forked from OSchip/llvm-project
907 lines
36 KiB
C++
907 lines
36 KiB
C++
//===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the ML eviction advisor and reward injection pass
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AllocationOrder.h"
|
|
#include "RegAllocEvictionAdvisor.h"
|
|
#include "RegAllocGreedy.h"
|
|
#include "llvm/Analysis/MLModelRunner.h"
|
|
#include "llvm/Analysis/TensorSpec.h"
|
|
#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TF_API)
|
|
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
|
|
#include "llvm/Analysis/NoInferenceModelRunner.h"
|
|
#endif
|
|
#include "llvm/Analysis/ReleaseModeModelRunner.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveRegMatrix.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassRegistry.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include <array>
|
|
#include <memory>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ml-regalloc"
|
|
|
|
// Generated header in release (AOT) mode
|
|
#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
|
|
#include "RegallocEvictModel.h"
|
|
using CompiledModelType = RegallocEvictModel;
|
|
#else
|
|
using CompiledModelType = NoopSavedModelImpl;
|
|
#endif
|
|
|
|
// Options that only make sense in development mode
|
|
#ifdef LLVM_HAVE_TF_API
|
|
#include "RegAllocScore.h"
|
|
#include "llvm/Analysis/Utils/TFUtils.h"
|
|
|
|
static cl::opt<std::string> TrainingLog(
|
|
"regalloc-training-log", cl::Hidden,
|
|
cl::desc("Training log for the register allocator eviction model"));
|
|
|
|
static cl::opt<std::string> ModelUnderTraining(
|
|
"regalloc-model", cl::Hidden,
|
|
cl::desc("The model being trained for register allocation eviction"));
|
|
|
|
#endif // #ifdef LLVM_HAVE_TF_API
|
|
|
|
extern cl::opt<unsigned> EvictInterferenceCutoff;
|
|
|
|
/// The score injection pass.
|
|
/// This pass calculates the score for a function and inserts it in the log, but
|
|
/// this happens only in development mode. It's a no-op otherwise.
|
|
namespace llvm {
|
|
class RegAllocScoring : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
RegAllocScoring() : MachineFunctionPass(ID) {
|
|
initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
~RegAllocScoring() override = default;
|
|
|
|
StringRef getPassName() const override {
|
|
return "Register Allocation Pass Scoring";
|
|
}
|
|
|
|
/// RegAllocReward analysis usage.
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Performs this pass
|
|
bool runOnMachineFunction(MachineFunction &) override;
|
|
};
|
|
|
|
char RegAllocScoring::ID = 0;
|
|
FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); }
|
|
|
|
} // namespace llvm
|
|
|
|
INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
|
|
"Register Allocation Scoring Pass", false, false)
|
|
|
|
// ===================================
|
|
// Common ML Advisor declarations
|
|
// ===================================
|
|
namespace {
|
|
// This is the maximum number of interfererring ranges. That's the number of
|
|
// distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
|
|
// For X86, that's 32.
|
|
// TODO: find a way to get this, statically, in a programmatic way.
|
|
static const int64_t MaxInterferences = 32;
|
|
|
|
// Logically, we can think of the feature set given to the evaluator as a 2D
|
|
// matrix. The rows are the features (see next). The columns correspond to the
|
|
// interferences. We treat the candidate virt reg as an 'interference', too, as
|
|
// its feature set is the same as that of the interferring ranges. So we'll have
|
|
// MaxInterferences + 1 columns and by convention, we will use the last column
|
|
// for the virt reg seeking allocation.
|
|
static const int64_t CandidateVirtRegPos = MaxInterferences;
|
|
static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1;
|
|
|
|
// Most features are as described above, so we'll reuse this vector in defining
|
|
// them.
|
|
static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
|
|
|
|
// --------------
|
|
// Features table
|
|
// --------------
|
|
// For each interfering live range (incl. the candidate) we collect a number of
|
|
// features. However, because the features are of different types (and because
|
|
// of ML best practices), we organize the tensors per feature, not per
|
|
// candidate. Each such tensor has a scalar value corresponding to the
|
|
// interferring live range at that position, in the order in AllocationOrder.
|
|
// The last position corresponds to the virt reg seeking allocation.
|
|
// Exception to all that is the progression feature, which is just a scalar (see
|
|
// its documentation for details).
|
|
// Note on naming: the "_by_max" are normalized using the largest value of that
|
|
// tensor, as observed in the current decision making stage (i.e. for the
|
|
// current call to the advisor's tryFindEvictionCandidate)
|
|
//
|
|
// The feature list format: type, name, shape, documentation.
|
|
// Note: we can really just use int64 and float, hence the modeling of some
|
|
// bools as int64 values.
|
|
#define RA_EVICT_FEATURES_LIST(M) \
|
|
M(int64_t, mask, PerLiveRangeShape, \
|
|
"boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
|
|
"it " \
|
|
"can't be evicted)") \
|
|
M(int64_t, is_free, PerLiveRangeShape, \
|
|
"boolean values, 1 if this phys reg is actually free (no interferences)") \
|
|
M(float, nr_urgent, PerLiveRangeShape, \
|
|
"number of 'urgent' intervals, normalized. Urgent are those that are OK " \
|
|
"to break cascades") \
|
|
M(float, nr_broken_hints, PerLiveRangeShape, \
|
|
"if this position were evicted, how many broken hints would there be") \
|
|
M(int64_t, is_hint, PerLiveRangeShape, \
|
|
"is this a preferred phys reg for the candidate") \
|
|
M(int64_t, is_local, PerLiveRangeShape, \
|
|
"is this live range local to a basic block") \
|
|
M(float, nr_rematerializable, PerLiveRangeShape, \
|
|
"nr rematerializable ranges") \
|
|
M(float, nr_defs_and_uses, PerLiveRangeShape, \
|
|
"bb freq - weighed nr defs and uses") \
|
|
M(float, weighed_reads_by_max, PerLiveRangeShape, \
|
|
"bb freq - weighed nr of reads, normalized") \
|
|
M(float, weighed_writes_by_max, PerLiveRangeShape, \
|
|
"bb feq - weighed nr of writes, normalized") \
|
|
M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
|
|
"bb freq - weighed nr of uses that are both read and writes, normalized") \
|
|
M(float, weighed_indvars_by_max, PerLiveRangeShape, \
|
|
"bb freq - weighed nr of uses that are indvars, normalized") \
|
|
M(float, hint_weights_by_max, PerLiveRangeShape, \
|
|
"bb freq - weighed nr of uses that are hints, normalized") \
|
|
M(float, start_bb_freq_by_max, PerLiveRangeShape, \
|
|
"the freq in the start block, normalized") \
|
|
M(float, end_bb_freq_by_max, PerLiveRangeShape, \
|
|
"freq of end block, normalized") \
|
|
M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
|
|
"hottest BB freq, normalized") \
|
|
M(float, liverange_size, PerLiveRangeShape, \
|
|
"size (instr index diff) of the LR") \
|
|
M(float, use_def_density, PerLiveRangeShape, \
|
|
"the max weight, as computed by the manual heuristic") \
|
|
M(int64_t, max_stage, PerLiveRangeShape, \
|
|
"largest stage of an interval in this LR") \
|
|
M(int64_t, min_stage, PerLiveRangeShape, \
|
|
"lowest stage of an interval in this LR") \
|
|
M(float, progress, {1}, "ratio of current queue size to initial size")
|
|
|
|
// The model learns to pick one of the mask == 1 interferences. This is the name
|
|
// of the output tensor.
|
|
// The contract with the model is that the output will be guaranteed to be to a
|
|
// mask == 1 position.
|
|
// Using a macro here to avoid 'not used' warnings (and keep cond compilation to
|
|
// a minimum)
|
|
#define DecisionName "index_to_evict"
|
|
|
|
// Named features index.
|
|
enum FeatureIDs {
|
|
#define _FEATURE_IDX(_, name, __, ___) name,
|
|
RA_EVICT_FEATURES_LIST(_FEATURE_IDX)
|
|
#undef _FEATURE_IDX
|
|
FeatureCount
|
|
};
|
|
|
|
// The ML advisor will typically have a sparse input to the evaluator, because
|
|
// various phys regs won't be available. It's easier (maintenance-wise) to
|
|
// bulk-reset the state of the evaluator each time we are about to use it again.
|
|
template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
|
|
size_t Ret = sizeof(T);
|
|
for (const auto V : Shape)
|
|
Ret *= V;
|
|
return Ret;
|
|
}
|
|
|
|
void resetInputs(MLModelRunner &Runner) {
|
|
#define _RESET(TYPE, NAME, SHAPE, __) \
|
|
std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
|
|
getTotalSize<TYPE>(SHAPE));
|
|
RA_EVICT_FEATURES_LIST(_RESET)
|
|
#undef _RESET
|
|
}
|
|
|
|
// Per-live interval components that get aggregated into the feature values that
|
|
// will be passed to the evaluator.
|
|
struct LIFeatureComponents {
|
|
double R = 0;
|
|
double W = 0;
|
|
double RW = 0;
|
|
double IndVarUpdates = 0;
|
|
double HintWeights = 0.0;
|
|
int64_t NrDefsAndUses = 0;
|
|
float HottestBlockFreq = 0.0;
|
|
bool IsRemat = false;
|
|
};
|
|
|
|
using CandidateRegList =
|
|
std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
|
|
using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>;
|
|
|
|
/// The ML evictor (commonalities between release and development mode)
|
|
class MLEvictAdvisor : public RegAllocEvictionAdvisor {
|
|
public:
|
|
MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
|
|
MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI,
|
|
const MachineLoopInfo &Loops);
|
|
|
|
protected:
|
|
const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
|
|
return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
|
|
}
|
|
|
|
// The assumption is that if the Runner could not be constructed, we emit-ed
|
|
// error, and we shouldn't be asking for it here.
|
|
const MLModelRunner &getRunner() const { return *Runner; }
|
|
|
|
/// This just calls Evaluate on the Runner, but in the development mode case,
|
|
/// if we're just capturing the log of the default advisor, it needs to call
|
|
/// the latter instead, so we need to pass all the necessary parameters for
|
|
/// it. In the development case, it will also log.
|
|
virtual int64_t
|
|
tryFindEvictionCandidatePosition(const LiveInterval &VirtReg,
|
|
const AllocationOrder &Order,
|
|
unsigned OrderLimit, uint8_t CostPerUseLimit,
|
|
const SmallVirtRegSet &FixedRegisters) const;
|
|
|
|
/// Load the features of the given VirtReg (allocated or not) at column Pos,
|
|
/// but if that can't be evicted, return false instead.
|
|
bool
|
|
loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg,
|
|
bool IsHint, const SmallVirtRegSet &FixedRegisters,
|
|
std::array<float, FeatureIDs::FeatureCount> &Largest,
|
|
size_t Pos) const;
|
|
|
|
private:
|
|
static float getInitialQueueSize(const MachineFunction &MF);
|
|
|
|
MCRegister tryFindEvictionCandidate(
|
|
const LiveInterval &VirtReg, const AllocationOrder &Order,
|
|
uint8_t CostPerUseLimit,
|
|
const SmallVirtRegSet &FixedRegisters) const override;
|
|
|
|
void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals,
|
|
std::array<float, FeatureIDs::FeatureCount> &Largest,
|
|
size_t Pos, int64_t IsHint, int64_t LocalIntfsCount,
|
|
float NrUrgent) const;
|
|
|
|
// Point-in-time: we didn't learn this, so we always delegate to the default.
|
|
bool canEvictHintInterference(
|
|
const LiveInterval &VirtReg, MCRegister PhysReg,
|
|
const SmallVirtRegSet &FixedRegisters) const override {
|
|
return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
|
|
FixedRegisters);
|
|
}
|
|
|
|
const LIFeatureComponents &
|
|
getLIFeatureComponents(const LiveInterval &LI) const;
|
|
|
|
// Hold on to a default advisor for:
|
|
// 1) the implementation of canEvictHintInterference, because we didn't learn
|
|
// that nuance yet;
|
|
// 2) for bootstrapping (logging) in the development mode case.
|
|
const DefaultEvictionAdvisor DefaultAdvisor;
|
|
MLModelRunner *const Runner;
|
|
const MachineBlockFrequencyInfo &MBFI;
|
|
const MachineLoopInfo &Loops;
|
|
|
|
// Indices of those features we don't want to normalize.
|
|
// This could be static and shared, but its initialization is non-trivial.
|
|
std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
|
|
const float InitialQSize;
|
|
|
|
using RegID = unsigned;
|
|
mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures;
|
|
};
|
|
|
|
#define _DECL_FEATURES(type, name, shape, _) \
|
|
TensorSpec::createSpec<type>(#name, shape),
|
|
|
|
static const std::vector<TensorSpec> InputFeatures{
|
|
{RA_EVICT_FEATURES_LIST(_DECL_FEATURES)},
|
|
};
|
|
#undef _DECL_FEATURES
|
|
// ===================================
|
|
// Release (AOT) - specifics
|
|
// ===================================
|
|
class ReleaseModeEvictionAdvisorAnalysis final
|
|
: public RegAllocEvictionAdvisorAnalysis {
|
|
public:
|
|
ReleaseModeEvictionAdvisorAnalysis()
|
|
: RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {}
|
|
// support for isa<> and dyn_cast.
|
|
static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
|
|
return R->getAdvisorMode() == AdvisorMode::Release;
|
|
}
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
|
|
}
|
|
|
|
std::unique_ptr<RegAllocEvictionAdvisor>
|
|
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
|
|
if (!Runner)
|
|
Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
|
|
MF.getFunction().getContext(), InputFeatures, DecisionName);
|
|
return std::make_unique<MLEvictAdvisor>(
|
|
MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
|
|
getAnalysis<MachineLoopInfo>());
|
|
}
|
|
std::unique_ptr<ReleaseModeModelRunner<CompiledModelType>> Runner;
|
|
};
|
|
|
|
// ===================================
|
|
// Development mode-specifics
|
|
// ===================================
|
|
//
|
|
// Features we log
|
|
#ifdef LLVM_HAVE_TF_API
|
|
static const TensorSpec Output =
|
|
TensorSpec::createSpec<int64_t>(DecisionName, {1});
|
|
static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
|
|
|
|
// Features we bind on the model. The tensor names have a prefix, and we also
|
|
// need to include some tensors that are expected to be present by the training
|
|
// algo.
|
|
// TODO: can we just get rid of these?
|
|
#define _DECL_TRAIN_FEATURES(type, name, shape, _) \
|
|
TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
|
|
|
|
static const std::vector<TensorSpec> TrainingInputFeatures{
|
|
{RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
|
|
TensorSpec::createSpec<float>("action_discount", {1}),
|
|
TensorSpec::createSpec<int32_t>("action_step_type", {1}),
|
|
TensorSpec::createSpec<float>("action_reward", {1})}};
|
|
#undef _DECL_TRAIN_FEATURES
|
|
|
|
class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
|
|
public:
|
|
DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
|
|
MLModelRunner *Runner,
|
|
const MachineBlockFrequencyInfo &MBFI,
|
|
const MachineLoopInfo &Loops, Logger *Log)
|
|
: MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
|
|
|
|
private:
|
|
int64_t tryFindEvictionCandidatePosition(
|
|
const LiveInterval &VirtReg, const AllocationOrder &Order,
|
|
unsigned OrderLimit, uint8_t CostPerUseLimit,
|
|
const SmallVirtRegSet &FixedRegisters) const override;
|
|
|
|
Logger *const Log;
|
|
};
|
|
|
|
class DevelopmentModeEvictionAdvisorAnalysis final
|
|
: public RegAllocEvictionAdvisorAnalysis {
|
|
public:
|
|
DevelopmentModeEvictionAdvisorAnalysis()
|
|
: RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {}
|
|
// support for isa<> and dyn_cast.
|
|
static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
|
|
return R->getAdvisorMode() == AdvisorMode::Development;
|
|
}
|
|
|
|
/// get the logger for the given function, or nullptr if we didn't collect
|
|
/// one. This is used to inject the score by the RegAllocScoring pass.
|
|
Logger *getLogger(const MachineFunction &MF) const {
|
|
auto I = LogMap.find(MF.getName());
|
|
if (I == LogMap.end())
|
|
return nullptr;
|
|
return I->second.get();
|
|
}
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
|
|
}
|
|
|
|
// Save all the logs (when requested).
|
|
bool doFinalization(Module &M) override {
|
|
if (TrainingLog.empty())
|
|
return false;
|
|
std::error_code EC;
|
|
auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
|
|
if (EC) {
|
|
M.getContext().emitError(EC.message() + ":" + TrainingLog);
|
|
return false;
|
|
}
|
|
Logger::flushLogs(*OS, LogMap);
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<RegAllocEvictionAdvisor>
|
|
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
|
|
LLVMContext &Ctx = MF.getFunction().getContext();
|
|
if (ModelUnderTraining.empty() && TrainingLog.empty()) {
|
|
Ctx.emitError("Regalloc development mode should be requested with at "
|
|
"least logging enabled and/or a training model");
|
|
return nullptr;
|
|
}
|
|
if (!Runner) {
|
|
if (ModelUnderTraining.empty())
|
|
Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
|
|
else
|
|
Runner = ModelUnderTrainingRunner::createAndEnsureValid(
|
|
Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
|
|
if (!Runner) {
|
|
Ctx.emitError("Regalloc: could not set up the model runner");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
Logger *Log = nullptr;
|
|
if (!TrainingLog.empty()) {
|
|
std::vector<LoggedFeatureSpec> LFS;
|
|
for (const auto &FS : InputFeatures)
|
|
LFS.push_back({FS, None});
|
|
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
|
|
if (MUTR->outputLoggedFeatureSpecs().size() > 1)
|
|
append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs()));
|
|
// We always log the output; in particular, if we're not evaluating, we
|
|
// don't have an output spec json file. That's why we handle the
|
|
// 'normal' output separately.
|
|
LFS.push_back({Output, None});
|
|
auto I = LogMap.insert(std::make_pair(
|
|
MF.getFunction().getName(),
|
|
std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true)));
|
|
assert(I.second);
|
|
Log = I.first->second.get();
|
|
}
|
|
return std::make_unique<DevelopmentModeEvictAdvisor>(
|
|
MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
|
|
getAnalysis<MachineLoopInfo>(), Log);
|
|
}
|
|
|
|
std::unique_ptr<MLModelRunner> Runner;
|
|
StringMap<std::unique_ptr<Logger>> LogMap;
|
|
};
|
|
#endif //#ifdef LLVM_HAVE_TF_API
|
|
} // namespace
|
|
|
|
float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
|
|
auto &MRI = MF.getRegInfo();
|
|
float Ret = 0.0;
|
|
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
|
|
Register Reg = Register::index2VirtReg(I);
|
|
if (MRI.reg_nodbg_empty(Reg))
|
|
continue;
|
|
++Ret;
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
|
|
MLModelRunner *Runner,
|
|
const MachineBlockFrequencyInfo &MBFI,
|
|
const MachineLoopInfo &Loops)
|
|
: RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
|
|
Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
|
|
InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
|
|
assert(this->Runner);
|
|
DoNotNormalize.set(FeatureIDs::mask);
|
|
DoNotNormalize.set(FeatureIDs::is_free);
|
|
DoNotNormalize.set(FeatureIDs::is_hint);
|
|
DoNotNormalize.set(FeatureIDs::is_local);
|
|
DoNotNormalize.set(FeatureIDs::min_stage);
|
|
DoNotNormalize.set(FeatureIDs::max_stage);
|
|
DoNotNormalize.set(FeatureIDs::progress);
|
|
}
|
|
|
|
int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
|
|
const LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
|
|
const SmallVirtRegSet &) const {
|
|
int64_t Ret = Runner->evaluate<int64_t>();
|
|
assert(Ret >= 0);
|
|
assert(Ret <= CandidateVirtRegPos);
|
|
return Ret;
|
|
}
|
|
|
|
bool MLEvictAdvisor::loadInterferenceFeatures(
|
|
const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
|
|
const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest,
|
|
size_t Pos) const {
|
|
// It is only possible to evict virtual register interference.
|
|
if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
|
|
// leave unavailable
|
|
return false;
|
|
}
|
|
|
|
const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
|
|
int64_t LocalIntfs = 0;
|
|
float NrUrgent = 0.0f;
|
|
|
|
// The cascade tracking is the same as in the default advisor
|
|
unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
|
|
|
|
SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals;
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
|
|
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
|
|
// Different from the default heuristic, we don't make any assumptions about
|
|
// what having more than 10 results in the query may mean.
|
|
const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff);
|
|
if (IFIntervals.empty() && InterferingIntervals.empty())
|
|
continue;
|
|
if (IFIntervals.size() >= EvictInterferenceCutoff)
|
|
return false;
|
|
InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
|
|
for (const LiveInterval *Intf : reverse(IFIntervals)) {
|
|
assert(Register::isVirtualRegister(Intf->reg()) &&
|
|
"Only expecting virtual register interference from query");
|
|
// This is the same set of legality checks as in the default case: don't
|
|
// try to evict fixed regs or 'done' ones. Also don't break cascades,
|
|
// except in the urgent case, with the same nuances used in the default
|
|
// heuristic.
|
|
// We could try sharing this between the advisors, but it may end up
|
|
// more complex than it is right now.
|
|
if (FixedRegisters.count(Intf->reg()))
|
|
return false;
|
|
if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
|
|
return false;
|
|
bool Urgent =
|
|
!VirtReg.isSpillable() &&
|
|
(Intf->isSpillable() ||
|
|
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
|
|
RegClassInfo.getNumAllocatableRegs(
|
|
MRI->getRegClass(Intf->reg())));
|
|
// Only evict older cascades or live ranges without a cascade.
|
|
unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
|
|
if (Cascade <= IntfCascade) {
|
|
if (!Urgent)
|
|
return false;
|
|
++NrUrgent;
|
|
}
|
|
|
|
LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
|
|
(!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
|
|
}
|
|
}
|
|
// OK, so if we made it this far, this LR is an eviction candidate, load its
|
|
// features.
|
|
extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
|
|
NrUrgent);
|
|
return true;
|
|
}
|
|
|
|
MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
|
|
const LiveInterval &VirtReg, const AllocationOrder &Order,
|
|
uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
|
|
auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
|
|
if (!MaybeOrderLimit)
|
|
return MCRegister::NoRegister;
|
|
unsigned OrderLimit = *MaybeOrderLimit;
|
|
|
|
// The heuristic sets initial costs such as, if CostPerUseLimit is
|
|
// max<uint8_t>, then any of the costs of the legally-evictable intervals
|
|
// would be lower. When that happens, one of those will be selected.
|
|
// Therefore, we allow the candidate be selected, unless the candidate is
|
|
// unspillable, in which case it would be incorrect to not find a register for
|
|
// it.
|
|
const bool MustFindEviction =
|
|
(!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
|
|
// Number of available candidates - if 0, no need to continue.
|
|
size_t Available = 0;
|
|
// Make sure we don't have leftover partial state from an attempt where we had
|
|
// no available candidates and bailed out early.
|
|
resetInputs(*Runner);
|
|
|
|
// Track the index->register mapping because AllocationOrder doesn't do that
|
|
// and we'd have to scan it.
|
|
// Also track their mask, to write asserts/debug.
|
|
CandidateRegList Regs;
|
|
Regs.fill({0, false});
|
|
|
|
// Track the largest value of features seen during this eviction session. We
|
|
// only normalize (some of) the float features, but it's just simpler to
|
|
// dimension 'Largest' to all the features, especially since we have the
|
|
// 'DoNotNormalize' list.
|
|
FeaturesListNormalizer Largest;
|
|
Largest.fill(0.0);
|
|
|
|
// Same overal idea as in the default eviction policy - we visit the values of
|
|
// AllocationOrder one at a time. If it's not legally available, we mask off
|
|
// the corresponding feature column (==do nothing because we already reset all
|
|
// the features to 0)
|
|
// Use Pos to capture the column we load features at - in AllocationOrder
|
|
// order.
|
|
size_t Pos = 0;
|
|
for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
|
|
++I, ++Pos) {
|
|
MCRegister PhysReg = *I;
|
|
assert(!Regs[Pos].second);
|
|
assert(PhysReg);
|
|
if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
|
|
continue;
|
|
}
|
|
if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
|
|
Largest, Pos)) {
|
|
++Available;
|
|
Regs[Pos] = std::make_pair(PhysReg, true);
|
|
}
|
|
}
|
|
if (Available == 0) {
|
|
// Nothing to decide, nothing to learn.
|
|
assert(!MustFindEviction);
|
|
return MCRegister::NoRegister;
|
|
}
|
|
const size_t ValidPosLimit = Pos;
|
|
// If we must find eviction, the candidate should be masked out of the
|
|
// decision making process.
|
|
Regs[CandidateVirtRegPos].second = !MustFindEviction;
|
|
if (!MustFindEviction)
|
|
extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest,
|
|
CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0,
|
|
/*NrUrgent*/ 0.0);
|
|
assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
|
|
"nothing to allocate initially.");
|
|
// Normalize the features.
|
|
for (auto &V : Largest)
|
|
V = V ? V : 1.0;
|
|
for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
|
|
++FeatureIndex) {
|
|
if (DoNotNormalize.test(FeatureIndex))
|
|
continue;
|
|
for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
|
|
Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
|
|
}
|
|
}
|
|
*Runner->getTensor<float>(FeatureIDs::progress) =
|
|
static_cast<float>(RA.getQueueSize()) / InitialQSize;
|
|
|
|
// Get a decision.
|
|
size_t CandidatePos = tryFindEvictionCandidatePosition(
|
|
VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
|
|
// The contract with the ML side is that CandidatePos is mask == 1 (i.e.
|
|
// Regs[CandidatePos].second)
|
|
assert(Regs[CandidatePos].second);
|
|
if (CandidatePos == CandidateVirtRegPos) {
|
|
assert(!MustFindEviction);
|
|
return MCRegister::NoRegister;
|
|
}
|
|
assert(CandidatePos < ValidPosLimit);
|
|
(void)ValidPosLimit;
|
|
return Regs[CandidatePos].first;
|
|
}
|
|
|
|
const LIFeatureComponents &
|
|
MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
|
|
RegID ID = LI.reg().id();
|
|
LIFeatureComponents Empty;
|
|
auto I = CachedFeatures.insert(std::make_pair(ID, Empty));
|
|
LIFeatureComponents &Ret = I.first->getSecond();
|
|
if (!I.second)
|
|
return Ret;
|
|
|
|
SmallPtrSet<MachineInstr *, 8> Visited;
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
|
|
for (MachineRegisterInfo::reg_instr_nodbg_iterator
|
|
I = MRI->reg_instr_nodbg_begin(LI.reg()),
|
|
E = MRI->reg_instr_nodbg_end();
|
|
I != E;) {
|
|
MachineInstr *MI = &*(I++);
|
|
|
|
++Ret.NrDefsAndUses;
|
|
if (!Visited.insert(MI).second)
|
|
continue;
|
|
|
|
if (MI->isIdentityCopy() || MI->isImplicitDef())
|
|
continue;
|
|
|
|
bool Reads, Writes;
|
|
std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
|
|
|
|
float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
|
|
Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
|
|
|
|
Ret.R += (Reads && !Writes) * Freq;
|
|
Ret.W += (!Reads && Writes) * Freq;
|
|
Ret.RW += (Reads && Writes) * Freq;
|
|
|
|
auto *MBB = MI->getParent();
|
|
auto *Loop = Loops.getLoopFor(MBB);
|
|
bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
|
|
|
|
if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
|
|
Ret.IndVarUpdates += Freq;
|
|
|
|
if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
|
|
Ret.HintWeights += Freq;
|
|
}
|
|
Ret.IsRemat = VirtRegAuxInfo::isRematerializable(
|
|
LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
|
|
return Ret;
|
|
}
|
|
|
|
// Overall, this currently mimics what we do for weight calculation, but instead
|
|
// of accummulating the various features, we keep them separate.
|
|
void MLEvictAdvisor::extractFeatures(
|
|
const SmallVectorImpl<const LiveInterval *> &Intervals,
|
|
std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos,
|
|
int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const {
|
|
int64_t NrDefsAndUses = 0;
|
|
int64_t NrBrokenHints = 0;
|
|
double R = 0.0;
|
|
double W = 0.0;
|
|
double RW = 0.0;
|
|
double IndVarUpdates = 0.0;
|
|
double HintWeights = 0.0;
|
|
float StartBBFreq = 0.0;
|
|
float EndBBFreq = 0.0;
|
|
float HottestBlockFreq = 0.0;
|
|
int32_t NrRematerializable = 0;
|
|
float TotalWeight = 0.0;
|
|
|
|
SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
|
|
SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
|
|
int64_t MaxStage = 0;
|
|
int64_t MinStage =
|
|
Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
|
|
|
|
for (const auto *L : Intervals) {
|
|
const LiveInterval &LI = *L;
|
|
MaxStage = std::max<int64_t>(
|
|
MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
|
|
MinStage = std::min<int64_t>(
|
|
MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
|
|
|
|
TotalWeight = std::max(TotalWeight, LI.weight());
|
|
|
|
if (LI.beginIndex() < StartSI)
|
|
StartSI = LI.beginIndex();
|
|
|
|
if (LI.endIndex() > EndSI)
|
|
EndSI = LI.endIndex();
|
|
const LIFeatureComponents &LIFC = getLIFeatureComponents(LI);
|
|
NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
|
|
|
|
NrDefsAndUses += LIFC.NrDefsAndUses;
|
|
HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
|
|
R += LIFC.R;
|
|
W += LIFC.W;
|
|
RW += LIFC.RW;
|
|
|
|
IndVarUpdates += LIFC.IndVarUpdates;
|
|
|
|
HintWeights += LIFC.HintWeights;
|
|
NrRematerializable += LIFC.IsRemat;
|
|
}
|
|
size_t Size = 0;
|
|
if (!Intervals.empty()) {
|
|
StartBBFreq =
|
|
MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
|
|
if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
|
|
EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
|
|
EndBBFreq =
|
|
MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
|
|
Size = StartSI.distance(EndSI);
|
|
}
|
|
// Set the features at the column 'Pos'.
|
|
#define SET(ID, TYPE, VAL) \
|
|
do { \
|
|
Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
|
|
if (!DoNotNormalize.test(FeatureIDs::ID)) \
|
|
Largest[FeatureIDs::ID] = \
|
|
std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
|
|
} while (false)
|
|
SET(mask, int64_t, 1);
|
|
SET(is_free, int64_t, Intervals.empty());
|
|
SET(nr_urgent, float, NrUrgent);
|
|
SET(nr_broken_hints, float, NrBrokenHints);
|
|
SET(is_hint, int64_t, IsHint);
|
|
SET(is_local, int64_t, LocalIntfsCount);
|
|
SET(nr_rematerializable, float, NrRematerializable);
|
|
SET(nr_defs_and_uses, float, NrDefsAndUses);
|
|
SET(weighed_reads_by_max, float, R);
|
|
SET(weighed_writes_by_max, float, W);
|
|
SET(weighed_read_writes_by_max, float, RW);
|
|
SET(weighed_indvars_by_max, float, IndVarUpdates);
|
|
SET(hint_weights_by_max, float, HintWeights);
|
|
SET(start_bb_freq_by_max, float, StartBBFreq);
|
|
SET(end_bb_freq_by_max, float, EndBBFreq);
|
|
SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
|
|
SET(liverange_size, float, Size);
|
|
SET(use_def_density, float, TotalWeight);
|
|
SET(max_stage, int64_t, MaxStage);
|
|
SET(min_stage, int64_t, MinStage);
|
|
#undef SET
|
|
}
|
|
|
|
// Development mode-specific implementations
|
|
#ifdef LLVM_HAVE_TF_API
|
|
RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() {
|
|
return new DevelopmentModeEvictionAdvisorAnalysis();
|
|
}
|
|
|
|
int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
|
|
const LiveInterval &VirtReg, const AllocationOrder &Order,
|
|
unsigned OrderLimit, uint8_t CostPerUseLimit,
|
|
const SmallVirtRegSet &FixedRegisters) const {
|
|
int64_t Ret = 0;
|
|
if (isa<ModelUnderTrainingRunner>(getRunner())) {
|
|
Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
|
|
VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
|
|
} else {
|
|
MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
|
|
VirtReg, Order, CostPerUseLimit, FixedRegisters);
|
|
// Find the index of the selected PhysReg. We need it for logging, otherwise
|
|
// this is wasted cycles (but so would starting development mode without a
|
|
// model nor logging)
|
|
if (!PhysReg)
|
|
Ret = CandidateVirtRegPos;
|
|
else
|
|
for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
|
|
I != E; ++I, ++Ret)
|
|
if (*I == PhysReg)
|
|
break;
|
|
}
|
|
if (TrainingLog.empty())
|
|
return Ret;
|
|
size_t CurrentFeature = 0;
|
|
for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) {
|
|
Log->logSpecifiedTensorValue(
|
|
CurrentFeature, reinterpret_cast<const char *>(
|
|
getRunner().getTensorUntyped(CurrentFeature)));
|
|
}
|
|
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
|
|
for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size();
|
|
++I, ++CurrentFeature)
|
|
Log->logSpecifiedTensorValue(
|
|
CurrentFeature,
|
|
reinterpret_cast<const char *>(
|
|
MUTR->lastEvaluationResult()->getUntypedTensorValue(I)));
|
|
// The output is right after the features and the extra outputs
|
|
Log->logInt64Value(CurrentFeature, &Ret);
|
|
return Ret;
|
|
}
|
|
|
|
bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) {
|
|
if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>(
|
|
&getAnalysis<RegAllocEvictionAdvisorAnalysis>()))
|
|
if (auto *Log = DevModeAnalysis->getLogger(MF))
|
|
Log->logFloatFinalReward(static_cast<float>(
|
|
calculateRegAllocScore(MF, getAnalysis<MachineBlockFrequencyInfo>())
|
|
.getScore()));
|
|
|
|
return false;
|
|
}
|
|
#endif // #ifdef LLVM_HAVE_TF_API
|
|
|
|
RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() {
|
|
return new ReleaseModeEvictionAdvisorAnalysis();
|
|
}
|
|
|
|
// In all cases except development mode, we don't need scoring.
|
|
#if !defined(LLVM_HAVE_TF_API)
|
|
bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; }
|
|
#endif
|