llvm-project/llvm/lib/Target/SPIRV/SPIRVModuleAnalysis.h

150 lines
5.8 KiB
C++

//===- SPIRVModuleAnalysis.h - analysis of global instrs & regs -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis collects instructions that should be output at the module level
// and performs the global register numbering.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H
#define LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRVDuplicatesTracker.h"
#include "SPIRVSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
namespace llvm {
class MachineFunction;
class MachineModuleInfo;
namespace SPIRV {
// The enum contains logical module sections for the instruction collection.
enum ModuleSectionType {
// MB_Capabilities, MB_Extensions, MB_ExtInstImports, MB_MemoryModel,
MB_EntryPoints, // All OpEntryPoint instructions (if any).
// MB_ExecutionModes, MB_DebugSourceAndStrings,
MB_DebugNames, // All OpName and OpMemberName intrs.
MB_DebugModuleProcessed, // All OpModuleProcessed instructions.
MB_Annotations, // OpDecorate, OpMemberDecorate etc.
MB_TypeConstVars, // OpTypeXXX, OpConstantXXX, and global OpVariables.
MB_ExtFuncDecls, // OpFunction etc. to declare for external funcs.
NUM_MODULE_SECTIONS // Total number of sections requiring basic blocks.
};
using InstrList = SmallVector<MachineInstr *>;
// Maps a local register to the corresponding global alias.
using LocalToGlobalRegTable = std::map<Register, Register>;
using RegisterAliasMapTy =
std::map<const MachineFunction *, LocalToGlobalRegTable>;
// The struct contains results of the module analysis and methods
// to access them.
struct ModuleAnalysisInfo {
SPIRV::MemoryModel Mem;
SPIRV::AddressingModel Addr;
SPIRV::SourceLanguage SrcLang;
unsigned SrcLangVersion;
StringSet<> SrcExt;
// Maps ExtInstSet to corresponding ID register.
DenseMap<unsigned, Register> ExtInstSetMap;
// Contains the list of all global OpVariables in the module.
SmallVector<MachineInstr *, 4> GlobalVarList;
// Maps function names to coresponding function ID registers.
StringMap<Register> FuncNameMap;
// The set contains machine instructions which are necessary
// for correct MIR but will not be emitted in function bodies.
DenseSet<MachineInstr *> InstrsToDelete;
// The set contains machine basic blocks which are necessary
// for correct MIR but will not be emitted.
DenseSet<MachineBasicBlock *> MBBsToSkip;
// The table contains global aliases of local registers for each machine
// function. The aliases are used to substitute local registers during
// code emission.
RegisterAliasMapTy RegisterAliasTable;
// The counter holds the maximum ID we have in the module.
unsigned MaxID;
// The array contains lists of MIs for each module section.
InstrList MS[NUM_MODULE_SECTIONS];
// The table maps MBB number to SPIR-V unique ID register.
DenseMap<int, Register> BBNumToRegMap;
Register getFuncReg(std::string FuncName) {
auto FuncReg = FuncNameMap.find(FuncName);
assert(FuncReg != FuncNameMap.end() && "Cannot find function Id");
return FuncReg->second;
}
Register getExtInstSetReg(unsigned SetNum) { return ExtInstSetMap[SetNum]; }
InstrList &getMSInstrs(unsigned MSType) { return MS[MSType]; }
void setSkipEmission(MachineInstr *MI) { InstrsToDelete.insert(MI); }
bool getSkipEmission(const MachineInstr *MI) {
return InstrsToDelete.contains(MI);
}
void setRegisterAlias(const MachineFunction *MF, Register Reg,
Register AliasReg) {
RegisterAliasTable[MF][Reg] = AliasReg;
}
Register getRegisterAlias(const MachineFunction *MF, Register Reg) {
auto RI = RegisterAliasTable[MF].find(Reg);
if (RI == RegisterAliasTable[MF].end()) {
return Register(0);
}
return RegisterAliasTable[MF][Reg];
}
bool hasRegisterAlias(const MachineFunction *MF, Register Reg) {
return RegisterAliasTable.find(MF) != RegisterAliasTable.end() &&
RegisterAliasTable[MF].find(Reg) != RegisterAliasTable[MF].end();
}
unsigned getNextID() { return MaxID++; }
bool hasMBBRegister(const MachineBasicBlock &MBB) {
return BBNumToRegMap.find(MBB.getNumber()) != BBNumToRegMap.end();
}
// Convert MBB's number to corresponding ID register.
Register getOrCreateMBBRegister(const MachineBasicBlock &MBB) {
auto f = BBNumToRegMap.find(MBB.getNumber());
if (f != BBNumToRegMap.end())
return f->second;
Register NewReg = Register::index2VirtReg(getNextID());
BBNumToRegMap[MBB.getNumber()] = NewReg;
return NewReg;
}
};
} // namespace SPIRV
struct SPIRVModuleAnalysis : public ModulePass {
static char ID;
public:
SPIRVModuleAnalysis() : ModulePass(ID) {}
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
static struct SPIRV::ModuleAnalysisInfo MAI;
private:
void setBaseInfo(const Module &M);
void collectGlobalEntities(
const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
SPIRV::ModuleSectionType MSType,
std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
bool UsePreOrder);
void processDefInstrs(const Module &M);
void collectFuncNames(MachineInstr &MI, const Function &F);
void processOtherInstrs(const Module &M);
void numberRegistersGlobally(const Module &M);
const SPIRVSubtarget *ST;
SPIRVGlobalRegistry *GR;
const SPIRVInstrInfo *TII;
MachineModuleInfo *MMI;
};
} // namespace llvm
#endif // LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H