBlock &MBB, std::vector<WorkItem>& Worklist);
char analyzeFunction(MachineFunction &MF);
void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
unsigned SaveWQM, unsigned LiveMaskReg);
void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
unsigned SavedWQM);
void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry);
void lowerLiveMaskQueries(unsigned LiveMaskReg);
public:
static char ID;
SIWholeQuadMode() :
MachineFunctionPass(ID) { }
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "SI Whole Quad Mode";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace
char SIWholeQuadMode::ID = 0;
INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE,
"SI Whole Quad Mode", false, false)
INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE,
"SI Whole Quad Mode", false, false)
char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;
FunctionPass *llvm::createSIWholeQuadModePass() {
return new SIWholeQuadMode;
}
// Scan instructions to determine which ones require an Exact execmask and
// which ones seed WQM requirements.
char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
std::vector<WorkItem> &Worklist) {
char GlobalFlags = 0;
bool WQMOutputs = MF.getFunction()->hasFnAttribute("amdgpu-ps-wqm-outputs");
for (auto BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) {
MachineInstr &MI = *II;
unsigned Opcode = MI.getOpcode();
char Flags = 0;
if (TII->isWQM(Opcode) || TII->isDS(Opcode)) {
Flags = StateWQM;
} else if (TII->get(Opcode).mayStore() &&
(MI.getDesc().TSFlags & SIInstrFlags::VM_CNT)) {
Flags = StateExact;
} else {
// Handle export instructions with the exec mask valid flag set
if (Opcode == AMDGPU::EXP) {
if (MI.getOperand(4).getImm() != 0)
ExecExports.push_back(&MI);
} else if (Opcode == AMDGPU::SI_PS_LIVE) {
LiveMaskQueries.push_back(&MI);
} else if (WQMOutputs) {
// The function is in machine SSA form, which means that physical
// VGPRs correspond to shader inputs and outputs. Inputs are
// only used, outputs are only defined.
for (const MachineOperand &MO : MI.defs()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TRI->isVirtualRegister(Reg) &&
TRI->hasVGPRs(TRI->getPhysRegClass(Reg))) {
Flags = StateWQM;
break;
}
}
}
if (!Flags)
continue;
}
Instructions[&MI].Needs = Flags;
Worklist.push_back(&MI);
GlobalFlags |= Flags;
}
if (WQMOutputs && MBB.succ_empty()) {
// This is a prolog shader. Make sure we go back to exact mode at the end.
Blocks[&MBB].OutNeeds = StateExact;
Worklist.push_back(&MBB);
GlobalFlags |= StateExact;
}
}
return GlobalFlags;
}
void SIWholeQuadMode::propagateInstruction(const MachineInstr &MI,
std::vector<WorkItem>& Worklist) {
const MachineBasicBlock &MBB = *MI.getParent();
InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
BlockInfo &BI = Blocks[&MBB];
// Control flow-type instructions that are followed by WQM computations
// must themselves be in WQM.
if ((II.OutNeeds & StateWQM) && !(II.Needs & StateWQM) &&
(MI.isBranch() || MI.isTerminator() || MI.getOpcode() == AMDGPU::SI_KILL)) {
Instructions[&MI].Needs = StateWQM;
II.Needs = StateWQM;
}
// Propagate to block level
BI.Needs |= II.Needs;
if ((BI.InNeeds | II.Needs) != BI.InNeeds) {
BI.InNeeds |= II.Needs;
Worklist.push_back(&MBB);
}
// Propagate backwards within block
if (const MachineInstr *PrevMI = MI.getPrevNode()) {
char InNeeds = II.Needs | II.OutNeeds;
if (!PrevMI->isPHI()) {
InstrInfo &PrevII = Instructions[PrevMI];
if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
PrevII.OutNeeds |= InNeeds;
Worklist.push_back(PrevMI);
}
}
}
// Propagate WQM flag to instruction inputs
assert(II.Needs != (StateWQM | StateExact));
if (II.Needs != StateWQM)
return;
for (const MachineOperand &Use : MI.uses()) {
if (!Use.isReg() || !Use.isUse())
continue;
// At this point, physical registers appear as inputs or outputs
// and following them makes no sense (and would in fact be incorrect
// when the same VGPR is used as both an output and an input that leads
// to a NeedsWQM instruction).
//
// Note: VCC appears e.g. in 64-bit addition with carry - theoretically we
// have to trace this, in practice it happens for 64-bit computations like
// pointers where both dwords are followed already anyway.
if (!TargetRegisterInfo::isVirtualRegister(Use.getReg()))
continue;
for (const MachineOperand &Def : MRI->def_operands(Use.getReg())) {
const MachineInstr *DefMI = Def.getParent();
InstrInfo &DefII = Instructions[DefMI];
// Obviously skip if DefMI is already flagged as NeedWQM.
//
// The instruction might also be flagged as NeedExact. This happens when
// the result of an atomic is used in a WQM computation. In this case,
// the atomic must not run for helper pixels and the WQM result is
// undefined.
if (DefII.Needs != 0)
continue;
DefII.Needs = StateWQM;
Worklist.push_back(DefMI);
}
}
}
void SIWholeQuadMode::propagateBlock(const MachineBasicBlock &MBB,
std::vector<WorkItem>& Worklist) {
BlockInfo BI = Blocks[&MBB]; // take a copy to prevent dangling references
// Propagate through instructions
if (!MBB.empty()) {
const MachineInstr *LastMI = &*MBB.rbegin();
InstrInfo &LastII = Instructions[LastMI];
if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
LastII.OutNeeds |= BI.OutNeeds;
Worklist.push_back(LastMI);
}
}
// Predecessor blocks must provide for our WQM/Exact needs.
for (const MachineBasicBlock *Pred : MBB.predecessors()) {
BlockInfo &PredBI = Blocks[Pred];
if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
continue;
PredBI.OutNeeds |= BI.InNeeds;
PredBI.InNeeds |= BI.InNeeds;
Worklist.push_back(Pred);
}
// All successors must be prepared to accept the same set of WQM/Exact
// data.
for (const MachineBasicBlock *Succ : MBB.successors()) {
BlockInfo &SuccBI = Blocks[Succ];
if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
continue;
SuccBI.InNeeds |= BI.OutNeeds;
Worklist.push_back(Succ);
}
}
char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
std::vector<WorkItem> Worklist;
char GlobalFlags = scanInstructions(MF, Worklist);
while (!Worklist.empty()) {
WorkItem WI = Worklist.back();
Worklist.pop_back();
if (WI.MI)
propagateInstruction(*WI.MI, Worklist);
else
propagateBlock(*WI.MBB, Worklist);
}
return GlobalFlags;
}
void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
unsigned SaveWQM, unsigned LiveMaskReg) {
if (SaveWQM) {
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64),
SaveWQM)
.addReg(LiveMaskReg);
} else {
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64),
AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(LiveMaskReg);
}
}
void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
unsigned SavedWQM) {
if (SavedWQM) {
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC)
.addReg(SavedWQM);
} else {
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
AMDGPU::EXEC)
.addReg(AMDGPU::EXEC);
}
}
void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
bool isEntry) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
const BlockInfo &BI = BII->second;
if (!(BI.InNeeds & StateWQM))
return;
// This is a non-entry block that is WQM throughout, so no need to do
// anything.
if (!isEntry && !(BI.Needs & StateExact) && BI.OutNeeds != StateExact)
return;
unsigned SavedWQMReg = 0;
bool WQMFromExec = isEntry;
char State = isEntry ? StateExact : StateWQM;
auto II = MBB.getFirstNonPHI(), IE = MBB.end();
while (II != IE) {
MachineInstr &MI = *II;
++II;
// Skip instructions that are not affected by EXEC
if (MI.getDesc().TSFlags & (SIInstrFlags::SALU | SIInstrFlags::SMRD) &&
!MI.isBranch() && !MI.isTerminator())
continue;
// Generic instructions such as COPY will either disappear by register
// coalescing or be lowered to SALU or VALU instructions.
if (TargetInstrInfo::isGenericOpcode(MI.getOpcode())) {
if (MI.getNumExplicitOperands() >= 1) {
const MachineOperand &Op = MI.getOperand(0);
if (Op.isReg()) {
if (TRI->isSGPRReg(*MRI, Op.getReg())) {
// SGPR instructions are not affected by EXEC
continue;
}
}
}
}
char Needs = 0;
char OutNeeds = 0;
auto InstrInfoIt = Instructions.find(&MI);
if (InstrInfoIt != Instructions.end()) {
Needs = InstrInfoIt->second.Needs;
OutNeeds = InstrInfoIt->second.OutNeeds;
// Make sure to switch to Exact mode before the end of the block when
// Exact and only Exact is needed further downstream.
if (OutNeeds == StateExact && (MI.isBranch() || MI.isTerminator())) {
assert(Needs == 0);
Needs = StateExact;
}
}
// State switching
if (Needs && State != Needs) {
if (Needs == StateExact) {
assert(!SavedWQMReg);
if (!WQMFromExec && (OutNeeds & StateWQM))
SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
toExact(MBB, &MI, SavedWQMReg, LiveMaskReg);
} else {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, &MI, SavedWQMReg);
SavedWQMReg = 0;
}
State = Needs;
}
if (MI.getOpcode() == AMDGPU::SI_KILL)
WQMFromExec = false;
}
if ((BI.OutNeeds & StateWQM) && State != StateWQM) {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, MBB.end(), SavedWQMReg);
} else if (BI.OutNeeds == StateExact && State != StateExact) {
toExact(MBB, MBB.end(), 0, LiveMaskReg);
}
}
void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) {
for (MachineInstr *MI : LiveMaskQueries) {
DebugLoc DL = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
.addReg(LiveMaskReg);
MI->eraseFromParent();
}
}
bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
if (MF.getFunction()->getCallingConv() != CallingConv::AMDGPU_PS)
return false;
Instructions.clear();
Blocks.clear();
ExecExports.clear();
LiveMaskQueries.clear();
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
MRI = &MF.getRegInfo();
char GlobalFlags = analyzeFunction(MF);
if (!(GlobalFlags & StateWQM)) {
lowerLiveMaskQueries(AMDGPU::EXEC);
return !LiveMaskQueries.empty();
}
// Store a copy of the original live mask when required
MachineBasicBlock &Entry = MF.front();
MachineInstr *EntryMI = Entry.getFirstNonPHI();
unsigned LiveMaskReg = 0;
if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) {
LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg)
.addReg(AMDGPU::EXEC);
}
if (GlobalFlags == StateWQM) {
// For a shader that needs only WQM, we can just set it once.
BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
AMDGPU::EXEC).addReg(AMDGPU::EXEC);
lowerLiveMaskQueries(LiveMaskReg);
// EntryMI may become invalid here
return true;
}
lowerLiveMaskQueries(LiveMaskReg);
EntryMI = nullptr;
// Handle the general case
for (const auto &BII : Blocks)
processBlock(const_cast<MachineBasicBlock &>(*BII.first), LiveMaskReg,
BII.first == &*MF.begin());
return true;
}