llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp

5682 lines
202 KiB
C++

//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterBankInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DivisionByConstantInfo.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include <tuple>
#define DEBUG_TYPE "gi-combiner"
using namespace llvm;
using namespace MIPatternMatch;
// Option to allow testing of the combiner while no targets know about indexed
// addressing.
static cl::opt<bool>
ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
cl::desc("Force all indexed operations to be "
"legal for the GlobalISel combiner"));
CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
MachineIRBuilder &B, GISelKnownBits *KB,
MachineDominatorTree *MDT,
const LegalizerInfo *LI)
: Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
(void)this->KB;
}
const TargetLowering &CombinerHelper::getTargetLowering() const {
return *Builder.getMF().getSubtarget().getTargetLowering();
}
/// \returns The little endian in-memory byte position of byte \p I in a
/// \p ByteWidth bytes wide type.
///
/// E.g. Given a 4-byte type x, x[0] -> byte 0
static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
assert(I < ByteWidth && "I must be in [0, ByteWidth)");
return I;
}
/// Determines the LogBase2 value for a non-null input value using the
/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
auto &MRI = *MIB.getMRI();
LLT Ty = MRI.getType(V);
auto Ctlz = MIB.buildCTLZ(Ty, V);
auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
}
/// \returns The big endian in-memory byte position of byte \p I in a
/// \p ByteWidth bytes wide type.
///
/// E.g. Given a 4-byte type x, x[0] -> byte 3
static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
assert(I < ByteWidth && "I must be in [0, ByteWidth)");
return ByteWidth - I - 1;
}
/// Given a map from byte offsets in memory to indices in a load/store,
/// determine if that map corresponds to a little or big endian byte pattern.
///
/// \param MemOffset2Idx maps memory offsets to address offsets.
/// \param LowestIdx is the lowest index in \p MemOffset2Idx.
///
/// \returns true if the map corresponds to a big endian byte pattern, false
/// if it corresponds to a little endian byte pattern, and None otherwise.
///
/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
/// are as follows:
///
/// AddrOffset Little endian Big endian
/// 0 0 3
/// 1 1 2
/// 2 2 1
/// 3 3 0
static Optional<bool>
isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
int64_t LowestIdx) {
// Need at least two byte positions to decide on endianness.
unsigned Width = MemOffset2Idx.size();
if (Width < 2)
return None;
bool BigEndian = true, LittleEndian = true;
for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
if (MemOffsetAndIdx == MemOffset2Idx.end())
return None;
const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
assert(Idx >= 0 && "Expected non-negative byte offset?");
LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
if (!BigEndian && !LittleEndian)
return None;
}
assert((BigEndian != LittleEndian) &&
"Pattern cannot be both big and little endian!");
return BigEndian;
}
bool CombinerHelper::isPreLegalize() const { return !LI; }
bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
assert(LI && "Must have LegalizerInfo to query isLegal!");
return LI->getAction(Query).Action == LegalizeActions::Legal;
}
bool CombinerHelper::isLegalOrBeforeLegalizer(
const LegalityQuery &Query) const {
return isPreLegalize() || isLegal(Query);
}
bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
if (!Ty.isVector())
return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
// Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
if (isPreLegalize())
return true;
LLT EltTy = Ty.getElementType();
return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
}
void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
Register ToReg) const {
Observer.changingAllUsesOfReg(MRI, FromReg);
if (MRI.constrainRegAttrs(ToReg, FromReg))
MRI.replaceRegWith(FromReg, ToReg);
else
Builder.buildCopy(ToReg, FromReg);
Observer.finishedChangingAllUsesOfReg();
}
void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
MachineOperand &FromRegOp,
Register ToReg) const {
assert(FromRegOp.getParent() && "Expected an operand in an MI");
Observer.changingInstr(*FromRegOp.getParent());
FromRegOp.setReg(ToReg);
Observer.changedInstr(*FromRegOp.getParent());
}
void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
unsigned ToOpcode) const {
Observer.changingInstr(FromMI);
FromMI.setDesc(Builder.getTII().get(ToOpcode));
Observer.changedInstr(FromMI);
}
const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
return RBI->getRegBank(Reg, MRI, *TRI);
}
void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
if (RegBank)
MRI.setRegBank(Reg, *RegBank);
}
bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
if (matchCombineCopy(MI)) {
applyCombineCopy(MI);
return true;
}
return false;
}
bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
if (MI.getOpcode() != TargetOpcode::COPY)
return false;
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
return canReplaceReg(DstReg, SrcReg, MRI);
}
void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, SrcReg);
}
bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
bool IsUndef = false;
SmallVector<Register, 4> Ops;
if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
applyCombineConcatVectors(MI, IsUndef, Ops);
return true;
}
return false;
}
bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
SmallVectorImpl<Register> &Ops) {
assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
"Invalid instruction");
IsUndef = true;
MachineInstr *Undef = nullptr;
// Walk over all the operands of concat vectors and check if they are
// build_vector themselves or undef.
// Then collect their operands in Ops.
for (const MachineOperand &MO : MI.uses()) {
Register Reg = MO.getReg();
MachineInstr *Def = MRI.getVRegDef(Reg);
assert(Def && "Operand not defined");
switch (Def->getOpcode()) {
case TargetOpcode::G_BUILD_VECTOR:
IsUndef = false;
// Remember the operands of the build_vector to fold
// them into the yet-to-build flattened concat vectors.
for (const MachineOperand &BuildVecMO : Def->uses())
Ops.push_back(BuildVecMO.getReg());
break;
case TargetOpcode::G_IMPLICIT_DEF: {
LLT OpType = MRI.getType(Reg);
// Keep one undef value for all the undef operands.
if (!Undef) {
Builder.setInsertPt(*MI.getParent(), MI);
Undef = Builder.buildUndef(OpType.getScalarType());
}
assert(MRI.getType(Undef->getOperand(0).getReg()) ==
OpType.getScalarType() &&
"All undefs should have the same type");
// Break the undef vector in as many scalar elements as needed
// for the flattening.
for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
EltIdx != EltEnd; ++EltIdx)
Ops.push_back(Undef->getOperand(0).getReg());
break;
}
default:
return false;
}
}
return true;
}
void CombinerHelper::applyCombineConcatVectors(
MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
// We determined that the concat_vectors can be flatten.
// Generate the flattened build_vector.
Register DstReg = MI.getOperand(0).getReg();
Builder.setInsertPt(*MI.getParent(), MI);
Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
// Note: IsUndef is sort of redundant. We could have determine it by
// checking that at all Ops are undef. Alternatively, we could have
// generate a build_vector of undefs and rely on another combine to
// clean that up. For now, given we already gather this information
// in tryCombineConcatVectors, just save compile time and issue the
// right thing.
if (IsUndef)
Builder.buildUndef(NewDstReg);
else
Builder.buildBuildVector(NewDstReg, Ops);
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, NewDstReg);
}
bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
SmallVector<Register, 4> Ops;
if (matchCombineShuffleVector(MI, Ops)) {
applyCombineShuffleVector(MI, Ops);
return true;
}
return false;
}
bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
SmallVectorImpl<Register> &Ops) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
"Invalid instruction kind");
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
Register Src1 = MI.getOperand(1).getReg();
LLT SrcType = MRI.getType(Src1);
// As bizarre as it may look, shuffle vector can actually produce
// scalar! This is because at the IR level a <1 x ty> shuffle
// vector is perfectly valid.
unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
// If the resulting vector is smaller than the size of the source
// vectors being concatenated, we won't be able to replace the
// shuffle vector into a concat_vectors.
//
// Note: We may still be able to produce a concat_vectors fed by
// extract_vector_elt and so on. It is less clear that would
// be better though, so don't bother for now.
//
// If the destination is a scalar, the size of the sources doesn't
// matter. we will lower the shuffle to a plain copy. This will
// work only if the source and destination have the same size. But
// that's covered by the next condition.
//
// TODO: If the size between the source and destination don't match
// we could still emit an extract vector element in that case.
if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
return false;
// Check that the shuffle mask can be broken evenly between the
// different sources.
if (DstNumElts % SrcNumElts != 0)
return false;
// Mask length is a multiple of the source vector length.
// Check if the shuffle is some kind of concatenation of the input
// vectors.
unsigned NumConcat = DstNumElts / SrcNumElts;
SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
for (unsigned i = 0; i != DstNumElts; ++i) {
int Idx = Mask[i];
// Undef value.
if (Idx < 0)
continue;
// Ensure the indices in each SrcType sized piece are sequential and that
// the same source is used for the whole piece.
if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
(ConcatSrcs[i / SrcNumElts] >= 0 &&
ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
return false;
// Remember which source this index came from.
ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
}
// The shuffle is concatenating multiple vectors together.
// Collect the different operands for that.
Register UndefReg;
Register Src2 = MI.getOperand(2).getReg();
for (auto Src : ConcatSrcs) {
if (Src < 0) {
if (!UndefReg) {
Builder.setInsertPt(*MI.getParent(), MI);
UndefReg = Builder.buildUndef(SrcType).getReg(0);
}
Ops.push_back(UndefReg);
} else if (Src == 0)
Ops.push_back(Src1);
else
Ops.push_back(Src2);
}
return true;
}
void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
const ArrayRef<Register> Ops) {
Register DstReg = MI.getOperand(0).getReg();
Builder.setInsertPt(*MI.getParent(), MI);
Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
if (Ops.size() == 1)
Builder.buildCopy(NewDstReg, Ops[0]);
else
Builder.buildMerge(NewDstReg, Ops);
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, NewDstReg);
}
namespace {
/// Select a preference between two uses. CurrentUse is the current preference
/// while *ForCandidate is attributes of the candidate under consideration.
PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
const LLT TyForCandidate,
unsigned OpcodeForCandidate,
MachineInstr *MIForCandidate) {
if (!CurrentUse.Ty.isValid()) {
if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
return CurrentUse;
}
// We permit the extend to hoist through basic blocks but this is only
// sensible if the target has extending loads. If you end up lowering back
// into a load and extend during the legalizer then the end result is
// hoisting the extend up to the load.
// Prefer defined extensions to undefined extensions as these are more
// likely to reduce the number of instructions.
if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
return CurrentUse;
else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
OpcodeForCandidate != TargetOpcode::G_ANYEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
// Prefer sign extensions to zero extensions as sign-extensions tend to be
// more expensive.
if (CurrentUse.Ty == TyForCandidate) {
if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
OpcodeForCandidate == TargetOpcode::G_ZEXT)
return CurrentUse;
else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
OpcodeForCandidate == TargetOpcode::G_SEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
}
// This is potentially target specific. We've chosen the largest type
// because G_TRUNC is usually free. One potential catch with this is that
// some targets have a reduced number of larger registers than smaller
// registers and this choice potentially increases the live-range for the
// larger value.
if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
}
return CurrentUse;
}
/// Find a suitable place to insert some instructions and insert them. This
/// function accounts for special cases like inserting before a PHI node.
/// The current strategy for inserting before PHI's is to duplicate the
/// instructions for each predecessor. However, while that's ok for G_TRUNC
/// on most targets since it generally requires no code, other targets/cases may
/// want to try harder to find a dominating block.
static void InsertInsnsWithoutSideEffectsBeforeUse(
MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
MachineOperand &UseMO)>
Inserter) {
MachineInstr &UseMI = *UseMO.getParent();
MachineBasicBlock *InsertBB = UseMI.getParent();
// If the use is a PHI then we want the predecessor block instead.
if (UseMI.isPHI()) {
MachineOperand *PredBB = std::next(&UseMO);
InsertBB = PredBB->getMBB();
}
// If the block is the same block as the def then we want to insert just after
// the def instead of at the start of the block.
if (InsertBB == DefMI.getParent()) {
MachineBasicBlock::iterator InsertPt = &DefMI;
Inserter(InsertBB, std::next(InsertPt), UseMO);
return;
}
// Otherwise we want the start of the BB
Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
}
} // end anonymous namespace
bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
PreferredTuple Preferred;
if (matchCombineExtendingLoads(MI, Preferred)) {
applyCombineExtendingLoads(MI, Preferred);
return true;
}
return false;
}
bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
PreferredTuple &Preferred) {
// We match the loads and follow the uses to the extend instead of matching
// the extends and following the def to the load. This is because the load
// must remain in the same position for correctness (unless we also add code
// to find a safe place to sink it) whereas the extend is freely movable.
// It also prevents us from duplicating the load for the volatile case or just
// for performance.
GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
if (!LoadMI)
return false;
Register LoadReg = LoadMI->getDstReg();
LLT LoadValueTy = MRI.getType(LoadReg);
if (!LoadValueTy.isScalar())
return false;
// Most architectures are going to legalize <s8 loads into at least a 1 byte
// load, and the MMOs can only describe memory accesses in multiples of bytes.
// If we try to perform extload combining on those, we can end up with
// %a(s8) = extload %ptr (load 1 byte from %ptr)
// ... which is an illegal extload instruction.
if (LoadValueTy.getSizeInBits() < 8)
return false;
// For non power-of-2 types, they will very likely be legalized into multiple
// loads. Don't bother trying to match them into extending loads.
if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
return false;
// Find the preferred type aside from the any-extends (unless it's the only
// one) and non-extending ops. We'll emit an extending load to that type and
// and emit a variant of (extend (trunc X)) for the others according to the
// relative type sizes. At the same time, pick an extend to use based on the
// extend involved in the chosen type.
unsigned PreferredOpcode =
isa<GLoad>(&MI)
? TargetOpcode::G_ANYEXT
: isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
Preferred = {LLT(), PreferredOpcode, nullptr};
for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
(UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
const auto &MMO = LoadMI->getMMO();
// For atomics, only form anyextending loads.
if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
continue;
// Check for legality.
if (LI) {
LegalityQuery::MemDesc MMDesc(MMO);
LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}})
.Action != LegalizeActions::Legal)
continue;
}
Preferred = ChoosePreferredUse(Preferred,
MRI.getType(UseMI.getOperand(0).getReg()),
UseMI.getOpcode(), &UseMI);
}
}
// There were no extends
if (!Preferred.MI)
return false;
// It should be impossible to chose an extend without selecting a different
// type since by definition the result of an extend is larger.
assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
return true;
}
void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
PreferredTuple &Preferred) {
// Rewrite the load to the chosen extending load.
Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
// Inserter to insert a truncate back to the original type at a given point
// with some basic CSE to limit truncate duplication to one per BB.
DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
MachineBasicBlock::iterator InsertBefore,
MachineOperand &UseMO) {
MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
if (PreviouslyEmitted) {
Observer.changingInstr(*UseMO.getParent());
UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
Observer.changedInstr(*UseMO.getParent());
return;
}
Builder.setInsertPt(*InsertIntoBB, InsertBefore);
Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
EmittedInsns[InsertIntoBB] = NewMI;
replaceRegOpWith(MRI, UseMO, NewDstReg);
};
Observer.changingInstr(MI);
MI.setDesc(
Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
? TargetOpcode::G_SEXTLOAD
: Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
? TargetOpcode::G_ZEXTLOAD
: TargetOpcode::G_LOAD));
// Rewrite all the uses to fix up the types.
auto &LoadValue = MI.getOperand(0);
SmallVector<MachineOperand *, 4> Uses;
for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
Uses.push_back(&UseMO);
for (auto *UseMO : Uses) {
MachineInstr *UseMI = UseMO->getParent();
// If the extend is compatible with the preferred extend then we should fix
// up the type and extend so that it uses the preferred use.
if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
Register UseDstReg = UseMI->getOperand(0).getReg();
MachineOperand &UseSrcMO = UseMI->getOperand(1);
const LLT UseDstTy = MRI.getType(UseDstReg);
if (UseDstReg != ChosenDstReg) {
if (Preferred.Ty == UseDstTy) {
// If the use has the same type as the preferred use, then merge
// the vregs and erase the extend. For example:
// %1:_(s8) = G_LOAD ...
// %2:_(s32) = G_SEXT %1(s8)
// %3:_(s32) = G_ANYEXT %1(s8)
// ... = ... %3(s32)
// rewrites to:
// %2:_(s32) = G_SEXTLOAD ...
// ... = ... %2(s32)
replaceRegWith(MRI, UseDstReg, ChosenDstReg);
Observer.erasingInstr(*UseMO->getParent());
UseMO->getParent()->eraseFromParent();
} else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
// If the preferred size is smaller, then keep the extend but extend
// from the result of the extending load. For example:
// %1:_(s8) = G_LOAD ...
// %2:_(s32) = G_SEXT %1(s8)
// %3:_(s64) = G_ANYEXT %1(s8)
// ... = ... %3(s64)
/// rewrites to:
// %2:_(s32) = G_SEXTLOAD ...
// %3:_(s64) = G_ANYEXT %2:_(s32)
// ... = ... %3(s64)
replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
} else {
// If the preferred size is large, then insert a truncate. For
// example:
// %1:_(s8) = G_LOAD ...
// %2:_(s64) = G_SEXT %1(s8)
// %3:_(s32) = G_ZEXT %1(s8)
// ... = ... %3(s32)
/// rewrites to:
// %2:_(s64) = G_SEXTLOAD ...
// %4:_(s8) = G_TRUNC %2:_(s32)
// %3:_(s64) = G_ZEXT %2:_(s8)
// ... = ... %3(s64)
InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
InsertTruncAt);
}
continue;
}
// The use is (one of) the uses of the preferred use we chose earlier.
// We're going to update the load to def this value later so just erase
// the old extend.
Observer.erasingInstr(*UseMO->getParent());
UseMO->getParent()->eraseFromParent();
continue;
}
// The use isn't an extend. Truncate back to the type we originally loaded.
// This is free on many targets.
InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
}
MI.getOperand(0).setReg(ChosenDstReg);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
BuildFnTy &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_AND);
// If we have the following code:
// %mask = G_CONSTANT 255
// %ld = G_LOAD %ptr, (load s16)
// %and = G_AND %ld, %mask
//
// Try to fold it into
// %ld = G_ZEXTLOAD %ptr, (load s8)
Register Dst = MI.getOperand(0).getReg();
if (MRI.getType(Dst).isVector())
return false;
auto MaybeMask =
getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeMask)
return false;
APInt MaskVal = MaybeMask->Value;
if (!MaskVal.isMask())
return false;
Register SrcReg = MI.getOperand(1).getReg();
// Don't use getOpcodeDef() here since intermediate instructions may have
// multiple users.
GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg));
if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()))
return false;
Register LoadReg = LoadMI->getDstReg();
LLT RegTy = MRI.getType(LoadReg);
Register PtrReg = LoadMI->getPointerReg();
unsigned RegSize = RegTy.getSizeInBits();
uint64_t LoadSizeBits = LoadMI->getMemSizeInBits();
unsigned MaskSizeBits = MaskVal.countTrailingOnes();
// The mask may not be larger than the in-memory type, as it might cover sign
// extended bits
if (MaskSizeBits > LoadSizeBits)
return false;
// If the mask covers the whole destination register, there's nothing to
// extend
if (MaskSizeBits >= RegSize)
return false;
// Most targets cannot deal with loads of size < 8 and need to re-legalize to
// at least byte loads. Avoid creating such loads here
if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
return false;
const MachineMemOperand &MMO = LoadMI->getMMO();
LegalityQuery::MemDesc MemDesc(MMO);
// Don't modify the memory access size if this is atomic/volatile, but we can
// still adjust the opcode to indicate the high bit behavior.
if (LoadMI->isSimple())
MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize)
return false;
// TODO: Could check if it's legal with the reduced or original memory size.
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}}))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*LoadMI);
auto &MF = B.getMF();
auto PtrInfo = MMO.getPointerInfo();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy);
B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
LoadMI->eraseFromParent();
};
return true;
}
bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
const MachineInstr &UseMI) {
assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
"shouldn't consider debug uses");
assert(DefMI.getParent() == UseMI.getParent());
if (&DefMI == &UseMI)
return true;
const MachineBasicBlock &MBB = *DefMI.getParent();
auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
return &MI == &DefMI || &MI == &UseMI;
});
if (DefOrUse == MBB.end())
llvm_unreachable("Block must contain both DefMI and UseMI!");
return &*DefOrUse == &DefMI;
}
bool CombinerHelper::dominates(const MachineInstr &DefMI,
const MachineInstr &UseMI) {
assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
"shouldn't consider debug uses");
if (MDT)
return MDT->dominates(&DefMI, &UseMI);
else if (DefMI.getParent() != UseMI.getParent())
return false;
return isPredecessor(DefMI, UseMI);
}
bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register SrcReg = MI.getOperand(1).getReg();
Register LoadUser = SrcReg;
if (MRI.getType(SrcReg).isVector())
return false;
Register TruncSrc;
if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
LoadUser = TruncSrc;
uint64_t SizeInBits = MI.getOperand(2).getImm();
// If the source is a G_SEXTLOAD from the same bit width, then we don't
// need any extend at all, just a truncate.
if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
// If truncating more than the original extended value, abort.
auto LoadSizeBits = LoadMI->getMemSizeInBits();
if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
return false;
if (LoadSizeBits == SizeInBits)
return true;
}
return false;
}
void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Builder.setInstrAndDebugLoc(MI);
Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
MI.eraseFromParent();
}
bool CombinerHelper::matchSextInRegOfLoad(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register DstReg = MI.getOperand(0).getReg();
LLT RegTy = MRI.getType(DstReg);
// Only supports scalars for now.
if (RegTy.isVector())
return false;
Register SrcReg = MI.getOperand(1).getReg();
auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg))
return false;
uint64_t MemBits = LoadDef->getMemSizeInBits();
// If the sign extend extends from a narrower width than the load's width,
// then we can narrow the load width when we combine to a G_SEXTLOAD.
// Avoid widening the load at all.
unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits);
// Don't generate G_SEXTLOADs with a < 1 byte width.
if (NewSizeBits < 8)
return false;
// Don't bother creating a non-power-2 sextload, it will likely be broken up
// anyway for most targets.
if (!isPowerOf2_32(NewSizeBits))
return false;
const MachineMemOperand &MMO = LoadDef->getMMO();
LegalityQuery::MemDesc MMDesc(MMO);
// Don't modify the memory access size if this is atomic/volatile, but we can
// still adjust the opcode to indicate the high bit behavior.
if (LoadDef->isSimple())
MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits())
return false;
// TODO: Could check if it's legal with the reduced or original memory size.
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
{MRI.getType(LoadDef->getDstReg()),
MRI.getType(LoadDef->getPointerReg())},
{MMDesc}}))
return false;
MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
return true;
}
void CombinerHelper::applySextInRegOfLoad(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register LoadReg;
unsigned ScalarSizeBits;
std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
// If we have the following:
// %ld = G_LOAD %ptr, (load 2)
// %ext = G_SEXT_INREG %ld, 8
// ==>
// %ld = G_SEXTLOAD %ptr (load 1)
auto &MMO = LoadDef->getMMO();
Builder.setInstrAndDebugLoc(*LoadDef);
auto &MF = Builder.getMF();
auto PtrInfo = MMO.getPointerInfo();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
LoadDef->getPointerReg(), *NewMMO);
MI.eraseFromParent();
}
bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
Register &Base, Register &Offset) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
#ifndef NDEBUG
unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
#endif
Base = MI.getOperand(1).getReg();
MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
return false;
LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
// FIXME: The following use traversal needs a bail out for patholigical cases.
for (auto &Use : MRI.use_nodbg_instructions(Base)) {
if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
continue;
Offset = Use.getOperand(2).getReg();
if (!ForceLegalIndexing &&
!TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: "
<< Use);
continue;
}
// Make sure the offset calculation is before the potentially indexed op.
// FIXME: we really care about dependency here. The offset calculation might
// be movable.
MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
if (!OffsetDef || !dominates(*OffsetDef, MI)) {
LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: "
<< Use);
continue;
}
// FIXME: check whether all uses of Base are load/store with foldable
// addressing modes. If so, using the normal addr-modes is better than
// forming an indexed one.
bool MemOpDominatesAddrUses = true;
for (auto &PtrAddUse :
MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
if (!dominates(MI, PtrAddUse)) {
MemOpDominatesAddrUses = false;
break;
}
}
if (!MemOpDominatesAddrUses) {
LLVM_DEBUG(
dbgs() << " Ignoring candidate as memop does not dominate uses: "
<< Use);
continue;
}
LLVM_DEBUG(dbgs() << " Found match: " << Use);
Addr = Use.getOperand(0).getReg();
return true;
}
return false;
}
bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
Register &Base, Register &Offset) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
#ifndef NDEBUG
unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
#endif
Addr = MI.getOperand(1).getReg();
MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
return false;
Base = AddrDef->getOperand(1).getReg();
Offset = AddrDef->getOperand(2).getReg();
LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
if (!ForceLegalIndexing &&
!TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
LLVM_DEBUG(dbgs() << " Skipping, not legal for target");
return false;
}
MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway.");
return false;
}
if (MI.getOpcode() == TargetOpcode::G_STORE) {
// Would require a copy.
if (Base == MI.getOperand(0).getReg()) {
LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway.");
return false;
}
// We're expecting one use of Addr in MI, but it could also be the
// value stored, which isn't actually dominated by the instruction.
if (MI.getOperand(0).getReg() == Addr) {
LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses");
return false;
}
}
// FIXME: check whether all uses of the base pointer are constant PtrAdds.
// That might allow us to end base's liveness here by adjusting the constant.
for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
if (!dominates(MI, UseMI)) {
LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses.");
return false;
}
}
return true;
}
bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
IndexedLoadStoreMatchInfo MatchInfo;
if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
applyCombineIndexedLoadStore(MI, MatchInfo);
return true;
}
return false;
}
bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
unsigned Opcode = MI.getOpcode();
if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
return false;
// For now, no targets actually support these opcodes so don't waste time
// running these unless we're forced to for testing.
if (!ForceLegalIndexing)
return false;
MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
MatchInfo.Offset);
if (!MatchInfo.IsPre &&
!findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
MatchInfo.Offset))
return false;
return true;
}
void CombinerHelper::applyCombineIndexedLoadStore(
MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
MachineIRBuilder MIRBuilder(MI);
unsigned Opcode = MI.getOpcode();
bool IsStore = Opcode == TargetOpcode::G_STORE;
unsigned NewOpcode;
switch (Opcode) {
case TargetOpcode::G_LOAD:
NewOpcode = TargetOpcode::G_INDEXED_LOAD;
break;
case TargetOpcode::G_SEXTLOAD:
NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
break;
case TargetOpcode::G_ZEXTLOAD:
NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
break;
case TargetOpcode::G_STORE:
NewOpcode = TargetOpcode::G_INDEXED_STORE;
break;
default:
llvm_unreachable("Unknown load/store opcode");
}
auto MIB = MIRBuilder.buildInstr(NewOpcode);
if (IsStore) {
MIB.addDef(MatchInfo.Addr);
MIB.addUse(MI.getOperand(0).getReg());
} else {
MIB.addDef(MI.getOperand(0).getReg());
MIB.addDef(MatchInfo.Addr);
}
MIB.addUse(MatchInfo.Base);
MIB.addUse(MatchInfo.Offset);
MIB.addImm(MatchInfo.IsPre);
MI.eraseFromParent();
AddrDef.eraseFromParent();
LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
}
bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
MachineInstr *&OtherMI) {
unsigned Opcode = MI.getOpcode();
bool IsDiv, IsSigned;
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode!");
case TargetOpcode::G_SDIV:
case TargetOpcode::G_UDIV: {
IsDiv = true;
IsSigned = Opcode == TargetOpcode::G_SDIV;
break;
}
case TargetOpcode::G_SREM:
case TargetOpcode::G_UREM: {
IsDiv = false;
IsSigned = Opcode == TargetOpcode::G_SREM;
break;
}
}
Register Src1 = MI.getOperand(1).getReg();
unsigned DivOpcode, RemOpcode, DivremOpcode;
if (IsSigned) {
DivOpcode = TargetOpcode::G_SDIV;
RemOpcode = TargetOpcode::G_SREM;
DivremOpcode = TargetOpcode::G_SDIVREM;
} else {
DivOpcode = TargetOpcode::G_UDIV;
RemOpcode = TargetOpcode::G_UREM;
DivremOpcode = TargetOpcode::G_UDIVREM;
}
if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
return false;
// Combine:
// %div:_ = G_[SU]DIV %src1:_, %src2:_
// %rem:_ = G_[SU]REM %src1:_, %src2:_
// into:
// %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
// Combine:
// %rem:_ = G_[SU]REM %src1:_, %src2:_
// %div:_ = G_[SU]DIV %src1:_, %src2:_
// into:
// %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
if (MI.getParent() == UseMI.getParent() &&
((IsDiv && UseMI.getOpcode() == RemOpcode) ||
(!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) &&
matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) {
OtherMI = &UseMI;
return true;
}
}
return false;
}
void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
MachineInstr *&OtherMI) {
unsigned Opcode = MI.getOpcode();
assert(OtherMI && "OtherMI shouldn't be empty.");
Register DestDivReg, DestRemReg;
if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
DestDivReg = MI.getOperand(0).getReg();
DestRemReg = OtherMI->getOperand(0).getReg();
} else {
DestDivReg = OtherMI->getOperand(0).getReg();
DestRemReg = MI.getOperand(0).getReg();
}
bool IsSigned =
Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
// Check which instruction is first in the block so we don't break def-use
// deps by "moving" the instruction incorrectly.
if (dominates(MI, *OtherMI))
Builder.setInstrAndDebugLoc(MI);
else
Builder.setInstrAndDebugLoc(*OtherMI);
Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
: TargetOpcode::G_UDIVREM,
{DestDivReg, DestRemReg},
{MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
MI.eraseFromParent();
OtherMI->eraseFromParent();
}
bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
MachineInstr *&BrCond) {
assert(MI.getOpcode() == TargetOpcode::G_BR);
// Try to match the following:
// bb1:
// G_BRCOND %c1, %bb2
// G_BR %bb3
// bb2:
// ...
// bb3:
// The above pattern does not have a fall through to the successor bb2, always
// resulting in a branch no matter which path is taken. Here we try to find
// and replace that pattern with conditional branch to bb3 and otherwise
// fallthrough to bb2. This is generally better for branch predictors.
MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::iterator BrIt(MI);
if (BrIt == MBB->begin())
return false;
assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
BrCond = &*std::prev(BrIt);
if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
return false;
// Check that the next block is the conditional branch target. Also make sure
// that it isn't the same as the G_BR's target (otherwise, this will loop.)
MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
return BrCondTarget != MI.getOperand(0).getMBB() &&
MBB->isLayoutSuccessor(BrCondTarget);
}
void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
MachineInstr *&BrCond) {
MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
Builder.setInstrAndDebugLoc(*BrCond);
LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
// FIXME: Does int/fp matter for this? If so, we might need to restrict
// this to i1 only since we might not know for sure what kind of
// compare generated the condition value.
auto True = Builder.buildConstant(
Ty, getICmpTrueVal(getTargetLowering(), false, false));
auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
auto *FallthroughBB = BrCond->getOperand(1).getMBB();
Observer.changingInstr(MI);
MI.getOperand(0).setMBB(FallthroughBB);
Observer.changedInstr(MI);
// Change the conditional branch to use the inverted condition and
// new target block.
Observer.changingInstr(*BrCond);
BrCond->getOperand(0).setReg(Xor.getReg(0));
BrCond->getOperand(1).setMBB(BrTarget);
Observer.changedInstr(*BrCond);
}
static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
if (Ty.isVector())
return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
Ty.getNumElements());
return IntegerType::get(C, Ty.getSizeInBits());
}
bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
MachineIRBuilder HelperBuilder(MI);
GISelObserverWrapper DummyObserver;
LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
return Helper.lowerMemcpyInline(MI) ==
LegalizerHelper::LegalizeResult::Legalized;
}
bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
MachineIRBuilder HelperBuilder(MI);
GISelObserverWrapper DummyObserver;
LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
return Helper.lowerMemCpyFamily(MI, MaxLen) ==
LegalizerHelper::LegalizeResult::Legalized;
}
static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
const Register Op,
const MachineRegisterInfo &MRI) {
const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
if (!MaybeCst)
return None;
APFloat V = MaybeCst->getValueAPF();
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode!");
case TargetOpcode::G_FNEG: {
V.changeSign();
return V;
}
case TargetOpcode::G_FABS: {
V.clearSign();
return V;
}
case TargetOpcode::G_FPTRUNC:
break;
case TargetOpcode::G_FSQRT: {
bool Unused;
V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
V = APFloat(sqrt(V.convertToDouble()));
break;
}
case TargetOpcode::G_FLOG2: {
bool Unused;
V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
V = APFloat(log2(V.convertToDouble()));
break;
}
}
// Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
// `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
// and `G_FLOG2` reach here.
bool Unused;
V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
return V;
}
bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
Optional<APFloat> &Cst) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
return Cst.has_value();
}
void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
Optional<APFloat> &Cst) {
assert(Cst && "Optional is unexpectedly empty!");
Builder.setInstrAndDebugLoc(MI);
MachineFunction &MF = Builder.getMF();
auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
Register DstReg = MI.getOperand(0).getReg();
Builder.buildFConstant(DstReg, *FPVal);
MI.eraseFromParent();
}
bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
PtrAddChain &MatchInfo) {
// We're trying to match the following pattern:
// %t1 = G_PTR_ADD %base, G_CONSTANT imm1
// %root = G_PTR_ADD %t1, G_CONSTANT imm2
// -->
// %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
Register Add2 = MI.getOperand(1).getReg();
Register Imm1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
if (!MaybeImmVal)
return false;
MachineInstr *Add2Def = MRI.getVRegDef(Add2);
if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
Register Base = Add2Def->getOperand(1).getReg();
Register Imm2 = Add2Def->getOperand(2).getReg();
auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
if (!MaybeImm2Val)
return false;
// Check if the new combined immediate forms an illegal addressing mode.
// Do not combine if it was legal before but would get illegal.
// To do so, we need to find a load/store user of the pointer to get
// the access type.
Type *AccessTy = nullptr;
auto &MF = *MI.getMF();
for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
MF.getFunction().getContext());
break;
}
}
TargetLoweringBase::AddrMode AMNew;
APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
AMNew.BaseOffs = CombinedImm.getSExtValue();
if (AccessTy) {
AMNew.HasBaseReg = true;
TargetLoweringBase::AddrMode AMOld;
AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue();
AMOld.HasBaseReg = true;
unsigned AS = MRI.getType(Add2).getAddressSpace();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
!TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
return false;
}
// Pass the combined immediate to the apply function.
MatchInfo.Imm = AMNew.BaseOffs;
MatchInfo.Base = Base;
MatchInfo.Bank = getRegBank(Imm2);
return true;
}
void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
PtrAddChain &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
MachineIRBuilder MIB(MI);
LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(MatchInfo.Base);
MI.getOperand(2).setReg(NewOffset.getReg(0));
Observer.changedInstr(MI);
}
bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
RegisterImmPair &MatchInfo) {
// We're trying to match the following pattern with any of
// G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
// %t1 = SHIFT %base, G_CONSTANT imm1
// %root = SHIFT %t1, G_CONSTANT imm2
// -->
// %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
Opcode == TargetOpcode::G_USHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
Register Shl2 = MI.getOperand(1).getReg();
Register Imm1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
if (!MaybeImmVal)
return false;
MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
if (Shl2Def->getOpcode() != Opcode)
return false;
Register Base = Shl2Def->getOperand(1).getReg();
Register Imm2 = Shl2Def->getOperand(2).getReg();
auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
if (!MaybeImm2Val)
return false;
// Pass the combined immediate to the apply function.
MatchInfo.Imm =
(MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
MatchInfo.Reg = Base;
// There is no simple replacement for a saturating unsigned left shift that
// exceeds the scalar size.
if (Opcode == TargetOpcode::G_USHLSAT &&
MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
return false;
return true;
}
void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
RegisterImmPair &MatchInfo) {
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
Opcode == TargetOpcode::G_USHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
Builder.setInstrAndDebugLoc(MI);
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
auto Imm = MatchInfo.Imm;
if (Imm >= ScalarSizeInBits) {
// Any logical shift that exceeds scalar size will produce zero.
if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
Builder.buildConstant(MI.getOperand(0), 0);
MI.eraseFromParent();
return;
}
// Arithmetic shift and saturating signed left shift have no effect beyond
// scalar size.
Imm = ScalarSizeInBits - 1;
}
LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(MatchInfo.Reg);
MI.getOperand(2).setReg(NewImm);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
ShiftOfShiftedLogic &MatchInfo) {
// We're trying to match the following pattern with any of
// G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
// with any of G_AND/G_OR/G_XOR logic instructions.
// %t1 = SHIFT %X, G_CONSTANT C0
// %t2 = LOGIC %t1, %Y
// %root = SHIFT %t2, G_CONSTANT C1
// -->
// %t3 = SHIFT %X, G_CONSTANT (C0+C1)
// %t4 = SHIFT %Y, G_CONSTANT C1
// %root = LOGIC %t3, %t4
unsigned ShiftOpcode = MI.getOpcode();
assert((ShiftOpcode == TargetOpcode::G_SHL ||
ShiftOpcode == TargetOpcode::G_ASHR ||
ShiftOpcode == TargetOpcode::G_LSHR ||
ShiftOpcode == TargetOpcode::G_USHLSAT ||
ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
// Match a one-use bitwise logic op.
Register LogicDest = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(LogicDest))
return false;
MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
unsigned LogicOpcode = LogicMI->getOpcode();
if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
LogicOpcode != TargetOpcode::G_XOR)
return false;
// Find a matching one-use shift by constant.
const Register C1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
if (!MaybeImmVal)
return false;
const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
// Shift should match previous one and should be a one-use.
if (MI->getOpcode() != ShiftOpcode ||
!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
return false;
// Must be a constant.
auto MaybeImmVal =
getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.getSExtValue();
return true;
};
// Logic ops are commutative, so check each operand for a match.
Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
uint64_t C0Val;
if (matchFirstShift(LogicMIOp1, C0Val)) {
MatchInfo.LogicNonShiftReg = LogicMIReg2;
MatchInfo.Shift2 = LogicMIOp1;
} else if (matchFirstShift(LogicMIOp2, C0Val)) {
MatchInfo.LogicNonShiftReg = LogicMIReg1;
MatchInfo.Shift2 = LogicMIOp2;
} else
return false;
MatchInfo.ValSum = C0Val + C1Val;
// The fold is not valid if the sum of the shift values exceeds bitwidth.
if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
return false;
MatchInfo.Logic = LogicMI;
return true;
}
void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
ShiftOfShiftedLogic &MatchInfo) {
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
Opcode == TargetOpcode::G_SSHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
LLT DestType = MRI.getType(MI.getOperand(0).getReg());
Builder.setInstrAndDebugLoc(MI);
Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
Register Shift1 =
Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
Register Shift2Const = MI.getOperand(2).getReg();
Register Shift2 = Builder
.buildInstr(Opcode, {DestType},
{MatchInfo.LogicNonShiftReg, Shift2Const})
.getReg(0);
Register Dest = MI.getOperand(0).getReg();
Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
// These were one use so it's safe to remove them.
MatchInfo.Shift2->eraseFromParent();
MatchInfo.Logic->eraseFromParent();
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
unsigned &ShiftVal) {
assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
auto MaybeImmVal =
getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.exactLogBase2();
return (static_cast<int32_t>(ShiftVal) != -1);
}
void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
unsigned &ShiftVal) {
assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
MachineIRBuilder MIB(MI);
LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
Observer.changingInstr(MI);
MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
MI.getOperand(2).setReg(ShiftCst.getReg(0));
Observer.changedInstr(MI);
}
// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
RegisterImmPair &MatchData) {
assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
Register LHS = MI.getOperand(1).getReg();
Register ExtSrc;
if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
!mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
!mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
return false;
// TODO: Should handle vector splat.
Register RHS = MI.getOperand(2).getReg();
auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI);
if (!MaybeShiftAmtVal)
return false;
if (LI) {
LLT SrcTy = MRI.getType(ExtSrc);
// We only really care about the legality with the shifted value. We can
// pick any type the constant shift amount, so ask the target what to
// use. Otherwise we would have to guess and hope it is reported as legal.
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
return false;
}
int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
MatchData.Reg = ExtSrc;
MatchData.Imm = ShiftAmt;
unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
return MinLeadingZeros >= ShiftAmt;
}
void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
const RegisterImmPair &MatchData) {
Register ExtSrcReg = MatchData.Reg;
int64_t ShiftAmtVal = MatchData.Imm;
LLT ExtSrcTy = MRI.getType(ExtSrcReg);
Builder.setInstrAndDebugLoc(MI);
auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
auto NarrowShift =
Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
Builder.buildZExt(MI.getOperand(0), NarrowShift);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
Register &MatchInfo) {
GMerge &Merge = cast<GMerge>(MI);
SmallVector<Register, 16> MergedValues;
for (unsigned I = 0; I < Merge.getNumSources(); ++I)
MergedValues.emplace_back(Merge.getSourceReg(I));
auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
return false;
for (unsigned I = 0; I < MergedValues.size(); ++I)
if (MergedValues[I] != Unmerge->getReg(I))
return false;
MatchInfo = Unmerge->getSourceReg();
return true;
}
static Register peekThroughBitcast(Register Reg,
const MachineRegisterInfo &MRI) {
while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
;
return Reg;
}
bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
auto &Unmerge = cast<GUnmerge>(MI);
Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI);
if (!SrcInstr)
return false;
// Check the source type of the merge.
LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
if (SrcMergeTy != Dst0Ty && !SameSize)
return false;
// They are the same now (modulo a bitcast).
// We can collect all the src registers.
for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
Operands.push_back(SrcInstr->getSourceReg(Idx));
return true;
}
void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
assert((MI.getNumOperands() - 1 == Operands.size()) &&
"Not enough operands to replace all defs");
unsigned NumElems = MI.getNumOperands() - 1;
LLT SrcTy = MRI.getType(Operands[0]);
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
bool CanReuseInputDirectly = DstTy == SrcTy;
Builder.setInstrAndDebugLoc(MI);
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
Register DstReg = MI.getOperand(Idx).getReg();
Register SrcReg = Operands[Idx];
if (CanReuseInputDirectly)
replaceRegWith(MRI, DstReg, SrcReg);
else
Builder.buildCast(DstReg, SrcReg);
}
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
SmallVectorImpl<APInt> &Csts) {
unsigned SrcIdx = MI.getNumOperands() - 1;
Register SrcReg = MI.getOperand(SrcIdx).getReg();
MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
return false;
// Break down the big constant in smaller ones.
const MachineOperand &CstVal = SrcInstr->getOperand(1);
APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
? CstVal.getCImm()->getValue()
: CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
unsigned ShiftAmt = Dst0Ty.getSizeInBits();
// Unmerge a constant.
for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
Csts.emplace_back(Val.trunc(ShiftAmt));
Val = Val.lshr(ShiftAmt);
}
return true;
}
void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
SmallVectorImpl<APInt> &Csts) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
assert((MI.getNumOperands() - 1 == Csts.size()) &&
"Not enough operands to replace all defs");
unsigned NumElems = MI.getNumOperands() - 1;
Builder.setInstrAndDebugLoc(MI);
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
Register DstReg = MI.getOperand(Idx).getReg();
Builder.buildConstant(DstReg, Csts[Idx]);
}
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeUndef(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
unsigned SrcIdx = MI.getNumOperands() - 1;
Register SrcReg = MI.getOperand(SrcIdx).getReg();
MatchInfo = [&MI](MachineIRBuilder &B) {
unsigned NumElems = MI.getNumOperands() - 1;
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
Register DstReg = MI.getOperand(Idx).getReg();
B.buildUndef(DstReg);
}
};
return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
}
bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
// Check that all the lanes are dead except the first one.
for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
return false;
}
return true;
}
void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
Builder.setInstrAndDebugLoc(MI);
Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
// Truncating a vector is going to truncate every single lane,
// whereas we want the full lowbits.
// Do the operation on a scalar instead.
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector())
SrcReg =
Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
Register Dst0Reg = MI.getOperand(0).getReg();
LLT Dst0Ty = MRI.getType(Dst0Reg);
if (Dst0Ty.isVector()) {
auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
Builder.buildCast(Dst0Reg, MIB);
} else
Builder.buildTrunc(Dst0Reg, SrcReg);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
Register Dst0Reg = MI.getOperand(0).getReg();
LLT Dst0Ty = MRI.getType(Dst0Reg);
// G_ZEXT on vector applies to each lane, so it will
// affect all destinations. Therefore we won't be able
// to simplify the unmerge to just the first definition.
if (Dst0Ty.isVector())
return false;
Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector())
return false;
Register ZExtSrcReg;
if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
return false;
// Finally we can replace the first definition with
// a zext of the source if the definition is big enough to hold
// all of ZExtSrc bits.
LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
}
void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
Register Dst0Reg = MI.getOperand(0).getReg();
MachineInstr *ZExtInstr =
MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
"Expecting a G_ZEXT");
Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
LLT Dst0Ty = MRI.getType(Dst0Reg);
LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
Builder.setInstrAndDebugLoc(MI);
if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
Builder.buildZExt(Dst0Reg, ZExtSrcReg);
} else {
assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
"ZExt src doesn't fit in destination");
replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
}
Register ZeroReg;
for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
if (!ZeroReg)
ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
}
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
unsigned TargetShiftSize,
unsigned &ShiftVal) {
assert((MI.getOpcode() == TargetOpcode::G_SHL ||
MI.getOpcode() == TargetOpcode::G_LSHR ||
MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (Ty.isVector()) // TODO:
return false;
// Don't narrow further than the requested size.
unsigned Size = Ty.getSizeInBits();
if (Size <= TargetShiftSize)
return false;
auto MaybeImmVal =
getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.getSExtValue();
return ShiftVal >= Size / 2 && ShiftVal < Size;
}
void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
const unsigned &ShiftVal) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(SrcReg);
unsigned Size = Ty.getSizeInBits();
unsigned HalfSize = Size / 2;
assert(ShiftVal >= HalfSize);
LLT HalfTy = LLT::scalar(HalfSize);
Builder.setInstr(MI);
auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
unsigned NarrowShiftAmt = ShiftVal - HalfSize;
if (MI.getOpcode() == TargetOpcode::G_LSHR) {
Register Narrowed = Unmerge.getReg(1);
// dst = G_LSHR s64:x, C for C >= 32
// =>
// lo, hi = G_UNMERGE_VALUES x
// dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
if (NarrowShiftAmt != 0) {
Narrowed = Builder.buildLShr(HalfTy, Narrowed,
Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
}
auto Zero = Builder.buildConstant(HalfTy, 0);
Builder.buildMerge(DstReg, { Narrowed, Zero });
} else if (MI.getOpcode() == TargetOpcode::G_SHL) {
Register Narrowed = Unmerge.getReg(0);
// dst = G_SHL s64:x, C for C >= 32
// =>
// lo, hi = G_UNMERGE_VALUES x
// dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
if (NarrowShiftAmt != 0) {
Narrowed = Builder.buildShl(HalfTy, Narrowed,
Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
}
auto Zero = Builder.buildConstant(HalfTy, 0);
Builder.buildMerge(DstReg, { Zero, Narrowed });
} else {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
auto Hi = Builder.buildAShr(
HalfTy, Unmerge.getReg(1),
Builder.buildConstant(HalfTy, HalfSize - 1));
if (ShiftVal == HalfSize) {
// (G_ASHR i64:x, 32) ->
// G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
} else if (ShiftVal == Size - 1) {
// Don't need a second shift.
// (G_ASHR i64:x, 63) ->
// %narrowed = (G_ASHR hi_32(x), 31)
// G_MERGE_VALUES %narrowed, %narrowed
Builder.buildMerge(DstReg, { Hi, Hi });
} else {
auto Lo = Builder.buildAShr(
HalfTy, Unmerge.getReg(1),
Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
// (G_ASHR i64:x, C) ->, for C >= 32
// G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
Builder.buildMerge(DstReg, { Lo, Hi });
}
}
MI.eraseFromParent();
}
bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
unsigned TargetShiftAmount) {
unsigned ShiftAmt;
if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
applyCombineShiftToUnmerge(MI, ShiftAmt);
return true;
}
return false;
}
bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
Register SrcReg = MI.getOperand(1).getReg();
return mi_match(SrcReg, MRI,
m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
}
void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
Register DstReg = MI.getOperand(0).getReg();
Builder.setInstr(MI);
Builder.buildCopy(DstReg, Reg);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
Register SrcReg = MI.getOperand(1).getReg();
return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
}
void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
Register DstReg = MI.getOperand(0).getReg();
Builder.setInstr(MI);
Builder.buildZExtOrTrunc(DstReg, Reg);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineAddP2IToPtrAdd(
MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
assert(MI.getOpcode() == TargetOpcode::G_ADD);
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT IntTy = MRI.getType(LHS);
// G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
// instruction.
PtrReg.second = false;
for (Register SrcReg : {LHS, RHS}) {
if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
// Don't handle cases where the integer is implicitly converted to the
// pointer width.
LLT PtrTy = MRI.getType(PtrReg.first);
if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
return true;
}
PtrReg.second = true;
}
return false;
}
void CombinerHelper::applyCombineAddP2IToPtrAdd(
MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
Register Dst = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
const bool DoCommute = PtrReg.second;
if (DoCommute)
std::swap(LHS, RHS);
LHS = PtrReg.first;
LLT PtrTy = MRI.getType(LHS);
Builder.setInstrAndDebugLoc(MI);
auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
Builder.buildPtrToInt(Dst, PtrAdd);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
APInt &NewCst) {
auto &PtrAdd = cast<GPtrAdd>(MI);
Register LHS = PtrAdd.getBaseReg();
Register RHS = PtrAdd.getOffsetReg();
MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
APInt Cst;
if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
auto DstTy = MRI.getType(PtrAdd.getReg(0));
// G_INTTOPTR uses zero-extension
NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
return true;
}
}
return false;
}
void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
APInt &NewCst) {
auto &PtrAdd = cast<GPtrAdd>(MI);
Register Dst = PtrAdd.getReg(0);
Builder.setInstrAndDebugLoc(MI);
Builder.buildConstant(Dst, NewCst);
PtrAdd.eraseFromParent();
}
bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
return mi_match(SrcReg, MRI,
m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
}
bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
if (mi_match(SrcReg, MRI,
m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
unsigned DstSize = DstTy.getScalarSizeInBits();
unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
}
return false;
}
bool CombinerHelper::matchCombineExtOfExt(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
MI.getOpcode() == TargetOpcode::G_SEXT ||
MI.getOpcode() == TargetOpcode::G_ZEXT) &&
"Expected a G_[ASZ]EXT");
Register SrcReg = MI.getOperand(1).getReg();
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
// Match exts with the same opcode, anyext([sz]ext) and sext(zext).
unsigned Opc = MI.getOpcode();
unsigned SrcOpc = SrcMI->getOpcode();
if (Opc == SrcOpc ||
(Opc == TargetOpcode::G_ANYEXT &&
(SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
(Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
return true;
}
return false;
}
void CombinerHelper::applyCombineExtOfExt(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
MI.getOpcode() == TargetOpcode::G_SEXT ||
MI.getOpcode() == TargetOpcode::G_ZEXT) &&
"Expected a G_[ASZ]EXT");
Register Reg = std::get<0>(MatchInfo);
unsigned SrcExtOp = std::get<1>(MatchInfo);
// Combine exts with the same opcode.
if (MI.getOpcode() == SrcExtOp) {
Observer.changingInstr(MI);
MI.getOperand(1).setReg(Reg);
Observer.changedInstr(MI);
return;
}
// Combine:
// - anyext([sz]ext x) to [sz]ext x
// - sext(zext x) to zext x
if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
(MI.getOpcode() == TargetOpcode::G_SEXT &&
SrcExtOp == TargetOpcode::G_ZEXT)) {
Register DstReg = MI.getOperand(0).getReg();
Builder.setInstrAndDebugLoc(MI);
Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
MI.eraseFromParent();
}
}
void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
Builder.setInstrAndDebugLoc(MI);
Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
MI.getFlags());
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
Register SrcReg = MI.getOperand(1).getReg();
return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
}
bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
Src = MI.getOperand(1).getReg();
Register AbsSrc;
return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
}
bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI,
BuildFnTy &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
Register Src = MI.getOperand(1).getReg();
Register NegSrc;
if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc))))
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Observer.changingInstr(MI);
MI.getOperand(1).setReg(NegSrc);
Observer.changedInstr(MI);
};
return true;
}
bool CombinerHelper::matchCombineTruncOfExt(
MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register SrcReg = MI.getOperand(1).getReg();
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
unsigned SrcOpc = SrcMI->getOpcode();
if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
SrcOpc == TargetOpcode::G_ZEXT) {
MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
return true;
}
return false;
}
void CombinerHelper::applyCombineTruncOfExt(
MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register SrcReg = MatchInfo.first;
unsigned SrcExtOp = MatchInfo.second;
Register DstReg = MI.getOperand(0).getReg();
LLT SrcTy = MRI.getType(SrcReg);
LLT DstTy = MRI.getType(DstReg);
if (SrcTy == DstTy) {
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, SrcReg);
return;
}
Builder.setInstrAndDebugLoc(MI);
if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
else
Builder.buildTrunc(DstReg, SrcReg);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineTruncOfShl(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
Register ShiftSrc;
Register ShiftAmt;
if (MRI.hasOneNonDBGUse(SrcReg) &&
mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
isLegalOrBeforeLegalizer(
{TargetOpcode::G_SHL,
{DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
KnownBits Known = KB->getKnownBits(ShiftAmt);
unsigned Size = DstTy.getSizeInBits();
if (Known.countMaxActiveBits() <= Log2_32(Size)) {
MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
return true;
}
}
return false;
}
void CombinerHelper::applyCombineTruncOfShl(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
Register ShiftSrc = MatchInfo.first;
Register ShiftAmt = MatchInfo.second;
Builder.setInstrAndDebugLoc(MI);
auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
MI.eraseFromParent();
}
bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
return MO.isReg() &&
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
});
}
bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
return !MO.isReg() ||
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
});
}
bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
return all_of(Mask, [](int Elt) { return Elt < 0; });
}
bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_STORE);
return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
MRI);
}
bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SELECT);
return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
MRI);
}
bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
GSelect &SelMI = cast<GSelect>(MI);
auto Cst =
isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
if (!Cst)
return false;
OpIdx = Cst->isZero() ? 3 : 2;
return true;
}
bool CombinerHelper::eraseInst(MachineInstr &MI) {
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
const MachineOperand &MOP2) {
if (!MOP1.isReg() || !MOP2.isReg())
return false;
auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
if (!InstAndDef1)
return false;
auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
if (!InstAndDef2)
return false;
MachineInstr *I1 = InstAndDef1->MI;
MachineInstr *I2 = InstAndDef2->MI;
// Handle a case like this:
//
// %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
//
// Even though %0 and %1 are produced by the same instruction they are not
// the same values.
if (I1 == I2)
return MOP1.getReg() == MOP2.getReg();
// If we have an instruction which loads or stores, we can't guarantee that
// it is identical.
//
// For example, we may have
//
// %x1 = G_LOAD %addr (load N from @somewhere)
// ...
// call @foo
// ...
// %x2 = G_LOAD %addr (load N from @somewhere)
// ...
// %or = G_OR %x1, %x2
//
// It's possible that @foo will modify whatever lives at the address we're
// loading from. To be safe, let's just assume that all loads and stores
// are different (unless we have something which is guaranteed to not
// change.)
if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad())
return false;
// If both instructions are loads or stores, they are equal only if both
// are dereferenceable invariant loads with the same number of bits.
if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
if (!LS1 || !LS2)
return false;
if (!I2->isDereferenceableInvariantLoad() ||
(LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
return false;
}
// Check for physical registers on the instructions first to avoid cases
// like this:
//
// %a = COPY $physreg
// ...
// SOMETHING implicit-def $physreg
// ...
// %b = COPY $physreg
//
// These copies are not equivalent.
if (any_of(I1->uses(), [](const MachineOperand &MO) {
return MO.isReg() && MO.getReg().isPhysical();
})) {
// Check if we have a case like this:
//
// %a = COPY $physreg
// %b = COPY %a
//
// In this case, I1 and I2 will both be equal to %a = COPY $physreg.
// From that, we know that they must have the same value, since they must
// have come from the same COPY.
return I1->isIdenticalTo(*I2);
}
// We don't have any physical registers, so we don't necessarily need the
// same vreg defs.
//
// On the off-chance that there's some target instruction feeding into the
// instruction, let's use produceSameValue instead of isIdenticalTo.
if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
// Handle instructions with multiple defs that produce same values. Values
// are same for operands with same index.
// %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
// %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
// I1 and I2 are different instructions but produce same values,
// %1 and %6 are same, %1 and %7 are not the same value.
return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) ==
I2->findRegisterDefOperandIdx(InstAndDef2->Reg);
}
return false;
}
bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
if (!MOP.isReg())
return false;
auto *MI = MRI.getVRegDef(MOP.getReg());
auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
return MaybeCst && MaybeCst->getBitWidth() <= 64 &&
MaybeCst->getSExtValue() == C;
}
bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
unsigned OpIdx) {
assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
Register OldReg = MI.getOperand(0).getReg();
Register Replacement = MI.getOperand(OpIdx).getReg();
assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
MI.eraseFromParent();
replaceRegWith(MRI, OldReg, Replacement);
return true;
}
bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
Register Replacement) {
assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
Register OldReg = MI.getOperand(0).getReg();
assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
MI.eraseFromParent();
replaceRegWith(MRI, OldReg, Replacement);
return true;
}
bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SELECT);
// Match (cond ? x : x)
return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
MRI);
}
bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
MRI);
}
bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
return matchConstantOp(MI.getOperand(OpIdx), 0) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
MRI);
}
bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
return MO.isReg() &&
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
}
bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
unsigned OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
}
bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.setInstr(MI);
Builder.buildFConstant(MI.getOperand(0), C);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.setInstr(MI);
Builder.buildConstant(MI.getOperand(0), C);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.setInstr(MI);
Builder.buildConstant(MI.getOperand(0), C);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.setInstr(MI);
Builder.buildUndef(MI.getOperand(0));
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchSimplifyAddToSub(
MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register &NewLHS = std::get<0>(MatchInfo);
Register &NewRHS = std::get<1>(MatchInfo);
// Helper lambda to check for opportunities for
// ((0-A) + B) -> B - A
// (A + (0-B)) -> A - B
auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
return false;
NewLHS = MaybeNewLHS;
return true;
};
return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
}
bool CombinerHelper::matchCombineInsertVecElts(
MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
"Invalid opcode");
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
unsigned NumElts = DstTy.getNumElements();
// If this MI is part of a sequence of insert_vec_elts, then
// don't do the combine in the middle of the sequence.
if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
TargetOpcode::G_INSERT_VECTOR_ELT)
return false;
MachineInstr *CurrInst = &MI;
MachineInstr *TmpInst;
int64_t IntImm;
Register TmpReg;
MatchInfo.resize(NumElts);
while (mi_match(
CurrInst->getOperand(0).getReg(), MRI,
m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
if (IntImm >= NumElts)
return false;
if (!MatchInfo[IntImm])
MatchInfo[IntImm] = TmpReg;
CurrInst = TmpInst;
}
// Variable index.
if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
return false;
if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
if (!MatchInfo[I - 1].isValid())
MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
}
return true;
}
// If we didn't end in a G_IMPLICIT_DEF, bail out.
return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
}
void CombinerHelper::applyCombineInsertVecElts(
MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
Builder.setInstr(MI);
Register UndefReg;
auto GetUndef = [&]() {
if (UndefReg)
return UndefReg;
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
return UndefReg;
};
for (unsigned I = 0; I < MatchInfo.size(); ++I) {
if (!MatchInfo[I])
MatchInfo[I] = GetUndef();
}
Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
MI.eraseFromParent();
}
void CombinerHelper::applySimplifyAddToSub(
MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
Builder.setInstr(MI);
Register SubLHS, SubRHS;
std::tie(SubLHS, SubRHS) = MatchInfo;
Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
MI.eraseFromParent();
}
bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
// Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
//
// Creates the new hand + logic instruction (but does not insert them.)
//
// On success, MatchInfo is populated with the new instructions. These are
// inserted in applyHoistLogicOpWithSameOpcodeHands.
unsigned LogicOpcode = MI.getOpcode();
assert(LogicOpcode == TargetOpcode::G_AND ||
LogicOpcode == TargetOpcode::G_OR ||
LogicOpcode == TargetOpcode::G_XOR);
MachineIRBuilder MIB(MI);
Register Dst = MI.getOperand(0).getReg();
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
// Don't recompute anything.
if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
return false;
// Make sure we have (hand x, ...), (hand y, ...)
MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
if (!LeftHandInst || !RightHandInst)
return false;
unsigned HandOpcode = LeftHandInst->getOpcode();
if (HandOpcode != RightHandInst->getOpcode())
return false;
if (!LeftHandInst->getOperand(1).isReg() ||
!RightHandInst->getOperand(1).isReg())
return false;
// Make sure the types match up, and if we're doing this post-legalization,
// we end up with legal types.
Register X = LeftHandInst->getOperand(1).getReg();
Register Y = RightHandInst->getOperand(1).getReg();
LLT XTy = MRI.getType(X);
LLT YTy = MRI.getType(Y);
if (XTy != YTy)
return false;
if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
return false;
// Optional extra source register.
Register ExtraHandOpSrcReg;
switch (HandOpcode) {
default:
return false;
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT: {
// Match: logic (ext X), (ext Y) --> ext (logic X, Y)
break;
}
case TargetOpcode::G_AND:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_SHL: {
// Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
MachineOperand &ZOp = LeftHandInst->getOperand(2);
if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
return false;
ExtraHandOpSrcReg = ZOp.getReg();
break;
}
}
// Record the steps to build the new instructions.
//
// Steps to build (logic x, y)
auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
OperandBuildSteps LogicBuildSteps = {
[=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
// Steps to build hand (logic x, y), ...z
OperandBuildSteps HandBuildSteps = {
[=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
if (ExtraHandOpSrcReg.isValid())
HandBuildSteps.push_back(
[=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
return true;
}
void CombinerHelper::applyBuildInstructionSteps(
MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
assert(MatchInfo.InstrsToBuild.size() &&
"Expected at least one instr to build?");
Builder.setInstr(MI);
for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
assert(InstrToBuild.Opcode && "Expected a valid opcode?");
assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
for (auto &OperandFn : InstrToBuild.OperandFns)
OperandFn(Instr);
}
MI.eraseFromParent();
}
bool CombinerHelper::matchAshrShlToSextInreg(
MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
int64_t ShlCst, AshrCst;
Register Src;
// FIXME: detect splat constant vectors.
if (!mi_match(MI.getOperand(0).getReg(), MRI,
m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
return false;
if (ShlCst != AshrCst)
return false;
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
return false;
MatchInfo = std::make_tuple(Src, ShlCst);
return true;
}
void CombinerHelper::applyAshShlToSextInreg(
MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
Register Src;
int64_t ShiftAmt;
std::tie(Src, ShiftAmt) = MatchInfo;
unsigned Size = MRI.getType(Src).getScalarSizeInBits();
Builder.setInstrAndDebugLoc(MI);
Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
MI.eraseFromParent();
}
/// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
bool CombinerHelper::matchOverlappingAnd(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_AND);
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
Register R;
int64_t C1;
int64_t C2;
if (!mi_match(
Dst, MRI,
m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
if (C1 & C2) {
B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
return;
}
auto Zero = B.buildConstant(Ty, 0);
replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
};
return true;
}
bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
Register &Replacement) {
// Given
//
// %y:_(sN) = G_SOMETHING
// %x:_(sN) = G_SOMETHING
// %res:_(sN) = G_AND %x, %y
//
// Eliminate the G_AND when it is known that x & y == x or x & y == y.
//
// Patterns like this can appear as a result of legalization. E.g.
//
// %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
// %one:_(s32) = G_CONSTANT i32 1
// %and:_(s32) = G_AND %cmp, %one
//
// In this case, G_ICMP only produces a single bit, so x & 1 == x.
assert(MI.getOpcode() == TargetOpcode::G_AND);
if (!KB)
return false;
Register AndDst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(AndDst);
// FIXME: This should be removed once GISelKnownBits supports vectors.
if (DstTy.isVector())
return false;
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
KnownBits LHSBits = KB->getKnownBits(LHS);
KnownBits RHSBits = KB->getKnownBits(RHS);
// Check that x & Mask == x.
// x & 1 == x, always
// x & 0 == x, only if x is also 0
// Meaning Mask has no effect if every bit is either one in Mask or zero in x.
//
// Check if we can replace AndDst with the LHS of the G_AND
if (canReplaceReg(AndDst, LHS, MRI) &&
(LHSBits.Zero | RHSBits.One).isAllOnes()) {
Replacement = LHS;
return true;
}
// Check if we can replace AndDst with the RHS of the G_AND
if (canReplaceReg(AndDst, RHS, MRI) &&
(LHSBits.One | RHSBits.Zero).isAllOnes()) {
Replacement = RHS;
return true;
}
return false;
}
bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
// Given
//
// %y:_(sN) = G_SOMETHING
// %x:_(sN) = G_SOMETHING
// %res:_(sN) = G_OR %x, %y
//
// Eliminate the G_OR when it is known that x | y == x or x | y == y.
assert(MI.getOpcode() == TargetOpcode::G_OR);
if (!KB)
return false;
Register OrDst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(OrDst);
// FIXME: This should be removed once GISelKnownBits supports vectors.
if (DstTy.isVector())
return false;
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
KnownBits LHSBits = KB->getKnownBits(LHS);
KnownBits RHSBits = KB->getKnownBits(RHS);
// Check that x | Mask == x.
// x | 0 == x, always
// x | 1 == x, only if x is also 1
// Meaning Mask has no effect if every bit is either zero in Mask or one in x.
//
// Check if we can replace OrDst with the LHS of the G_OR
if (canReplaceReg(OrDst, LHS, MRI) &&
(LHSBits.One | RHSBits.Zero).isAllOnes()) {
Replacement = LHS;
return true;
}
// Check if we can replace OrDst with the RHS of the G_OR
if (canReplaceReg(OrDst, RHS, MRI) &&
(LHSBits.Zero | RHSBits.One).isAllOnes()) {
Replacement = RHS;
return true;
}
return false;
}
bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
// If the input is already sign extended, just drop the extension.
Register Src = MI.getOperand(1).getReg();
unsigned ExtBits = MI.getOperand(2).getImm();
unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
}
static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
int64_t Cst, bool IsVector, bool IsFP) {
// For i1, Cst will always be -1 regardless of boolean contents.
return (ScalarSizeBits == 1 && Cst == -1) ||
isConstTrueVal(TLI, Cst, IsVector, IsFP);
}
bool CombinerHelper::matchNotCmp(MachineInstr &MI,
SmallVectorImpl<Register> &RegsToNegate) {
assert(MI.getOpcode() == TargetOpcode::G_XOR);
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
Register XorSrc;
Register CstReg;
// We match xor(src, true) here.
if (!mi_match(MI.getOperand(0).getReg(), MRI,
m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
return false;
if (!MRI.hasOneNonDBGUse(XorSrc))
return false;
// Check that XorSrc is the root of a tree of comparisons combined with ANDs
// and ORs. The suffix of RegsToNegate starting from index I is used a work
// list of tree nodes to visit.
RegsToNegate.push_back(XorSrc);
// Remember whether the comparisons are all integer or all floating point.
bool IsInt = false;
bool IsFP = false;
for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
Register Reg = RegsToNegate[I];
if (!MRI.hasOneNonDBGUse(Reg))
return false;
MachineInstr *Def = MRI.getVRegDef(Reg);
switch (Def->getOpcode()) {
default:
// Don't match if the tree contains anything other than ANDs, ORs and
// comparisons.
return false;
case TargetOpcode::G_ICMP:
if (IsFP)
return false;
IsInt = true;
// When we apply the combine we will invert the predicate.
break;
case TargetOpcode::G_FCMP:
if (IsInt)
return false;
IsFP = true;
// When we apply the combine we will invert the predicate.
break;
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
// Implement De Morgan's laws:
// ~(x & y) -> ~x | ~y
// ~(x | y) -> ~x & ~y
// When we apply the combine we will change the opcode and recursively
// negate the operands.
RegsToNegate.push_back(Def->getOperand(1).getReg());
RegsToNegate.push_back(Def->getOperand(2).getReg());
break;
}
}
// Now we know whether the comparisons are integer or floating point, check
// the constant in the xor.
int64_t Cst;
if (Ty.isVector()) {
MachineInstr *CstDef = MRI.getVRegDef(CstReg);
auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI);
if (!MaybeCst)
return false;
if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
return false;
} else {
if (!mi_match(CstReg, MRI, m_ICst(Cst)))
return false;
if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
return false;
}
return true;
}
void CombinerHelper::applyNotCmp(MachineInstr &MI,
SmallVectorImpl<Register> &RegsToNegate) {
for (Register Reg : RegsToNegate) {
MachineInstr *Def = MRI.getVRegDef(Reg);
Observer.changingInstr(*Def);
// For each comparison, invert the opcode. For each AND and OR, change the
// opcode.
switch (Def->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode");
case TargetOpcode::G_ICMP:
case TargetOpcode::G_FCMP: {
MachineOperand &PredOp = Def->getOperand(1);
CmpInst::Predicate NewP = CmpInst::getInversePredicate(
(CmpInst::Predicate)PredOp.getPredicate());
PredOp.setPredicate(NewP);
break;
}
case TargetOpcode::G_AND:
Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
break;
case TargetOpcode::G_OR:
Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
break;
}
Observer.changedInstr(*Def);
}
replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
MI.eraseFromParent();
}
bool CombinerHelper::matchXorOfAndWithSameReg(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
// Match (xor (and x, y), y) (or any of its commuted cases)
assert(MI.getOpcode() == TargetOpcode::G_XOR);
Register &X = MatchInfo.first;
Register &Y = MatchInfo.second;
Register AndReg = MI.getOperand(1).getReg();
Register SharedReg = MI.getOperand(2).getReg();
// Find a G_AND on either side of the G_XOR.
// Look for one of
//
// (xor (and x, y), SharedReg)
// (xor SharedReg, (and x, y))
if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
std::swap(AndReg, SharedReg);
if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
return false;
}
// Only do this if we'll eliminate the G_AND.
if (!MRI.hasOneNonDBGUse(AndReg))
return false;
// We can combine if SharedReg is the same as either the LHS or RHS of the
// G_AND.
if (Y != SharedReg)
std::swap(X, Y);
return Y == SharedReg;
}
void CombinerHelper::applyXorOfAndWithSameReg(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
// Fold (xor (and x, y), y) -> (and (not x), y)
Builder.setInstrAndDebugLoc(MI);
Register X, Y;
std::tie(X, Y) = MatchInfo;
auto Not = Builder.buildNot(MRI.getType(X), X);
Observer.changingInstr(MI);
MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
MI.getOperand(1).setReg(Not->getOperand(0).getReg());
MI.getOperand(2).setReg(Y);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
auto &PtrAdd = cast<GPtrAdd>(MI);
Register DstReg = PtrAdd.getReg(0);
LLT Ty = MRI.getType(DstReg);
const DataLayout &DL = Builder.getMF().getDataLayout();
if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
return false;
if (Ty.isPointer()) {
auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
return ConstVal && *ConstVal == 0;
}
assert(Ty.isVector() && "Expecting a vector type");
const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
return isBuildVectorAllZeros(*VecMI, MRI);
}
void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
auto &PtrAdd = cast<GPtrAdd>(MI);
Builder.setInstrAndDebugLoc(PtrAdd);
Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
PtrAdd.eraseFromParent();
}
/// The second source operand is known to be a power of 2.
void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Pow2Src1 = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(DstReg);
Builder.setInstrAndDebugLoc(MI);
// Fold (urem x, pow2) -> (and x, pow2-1)
auto NegOne = Builder.buildConstant(Ty, -1);
auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
Builder.buildAnd(DstReg, Src0, Add);
MI.eraseFromParent();
}
bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
unsigned &SelectOpNo) {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register OtherOperandReg = RHS;
SelectOpNo = 1;
MachineInstr *Select = MRI.getVRegDef(LHS);
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
if (Select->getOpcode() != TargetOpcode::G_SELECT ||
!MRI.hasOneNonDBGUse(LHS)) {
OtherOperandReg = LHS;
SelectOpNo = 2;
Select = MRI.getVRegDef(RHS);
if (Select->getOpcode() != TargetOpcode::G_SELECT ||
!MRI.hasOneNonDBGUse(RHS))
return false;
}
MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
if (!isConstantOrConstantVector(*SelectLHS, MRI,
/*AllowFP*/ true,
/*AllowOpaqueConstants*/ false))
return false;
if (!isConstantOrConstantVector(*SelectRHS, MRI,
/*AllowFP*/ true,
/*AllowOpaqueConstants*/ false))
return false;
unsigned BinOpcode = MI.getOpcode();
// We know know one of the operands is a select of constants. Now verify that
// the other binary operator operand is either a constant, or we can handle a
// variable.
bool CanFoldNonConst =
(BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
(isNullOrNullSplat(*SelectLHS, MRI) ||
isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
(isNullOrNullSplat(*SelectRHS, MRI) ||
isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
if (CanFoldNonConst)
return true;
return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
/*AllowFP*/ true,
/*AllowOpaqueConstants*/ false);
}
/// \p SelectOperand is the operand in binary operator \p MI that is the select
/// to fold.
bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI,
const unsigned &SelectOperand) {
Builder.setInstrAndDebugLoc(MI);
Register Dst = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
Register SelectCond = Select->getOperand(1).getReg();
Register SelectTrue = Select->getOperand(2).getReg();
Register SelectFalse = Select->getOperand(3).getReg();
LLT Ty = MRI.getType(Dst);
unsigned BinOpcode = MI.getOpcode();
Register FoldTrue, FoldFalse;
// We have a select-of-constants followed by a binary operator with a
// constant. Eliminate the binop by pulling the constant math into the select.
// Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
if (SelectOperand == 1) {
// TODO: SelectionDAG verifies this actually constant folds before
// committing to the combine.
FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
FoldFalse =
Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
} else {
FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
FoldFalse =
Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
}
Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
Observer.erasingInstr(*Select);
Select->eraseFromParent();
MI.eraseFromParent();
return true;
}
Optional<SmallVector<Register, 8>>
CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
// We want to detect if Root is part of a tree which represents a bunch
// of loads being merged into a larger load. We'll try to recognize patterns
// like, for example:
//
// Reg Reg
// \ /
// OR_1 Reg
// \ /
// OR_2
// \ Reg
// .. /
// Root
//
// Reg Reg Reg Reg
// \ / \ /
// OR_1 OR_2
// \ /
// \ /
// ...
// Root
//
// Each "Reg" may have been produced by a load + some arithmetic. This
// function will save each of them.
SmallVector<Register, 8> RegsToVisit;
SmallVector<const MachineInstr *, 7> Ors = {Root};
// In the "worst" case, we're dealing with a load for each byte. So, there
// are at most #bytes - 1 ORs.
const unsigned MaxIter =
MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
if (Ors.empty())
break;
const MachineInstr *Curr = Ors.pop_back_val();
Register OrLHS = Curr->getOperand(1).getReg();
Register OrRHS = Curr->getOperand(2).getReg();
// In the combine, we want to elimate the entire tree.
if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
return None;
// If it's a G_OR, save it and continue to walk. If it's not, then it's
// something that may be a load + arithmetic.
if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
Ors.push_back(Or);
else
RegsToVisit.push_back(OrLHS);
if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
Ors.push_back(Or);
else
RegsToVisit.push_back(OrRHS);
}
// We're going to try and merge each register into a wider power-of-2 type,
// so we ought to have an even number of registers.
if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
return None;
return RegsToVisit;
}
/// Helper function for findLoadOffsetsForLoadOrCombine.
///
/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
/// and then moving that value into a specific byte offset.
///
/// e.g. x[i] << 24
///
/// \returns The load instruction and the byte offset it is moved into.
static Optional<std::pair<GZExtLoad *, int64_t>>
matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
const MachineRegisterInfo &MRI) {
assert(MRI.hasOneNonDBGUse(Reg) &&
"Expected Reg to only have one non-debug use?");
Register MaybeLoad;
int64_t Shift;
if (!mi_match(Reg, MRI,
m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
Shift = 0;
MaybeLoad = Reg;
}
if (Shift % MemSizeInBits != 0)
return None;
// TODO: Handle other types of loads.
auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
if (!Load)
return None;
if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
return None;
return std::make_pair(Load, Shift / MemSizeInBits);
}
Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
CombinerHelper::findLoadOffsetsForLoadOrCombine(
SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
// Each load found for the pattern. There should be one for each RegsToVisit.
SmallSetVector<const MachineInstr *, 8> Loads;
// The lowest index used in any load. (The lowest "i" for each x[i].)
int64_t LowestIdx = INT64_MAX;
// The load which uses the lowest index.
GZExtLoad *LowestIdxLoad = nullptr;
// Keeps track of the load indices we see. We shouldn't see any indices twice.
SmallSet<int64_t, 8> SeenIdx;
// Ensure each load is in the same MBB.
// TODO: Support multiple MachineBasicBlocks.
MachineBasicBlock *MBB = nullptr;
const MachineMemOperand *MMO = nullptr;
// Earliest instruction-order load in the pattern.
GZExtLoad *EarliestLoad = nullptr;
// Latest instruction-order load in the pattern.
GZExtLoad *LatestLoad = nullptr;
// Base pointer which every load should share.
Register BasePtr;
// We want to find a load for each register. Each load should have some
// appropriate bit twiddling arithmetic. During this loop, we will also keep
// track of the load which uses the lowest index. Later, we will check if we
// can use its pointer in the final, combined load.
for (auto Reg : RegsToVisit) {
// Find the load, and find the position that it will end up in (e.g. a
// shifted) value.
auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
if (!LoadAndPos)
return None;
GZExtLoad *Load;
int64_t DstPos;
std::tie(Load, DstPos) = *LoadAndPos;
// TODO: Handle multiple MachineBasicBlocks. Currently not handled because
// it is difficult to check for stores/calls/etc between loads.
MachineBasicBlock *LoadMBB = Load->getParent();
if (!MBB)
MBB = LoadMBB;
if (LoadMBB != MBB)
return None;
// Make sure that the MachineMemOperands of every seen load are compatible.
auto &LoadMMO = Load->getMMO();
if (!MMO)
MMO = &LoadMMO;
if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
return None;
// Find out what the base pointer and index for the load is.
Register LoadPtr;
int64_t Idx;
if (!mi_match(Load->getOperand(1).getReg(), MRI,
m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
LoadPtr = Load->getOperand(1).getReg();
Idx = 0;
}
// Don't combine things like a[i], a[i] -> a bigger load.
if (!SeenIdx.insert(Idx).second)
return None;
// Every load must share the same base pointer; don't combine things like:
//
// a[i], b[i + 1] -> a bigger load.
if (!BasePtr.isValid())
BasePtr = LoadPtr;
if (BasePtr != LoadPtr)
return None;
if (Idx < LowestIdx) {
LowestIdx = Idx;
LowestIdxLoad = Load;
}
// Keep track of the byte offset that this load ends up at. If we have seen
// the byte offset, then stop here. We do not want to combine:
//
// a[i] << 16, a[i + k] << 16 -> a bigger load.
if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
return None;
Loads.insert(Load);
// Keep track of the position of the earliest/latest loads in the pattern.
// We will check that there are no load fold barriers between them later
// on.
//
// FIXME: Is there a better way to check for load fold barriers?
if (!EarliestLoad || dominates(*Load, *EarliestLoad))
EarliestLoad = Load;
if (!LatestLoad || dominates(*LatestLoad, *Load))
LatestLoad = Load;
}
// We found a load for each register. Let's check if each load satisfies the
// pattern.
assert(Loads.size() == RegsToVisit.size() &&
"Expected to find a load for each register?");
assert(EarliestLoad != LatestLoad && EarliestLoad &&
LatestLoad && "Expected at least two loads?");
// Check if there are any stores, calls, etc. between any of the loads. If
// there are, then we can't safely perform the combine.
//
// MaxIter is chosen based off the (worst case) number of iterations it
// typically takes to succeed in the LLVM test suite plus some padding.
//
// FIXME: Is there a better way to check for load fold barriers?
const unsigned MaxIter = 20;
unsigned Iter = 0;
for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
LatestLoad->getIterator())) {
if (Loads.count(&MI))
continue;
if (MI.isLoadFoldBarrier())
return None;
if (Iter++ == MaxIter)
return None;
}
return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
}
bool CombinerHelper::matchLoadOrCombine(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_OR);
MachineFunction &MF = *MI.getMF();
// Assuming a little-endian target, transform:
// s8 *a = ...
// s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
// =>
// s32 val = *((i32)a)
//
// s8 *a = ...
// s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
// =>
// s32 val = BSWAP(*((s32)a))
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
if (Ty.isVector())
return false;
// We need to combine at least two loads into this type. Since the smallest
// possible load is into a byte, we need at least a 16-bit wide type.
const unsigned WideMemSizeInBits = Ty.getSizeInBits();
if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
return false;
// Match a collection of non-OR instructions in the pattern.
auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
if (!RegsToVisit)
return false;
// We have a collection of non-OR instructions. Figure out how wide each of
// the small loads should be based off of the number of potential loads we
// found.
const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
if (NarrowMemSizeInBits % 8 != 0)
return false;
// Check if each register feeding into each OR is a load from the same
// base pointer + some arithmetic.
//
// e.g. a[0], a[1] << 8, a[2] << 16, etc.
//
// Also verify that each of these ends up putting a[i] into the same memory
// offset as a load into a wide type would.
SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
GZExtLoad *LowestIdxLoad, *LatestLoad;
int64_t LowestIdx;
auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
if (!MaybeLoadInfo)
return false;
std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
// We have a bunch of loads being OR'd together. Using the addresses + offsets
// we found before, check if this corresponds to a big or little endian byte
// pattern. If it does, then we can represent it using a load + possibly a
// BSWAP.
bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
if (!IsBigEndian)
return false;
bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
return false;
// Make sure that the load from the lowest index produces offset 0 in the
// final value.
//
// This ensures that we won't combine something like this:
//
// load x[i] -> byte 2
// load x[i+1] -> byte 0 ---> wide_load x[i]
// load x[i+2] -> byte 1
const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
const unsigned ZeroByteOffset =
*IsBigEndian
? bigEndianByteAt(NumLoadsInTy, 0)
: littleEndianByteAt(NumLoadsInTy, 0);
auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
if (ZeroOffsetIdx == MemOffset2Idx.end() ||
ZeroOffsetIdx->second != LowestIdx)
return false;
// We wil reuse the pointer from the load which ends up at byte offset 0. It
// may not use index 0.
Register Ptr = LowestIdxLoad->getPointerReg();
const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
LegalityQuery::MemDesc MMDesc(MMO);
MMDesc.MemoryTy = Ty;
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
return false;
auto PtrInfo = MMO.getPointerInfo();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
// Load must be allowed and fast on the target.
LLVMContext &C = MF.getFunction().getContext();
auto &DL = MF.getDataLayout();
bool Fast = false;
if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
!Fast)
return false;
MatchInfo = [=](MachineIRBuilder &MIB) {
MIB.setInstrAndDebugLoc(*LatestLoad);
Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
MIB.buildLoad(LoadDst, Ptr, *NewMMO);
if (NeedsBSwap)
MIB.buildBSwap(Dst, LoadDst);
};
return true;
}
/// Check if the store \p Store is a truncstore that can be merged. That is,
/// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty
/// Register then it does not need to match and SrcVal is set to the source
/// value found.
/// On match, returns the start byte offset of the \p SrcVal that is being
/// stored.
static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal,
MachineRegisterInfo &MRI) {
Register TruncVal;
if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal))))
return None;
// The shift amount must be a constant multiple of the narrow type.
// It is translated to the offset address in the wide source value "y".
//
// x = G_LSHR y, ShiftAmtC
// s8 z = G_TRUNC x
// store z, ...
Register FoundSrcVal;
int64_t ShiftAmt;
if (!mi_match(TruncVal, MRI,
m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)),
m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) {
if (!SrcVal.isValid() || TruncVal == SrcVal) {
if (!SrcVal.isValid())
SrcVal = TruncVal;
return 0; // If it's the lowest index store.
}
return None;
}
unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits();
if (ShiftAmt % NarrowBits!= 0)
return None;
const unsigned Offset = ShiftAmt / NarrowBits;
if (SrcVal.isValid() && FoundSrcVal != SrcVal)
return None;
if (!SrcVal.isValid())
SrcVal = FoundSrcVal;
else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal))
return None;
return Offset;
}
/// Match a pattern where a wide type scalar value is stored by several narrow
/// stores. Fold it into a single store or a BSWAP and a store if the targets
/// supports it.
///
/// Assuming little endian target:
/// i8 *p = ...
/// i32 val = ...
/// p[0] = (val >> 0) & 0xFF;
/// p[1] = (val >> 8) & 0xFF;
/// p[2] = (val >> 16) & 0xFF;
/// p[3] = (val >> 24) & 0xFF;
/// =>
/// *((i32)p) = val;
///
/// i8 *p = ...
/// i32 val = ...
/// p[0] = (val >> 24) & 0xFF;
/// p[1] = (val >> 16) & 0xFF;
/// p[2] = (val >> 8) & 0xFF;
/// p[3] = (val >> 0) & 0xFF;
/// =>
/// *((i32)p) = BSWAP(val);
bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI,
MergeTruncStoresInfo &MatchInfo) {
auto &StoreMI = cast<GStore>(MI);
LLT MemTy = StoreMI.getMMO().getMemoryType();
// We only handle merging simple stores of 1-4 bytes.
if (!MemTy.isScalar())
return false;
switch (MemTy.getSizeInBits()) {
case 8:
case 16:
case 32:
break;
default:
return false;
}
if (!StoreMI.isSimple())
return false;
// We do a simple search for mergeable stores prior to this one.
// Any potential alias hazard along the way terminates the search.
SmallVector<GStore *> FoundStores;
// We're looking for:
// 1) a (store(trunc(...)))
// 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get
// the partial value stored.
// 3) where the offsets form either a little or big-endian sequence.
auto &LastStore = StoreMI;
// The single base pointer that all stores must use.
Register BaseReg;
int64_t LastOffset;
if (!mi_match(LastStore.getPointerReg(), MRI,
m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) {
BaseReg = LastStore.getPointerReg();
LastOffset = 0;
}
GStore *LowestIdxStore = &LastStore;
int64_t LowestIdxOffset = LastOffset;
Register WideSrcVal;
auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI);
if (!LowestShiftAmt)
return false; // Didn't match a trunc.
assert(WideSrcVal.isValid());
LLT WideStoreTy = MRI.getType(WideSrcVal);
// The wide type might not be a multiple of the memory type, e.g. s48 and s32.
if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0)
return false;
const unsigned NumStoresRequired =
WideStoreTy.getSizeInBits() / MemTy.getSizeInBits();
SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX);
OffsetMap[*LowestShiftAmt] = LastOffset;
FoundStores.emplace_back(&LastStore);
// Search the block up for more stores.
// We use a search threshold of 10 instructions here because the combiner
// works top-down within a block, and we don't want to search an unbounded
// number of predecessor instructions trying to find matching stores.
// If we moved this optimization into a separate pass then we could probably
// use a more efficient search without having a hard-coded threshold.
const int MaxInstsToCheck = 10;
int NumInstsChecked = 0;
for (auto II = ++LastStore.getReverseIterator();
II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck;
++II) {
NumInstsChecked++;
GStore *NewStore;
if ((NewStore = dyn_cast<GStore>(&*II))) {
if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple())
break;
} else if (II->isLoadFoldBarrier() || II->mayLoad()) {
break;
} else {
continue; // This is a safe instruction we can look past.
}
Register NewBaseReg;
int64_t MemOffset;
// Check we're storing to the same base + some offset.
if (!mi_match(NewStore->getPointerReg(), MRI,
m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) {
NewBaseReg = NewStore->getPointerReg();
MemOffset = 0;
}
if (BaseReg != NewBaseReg)
break;
auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI);
if (!ShiftByteOffset)
break;
if (MemOffset < LowestIdxOffset) {
LowestIdxOffset = MemOffset;
LowestIdxStore = NewStore;
}
// Map the offset in the store and the offset in the combined value, and
// early return if it has been set before.
if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired ||
OffsetMap[*ShiftByteOffset] != INT64_MAX)
break;
OffsetMap[*ShiftByteOffset] = MemOffset;
FoundStores.emplace_back(NewStore);
// Reset counter since we've found a matching inst.
NumInstsChecked = 0;
if (FoundStores.size() == NumStoresRequired)
break;
}
if (FoundStores.size() != NumStoresRequired) {
return false;
}
const auto &DL = LastStore.getMF()->getDataLayout();
auto &C = LastStore.getMF()->getFunction().getContext();
// Check that a store of the wide type is both allowed and fast on the target
bool Fast = false;
bool Allowed = getTargetLowering().allowsMemoryAccess(
C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast);
if (!Allowed || !Fast)
return false;
// Check if the pieces of the value are going to the expected places in memory
// to merge the stores.
unsigned NarrowBits = MemTy.getScalarSizeInBits();
auto checkOffsets = [&](bool MatchLittleEndian) {
if (MatchLittleEndian) {
for (unsigned i = 0; i != NumStoresRequired; ++i)
if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset)
return false;
} else { // MatchBigEndian by reversing loop counter.
for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired;
++i, --j)
if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset)
return false;
}
return true;
};
// Check if the offsets line up for the native data layout of this target.
bool NeedBswap = false;
bool NeedRotate = false;
if (!checkOffsets(DL.isLittleEndian())) {
// Special-case: check if byte offsets line up for the opposite endian.
if (NarrowBits == 8 && checkOffsets(DL.isBigEndian()))
NeedBswap = true;
else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian()))
NeedRotate = true;
else
return false;
}
if (NeedBswap &&
!isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}))
return false;
if (NeedRotate &&
!isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}}))
return false;
MatchInfo.NeedBSwap = NeedBswap;
MatchInfo.NeedRotate = NeedRotate;
MatchInfo.LowestIdxStore = LowestIdxStore;
MatchInfo.WideSrcVal = WideSrcVal;
MatchInfo.FoundStores = std::move(FoundStores);
return true;
}
void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI,
MergeTruncStoresInfo &MatchInfo) {
Builder.setInstrAndDebugLoc(MI);
Register WideSrcVal = MatchInfo.WideSrcVal;
LLT WideStoreTy = MRI.getType(WideSrcVal);
if (MatchInfo.NeedBSwap) {
WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0);
} else if (MatchInfo.NeedRotate) {
assert(WideStoreTy.getSizeInBits() % 2 == 0 &&
"Unexpected type for rotate");
auto RotAmt =
Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2);
WideSrcVal =
Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0);
}
Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(),
MatchInfo.LowestIdxStore->getMMO().getPointerInfo(),
MatchInfo.LowestIdxStore->getMMO().getAlign());
// Erase the old stores.
for (auto *ST : MatchInfo.FoundStores)
ST->eraseFromParent();
}
bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
MachineInstr *&ExtMI) {
assert(MI.getOpcode() == TargetOpcode::G_PHI);
Register DstReg = MI.getOperand(0).getReg();
// TODO: Extending a vector may be expensive, don't do this until heuristics
// are better.
if (MRI.getType(DstReg).isVector())
return false;
// Try to match a phi, whose only use is an extend.
if (!MRI.hasOneNonDBGUse(DstReg))
return false;
ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
switch (ExtMI->getOpcode()) {
case TargetOpcode::G_ANYEXT:
return true; // G_ANYEXT is usually free.
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_SEXT:
break;
default:
return false;
}
// If the target is likely to fold this extend away, don't propagate.
if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
return false;
// We don't want to propagate the extends unless there's a good chance that
// they'll be optimized in some way.
// Collect the unique incoming values.
SmallPtrSet<MachineInstr *, 4> InSrcs;
for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
switch (DefMI->getOpcode()) {
case TargetOpcode::G_LOAD:
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_CONSTANT:
InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
// Don't try to propagate if there are too many places to create new
// extends, chances are it'll increase code size.
if (InSrcs.size() > 2)
return false;
break;
default:
return false;
}
}
return true;
}
void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
MachineInstr *&ExtMI) {
assert(MI.getOpcode() == TargetOpcode::G_PHI);
Register DstReg = ExtMI->getOperand(0).getReg();
LLT ExtTy = MRI.getType(DstReg);
// Propagate the extension into the block of each incoming reg's block.
// Use a SetVector here because PHIs can have duplicate edges, and we want
// deterministic iteration order.
SmallSetVector<MachineInstr *, 8> SrcMIs;
SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
if (!SrcMIs.insert(SrcMI))
continue;
// Build an extend after each src inst.
auto *MBB = SrcMI->getParent();
MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
if (InsertPt != MBB->end() && InsertPt->isPHI())
InsertPt = MBB->getFirstNonPHI();
Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
Builder.setDebugLoc(MI.getDebugLoc());
auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
SrcMI->getOperand(0).getReg());
OldToNewSrcMap[SrcMI] = NewExt;
}
// Create a new phi with the extended inputs.
Builder.setInstrAndDebugLoc(MI);
auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
NewPhi.addDef(DstReg);
for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
if (!MO.isReg()) {
NewPhi.addMBB(MO.getMBB());
continue;
}
auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
NewPhi.addUse(NewSrc->getOperand(0).getReg());
}
Builder.insertInstr(NewPhi);
ExtMI->eraseFromParent();
}
bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
// If we have a constant index, look for a G_BUILD_VECTOR source
// and find the source register that the index maps to.
Register SrcVec = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcVec);
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}}))
return false;
auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
return false;
unsigned VecIdx = Cst->Value.getZExtValue();
MachineInstr *BuildVecMI =
getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI);
if (!BuildVecMI) {
BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI);
if (!BuildVecMI)
return false;
LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg());
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}}))
return false;
}
EVT Ty(getMVTForLLT(SrcTy));
if (!MRI.hasOneNonDBGUse(SrcVec) &&
!getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
return false;
Reg = BuildVecMI->getOperand(VecIdx + 1).getReg();
return true;
}
void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
Register &Reg) {
// Check the type of the register, since it may have come from a
// G_BUILD_VECTOR_TRUNC.
LLT ScalarTy = MRI.getType(Reg);
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
Builder.setInstrAndDebugLoc(MI);
if (ScalarTy != DstTy) {
assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
Builder.buildTrunc(DstReg, Reg);
MI.eraseFromParent();
return;
}
replaceSingleDefInstWithReg(MI, Reg);
}
bool CombinerHelper::matchExtractAllEltsFromBuildVector(
MachineInstr &MI,
SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
// This combine tries to find build_vector's which have every source element
// extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
// the masked load scalarization is run late in the pipeline. There's already
// a combine for a similar pattern starting from the extract, but that
// doesn't attempt to do it if there are multiple uses of the build_vector,
// which in this case is true. Starting the combine from the build_vector
// feels more natural than trying to find sibling nodes of extracts.
// E.g.
// %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
// %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
// %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
// %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
// %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
// ==>
// replace ext{1,2,3,4} with %s{1,2,3,4}
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
unsigned NumElts = DstTy.getNumElements();
SmallBitVector ExtractedElts(NumElts);
for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
return false;
auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
if (!Cst)
return false;
unsigned Idx = Cst->getZExtValue();
if (Idx >= NumElts)
return false; // Out of range.
ExtractedElts.set(Idx);
SrcDstPairs.emplace_back(
std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
}
// Match if every element was extracted.
return ExtractedElts.all();
}
void CombinerHelper::applyExtractAllEltsFromBuildVector(
MachineInstr &MI,
SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
for (auto &Pair : SrcDstPairs) {
auto *ExtMI = Pair.second;
replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
ExtMI->eraseFromParent();
}
MI.eraseFromParent();
}
void CombinerHelper::applyBuildFn(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
Builder.setInstrAndDebugLoc(MI);
MatchInfo(Builder);
MI.eraseFromParent();
}
void CombinerHelper::applyBuildFnNoErase(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
Builder.setInstrAndDebugLoc(MI);
MatchInfo(Builder);
}
bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
BuildFnTy &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_OR);
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
unsigned BitWidth = Ty.getScalarSizeInBits();
Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
unsigned FshOpc = 0;
// Match (or (shl ...), (lshr ...)).
if (!mi_match(Dst, MRI,
// m_GOr() handles the commuted version as well.
m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
return false;
// Given constants C0 and C1 such that C0 + C1 is bit-width:
// (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
int64_t CstShlAmt, CstLShrAmt;
if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) &&
mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) &&
CstShlAmt + CstLShrAmt == BitWidth) {
FshOpc = TargetOpcode::G_FSHR;
Amt = LShrAmt;
} else if (mi_match(LShrAmt, MRI,
m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
ShlAmt == Amt) {
// (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
FshOpc = TargetOpcode::G_FSHL;
} else if (mi_match(ShlAmt, MRI,
m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
LShrAmt == Amt) {
// (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
FshOpc = TargetOpcode::G_FSHR;
} else {
return false;
}
LLT AmtTy = MRI.getType(Amt);
if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
};
return true;
}
/// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
Register X = MI.getOperand(1).getReg();
Register Y = MI.getOperand(2).getReg();
if (X != Y)
return false;
unsigned RotateOpc =
Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
}
void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
bool IsFSHL = Opc == TargetOpcode::G_FSHL;
Observer.changingInstr(MI);
MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
: TargetOpcode::G_ROTR));
MI.removeOperand(2);
Observer.changedInstr(MI);
}
// Fold (rot x, c) -> (rot x, c % BitSize)
bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
MI.getOpcode() == TargetOpcode::G_ROTR);
unsigned Bitsize =
MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
Register AmtReg = MI.getOperand(2).getReg();
bool OutOfRange = false;
auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
if (auto *CI = dyn_cast<ConstantInt>(C))
OutOfRange |= CI->getValue().uge(Bitsize);
return true;
};
return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
}
void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
MI.getOpcode() == TargetOpcode::G_ROTR);
unsigned Bitsize =
MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
Builder.setInstrAndDebugLoc(MI);
Register Amt = MI.getOperand(2).getReg();
LLT AmtTy = MRI.getType(Amt);
auto Bits = Builder.buildConstant(AmtTy, Bitsize);
Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(Amt);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
int64_t &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
Optional<bool> KnownVal;
switch (Pred) {
default:
llvm_unreachable("Unexpected G_ICMP predicate?");
case CmpInst::ICMP_EQ:
KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_NE:
KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_SGE:
KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_SGT:
KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_SLE:
KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_SLT:
KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_UGE:
KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_UGT:
KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_ULE:
KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
break;
case CmpInst::ICMP_ULT:
KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
break;
}
if (!KnownVal)
return false;
MatchInfo =
*KnownVal
? getICmpTrueVal(getTargetLowering(),
/*IsVector = */
MRI.getType(MI.getOperand(0).getReg()).isVector(),
/* IsFP = */ false)
: 0;
return true;
}
bool CombinerHelper::matchICmpToLHSKnownBits(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
// Given:
//
// %x = G_WHATEVER (... x is known to be 0 or 1 ...)
// %cmp = G_ICMP ne %x, 0
//
// Or:
//
// %x = G_WHATEVER (... x is known to be 0 or 1 ...)
// %cmp = G_ICMP eq %x, 1
//
// We can replace %cmp with %x assuming true is 1 on the target.
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
if (!CmpInst::isEquality(Pred))
return false;
Register Dst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst);
if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
/* IsFP = */ false) != 1)
return false;
int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
return false;
Register LHS = MI.getOperand(2).getReg();
auto KnownLHS = KB->getKnownBits(LHS);
if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
return false;
// Make sure replacing Dst with the LHS is a legal operation.
LLT LHSTy = MRI.getType(LHS);
unsigned LHSSize = LHSTy.getSizeInBits();
unsigned DstSize = DstTy.getSizeInBits();
unsigned Op = TargetOpcode::COPY;
if (DstSize != LHSSize)
Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
return false;
MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
return true;
}
// Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
bool CombinerHelper::matchAndOrDisjointMask(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_AND);
// Ignore vector types to simplify matching the two constants.
// TODO: do this for vectors and scalars via a demanded bits analysis.
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (Ty.isVector())
return false;
Register Src;
Register AndMaskReg;
int64_t AndMaskBits;
int64_t OrMaskBits;
if (!mi_match(MI, MRI,
m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)),
m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg)))))
return false;
// Check if OrMask could turn on any bits in Src.
if (AndMaskBits & OrMaskBits)
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Observer.changingInstr(MI);
// Canonicalize the result to have the constant on the RHS.
if (MI.getOperand(1).getReg() == AndMaskReg)
MI.getOperand(2).setReg(AndMaskReg);
MI.getOperand(1).setReg(Src);
Observer.changedInstr(MI);
};
return true;
}
/// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Src);
LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
return false;
int64_t Width = MI.getOperand(2).getImm();
Register ShiftSrc;
int64_t ShiftImm;
if (!mi_match(
Src, MRI,
m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
return false;
if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
return false;
MatchInfo = [=](MachineIRBuilder &B) {
auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
auto Cst2 = B.buildConstant(ExtractTy, Width);
B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
};
return true;
}
/// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
bool CombinerHelper::matchBitfieldExtractFromAnd(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_AND);
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
TargetOpcode::G_UBFX, Ty, ExtractTy))
return false;
int64_t AndImm, LSBImm;
Register ShiftSrc;
const unsigned Size = Ty.getScalarSizeInBits();
if (!mi_match(MI.getOperand(0).getReg(), MRI,
m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
m_ICst(AndImm))))
return false;
// The mask is a mask of the low bits iff imm & (imm+1) == 0.
auto MaybeMask = static_cast<uint64_t>(AndImm);
if (MaybeMask & (MaybeMask + 1))
return false;
// LSB must fit within the register.
if (static_cast<uint64_t>(LSBImm) >= Size)
return false;
uint64_t Width = APInt(Size, AndImm).countTrailingOnes();
MatchInfo = [=](MachineIRBuilder &B) {
auto WidthCst = B.buildConstant(ExtractTy, Width);
auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
};
return true;
}
bool CombinerHelper::matchBitfieldExtractFromShr(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
const unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR);
const Register Dst = MI.getOperand(0).getReg();
const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
? TargetOpcode::G_SBFX
: TargetOpcode::G_UBFX;
// Check if the type we would use for the extract is legal
LLT Ty = MRI.getType(Dst);
LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
return false;
Register ShlSrc;
int64_t ShrAmt;
int64_t ShlAmt;
const unsigned Size = Ty.getScalarSizeInBits();
// Try to match shr (shl x, c1), c2
if (!mi_match(Dst, MRI,
m_BinOp(Opcode,
m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
m_ICst(ShrAmt))))
return false;
// Make sure that the shift sizes can fit a bitfield extract
if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
return false;
// Skip this combine if the G_SEXT_INREG combine could handle it
if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
return false;
// Calculate start position and width of the extract
const int64_t Pos = ShrAmt - ShlAmt;
const int64_t Width = Size - ShrAmt;
MatchInfo = [=](MachineIRBuilder &B) {
auto WidthCst = B.buildConstant(ExtractTy, Width);
auto PosCst = B.buildConstant(ExtractTy, Pos);
B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
};
return true;
}
bool CombinerHelper::matchBitfieldExtractFromShrAnd(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
const unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR);
const Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
TargetOpcode::G_UBFX, Ty, ExtractTy))
return false;
// Try to match shr (and x, c1), c2
Register AndSrc;
int64_t ShrAmt;
int64_t SMask;
if (!mi_match(Dst, MRI,
m_BinOp(Opcode,
m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
m_ICst(ShrAmt))))
return false;
const unsigned Size = Ty.getScalarSizeInBits();
if (ShrAmt < 0 || ShrAmt >= Size)
return false;
// If the shift subsumes the mask, emit the 0 directly.
if (0 == (SMask >> ShrAmt)) {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildConstant(Dst, 0);
};
return true;
}
// Check that ubfx can do the extraction, with no holes in the mask.
uint64_t UMask = SMask;
UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
UMask &= maskTrailingOnes<uint64_t>(Size);
if (!isMask_64(UMask))
return false;
// Calculate start position and width of the extract.
const int64_t Pos = ShrAmt;
const int64_t Width = countTrailingOnes(UMask) - ShrAmt;
// It's preferable to keep the shift, rather than form G_SBFX.
// TODO: remove the G_AND via demanded bits analysis.
if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
return false;
MatchInfo = [=](MachineIRBuilder &B) {
auto WidthCst = B.buildConstant(ExtractTy, Width);
auto PosCst = B.buildConstant(ExtractTy, Pos);
B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
};
return true;
}
bool CombinerHelper::reassociationCanBreakAddressingModePattern(
MachineInstr &PtrAdd) {
assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD);
Register Src1Reg = PtrAdd.getOperand(1).getReg();
MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
if (!Src1Def)
return false;
Register Src2Reg = PtrAdd.getOperand(2).getReg();
if (MRI.hasOneNonDBGUse(Src1Reg))
return false;
auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
if (!C1)
return false;
auto C2 = getIConstantVRegVal(Src2Reg, MRI);
if (!C2)
return false;
const APInt &C1APIntVal = *C1;
const APInt &C2APIntVal = *C2;
const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
// This combine may end up running before ptrtoint/inttoptr combines
// manage to eliminate redundant conversions, so try to look through them.
MachineInstr *ConvUseMI = &UseMI;
unsigned ConvUseOpc = ConvUseMI->getOpcode();
while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
ConvUseOpc == TargetOpcode::G_PTRTOINT) {
Register DefReg = ConvUseMI->getOperand(0).getReg();
if (!MRI.hasOneNonDBGUse(DefReg))
break;
ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
ConvUseOpc = ConvUseMI->getOpcode();
}
auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
ConvUseOpc == TargetOpcode::G_STORE;
if (!LoadStore)
continue;
// Is x[offset2] already not a legal addressing mode? If so then
// reassociating the constants breaks nothing (we test offset2 because
// that's the one we hope to fold into the load or store).
TargetLoweringBase::AddrMode AM;
AM.HasBaseReg = true;
AM.BaseOffs = C2APIntVal.getSExtValue();
unsigned AS =
MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
Type *AccessTy =
getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
PtrAdd.getMF()->getFunction().getContext());
const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
AccessTy, AS))
continue;
// Would x[offset1+offset2] still be a legal addressing mode?
AM.BaseOffs = CombinedValue;
if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
AccessTy, AS))
return true;
}
return false;
}
bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
MachineInstr *RHS,
BuildFnTy &MatchInfo) {
// G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
Register Src1Reg = MI.getOperand(1).getReg();
if (RHS->getOpcode() != TargetOpcode::G_ADD)
return false;
auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
if (!C2)
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
auto NewBase =
Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
Observer.changingInstr(MI);
MI.getOperand(1).setReg(NewBase.getReg(0));
MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
Observer.changedInstr(MI);
};
return !reassociationCanBreakAddressingModePattern(MI);
}
bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
MachineInstr *LHS,
MachineInstr *RHS,
BuildFnTy &MatchInfo) {
// G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
// if and only if (G_PTR_ADD X, C) has one use.
Register LHSBase;
Optional<ValueAndVReg> LHSCstOff;
if (!mi_match(MI.getBaseReg(), MRI,
m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
return false;
auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
MatchInfo = [=, &MI](MachineIRBuilder &B) {
// When we change LHSPtrAdd's offset register we might cause it to use a reg
// before its def. Sink the instruction so the outer PTR_ADD to ensure this
// doesn't happen.
LHSPtrAdd->moveBefore(&MI);
Register RHSReg = MI.getOffsetReg();
Observer.changingInstr(MI);
MI.getOperand(2).setReg(LHSCstOff->VReg);
Observer.changedInstr(MI);
Observer.changingInstr(*LHSPtrAdd);
LHSPtrAdd->getOperand(2).setReg(RHSReg);
Observer.changedInstr(*LHSPtrAdd);
};
return !reassociationCanBreakAddressingModePattern(MI);
}
bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI,
MachineInstr *LHS,
MachineInstr *RHS,
BuildFnTy &MatchInfo) {
// G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
if (!LHSPtrAdd)
return false;
Register Src2Reg = MI.getOperand(2).getReg();
Register LHSSrc1 = LHSPtrAdd->getBaseReg();
Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
if (!C1)
return false;
auto C2 = getIConstantVRegVal(Src2Reg, MRI);
if (!C2)
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(LHSSrc1);
MI.getOperand(2).setReg(NewCst.getReg(0));
Observer.changedInstr(MI);
};
return !reassociationCanBreakAddressingModePattern(MI);
}
bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
BuildFnTy &MatchInfo) {
auto &PtrAdd = cast<GPtrAdd>(MI);
// We're trying to match a few pointer computation patterns here for
// re-association opportunities.
// 1) Isolating a constant operand to be on the RHS, e.g.:
// G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
//
// 2) Folding two constants in each sub-tree as long as such folding
// doesn't break a legal addressing mode.
// G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
//
// 3) Move a constant from the LHS of an inner op to the RHS of the outer.
// G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
// iif (G_PTR_ADD X, C) has one use.
MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
// Try to match example 2.
if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
return true;
// Try to match example 3.
if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
return true;
// Try to match example 1.
if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
return true;
return false;
}
bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
if (!MaybeCst)
return false;
MatchInfo = *MaybeCst;
return true;
}
bool CombinerHelper::matchNarrowBinopFeedingAnd(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
// Look for a binop feeding into an AND with a mask:
//
// %add = G_ADD %lhs, %rhs
// %and = G_AND %add, 000...11111111
//
// Check if it's possible to perform the binop at a narrower width and zext
// back to the original width like so:
//
// %narrow_lhs = G_TRUNC %lhs
// %narrow_rhs = G_TRUNC %rhs
// %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
// %new_add = G_ZEXT %narrow_add
// %and = G_AND %new_add, 000...11111111
//
// This can allow later combines to eliminate the G_AND if it turns out
// that the mask is irrelevant.
assert(MI.getOpcode() == TargetOpcode::G_AND);
Register Dst = MI.getOperand(0).getReg();
Register AndLHS = MI.getOperand(1).getReg();
Register AndRHS = MI.getOperand(2).getReg();
LLT WideTy = MRI.getType(Dst);
// If the potential binop has more than one use, then it's possible that one
// of those uses will need its full width.
if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
return false;
// Check if the LHS feeding the AND is impacted by the high bits that we're
// masking out.
//
// e.g. for 64-bit x, y:
//
// add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
if (!LHSInst)
return false;
unsigned LHSOpc = LHSInst->getOpcode();
switch (LHSOpc) {
default:
return false;
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
case TargetOpcode::G_MUL:
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR:
break;
}
// Find the mask on the RHS.
auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
if (!Cst)
return false;
auto Mask = Cst->Value;
if (!Mask.isMask())
return false;
// No point in combining if there's nothing to truncate.
unsigned NarrowWidth = Mask.countTrailingOnes();
if (NarrowWidth == WideTy.getSizeInBits())
return false;
LLT NarrowTy = LLT::scalar(NarrowWidth);
// Check if adding the zext + truncates could be harmful.
auto &MF = *MI.getMF();
const auto &TLI = getTargetLowering();
LLVMContext &Ctx = MF.getFunction().getContext();
auto &DL = MF.getDataLayout();
if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
!TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
return false;
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
!isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
return false;
Register BinOpLHS = LHSInst->getOperand(1).getReg();
Register BinOpRHS = LHSInst->getOperand(2).getReg();
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
auto NarrowBinOp =
Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(Ext.getReg(0));
Observer.changedInstr(MI);
};
return true;
}
bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO);
if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Observer.changingInstr(MI);
unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
: TargetOpcode::G_SADDO;
MI.setDesc(Builder.getTII().get(NewOpc));
MI.getOperand(3).setReg(MI.getOperand(2).getReg());
Observer.changedInstr(MI);
};
return true;
}
bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
// (G_*MULO x, 0) -> 0 + no carry out
assert(MI.getOpcode() == TargetOpcode::G_UMULO ||
MI.getOpcode() == TargetOpcode::G_SMULO);
if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
return false;
Register Dst = MI.getOperand(0).getReg();
Register Carry = MI.getOperand(1).getReg();
if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
B.buildConstant(Dst, 0);
B.buildConstant(Carry, 0);
};
return true;
}
bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
// (G_*ADDO x, 0) -> x + no carry out
assert(MI.getOpcode() == TargetOpcode::G_UADDO ||
MI.getOpcode() == TargetOpcode::G_SADDO);
if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
return false;
Register Carry = MI.getOperand(1).getReg();
if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
return false;
Register Dst = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(2).getReg();
MatchInfo = [=](MachineIRBuilder &B) {
B.buildCopy(Dst, LHS);
B.buildConstant(Carry, 0);
};
return true;
}
MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UDIV);
auto &UDiv = cast<GenericMachineInstr>(MI);
Register Dst = UDiv.getReg(0);
Register LHS = UDiv.getReg(1);
Register RHS = UDiv.getReg(2);
LLT Ty = MRI.getType(Dst);
LLT ScalarTy = Ty.getScalarType();
const unsigned EltBits = ScalarTy.getScalarSizeInBits();
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
auto &MIB = Builder;
MIB.setInstrAndDebugLoc(MI);
bool UseNPQ = false;
SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
auto BuildUDIVPattern = [&](const Constant *C) {
auto *CI = cast<ConstantInt>(C);
const APInt &Divisor = CI->getValue();
UnsignedDivisionByConstantInfo magics =
UnsignedDivisionByConstantInfo::get(Divisor);
unsigned PreShift = 0, PostShift = 0;
// If the divisor is even, we can avoid using the expensive fixup by
// shifting the divided value upfront.
if (magics.IsAdd && !Divisor[0]) {
PreShift = Divisor.countTrailingZeros();
// Get magic number for the shifted divisor.
magics =
UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
assert(!magics.IsAdd && "Should use cheap fixup now");
}
unsigned SelNPQ;
if (!magics.IsAdd || Divisor.isOneValue()) {
assert(magics.ShiftAmount < Divisor.getBitWidth() &&
"We shouldn't generate an undefined shift!");
PostShift = magics.ShiftAmount;
SelNPQ = false;
} else {
PostShift = magics.ShiftAmount - 1;
SelNPQ = true;
}
PreShifts.push_back(
MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
MagicFactors.push_back(MIB.buildConstant(ScalarTy, magics.Magic).getReg(0));
NPQFactors.push_back(
MIB.buildConstant(ScalarTy,
SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
: APInt::getZero(EltBits))
.getReg(0));
PostShifts.push_back(
MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
UseNPQ |= SelNPQ;
return true;
};
// Collect the shifts/magic values from each element.
bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
(void)Matched;
assert(Matched && "Expected unary predicate match to succeed");
Register PreShift, PostShift, MagicFactor, NPQFactor;
auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
if (RHSDef) {
PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
} else {
assert(MRI.getType(RHS).isScalar() &&
"Non-build_vector operation should have been a scalar");
PreShift = PreShifts[0];
MagicFactor = MagicFactors[0];
PostShift = PostShifts[0];
}
Register Q = LHS;
Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
// Multiply the numerator (operand 0) by the magic value.
Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
if (UseNPQ) {
Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
// For vectors we might have a mix of non-NPQ/NPQ paths, so use
// G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
if (Ty.isVector())
NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
else
NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
}
Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
auto One = MIB.buildConstant(Ty, 1);
auto IsOne = MIB.buildICmp(
CmpInst::Predicate::ICMP_EQ,
Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
return MIB.buildSelect(Ty, IsOne, LHS, Q);
}
bool CombinerHelper::matchUDivByConst(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UDIV);
Register Dst = MI.getOperand(0).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(Dst);
auto *RHSDef = MRI.getVRegDef(RHS);
if (!isConstantOrConstantVector(*RHSDef, MRI))
return false;
auto &MF = *MI.getMF();
AttributeList Attr = MF.getFunction().getAttributes();
const auto &TLI = getTargetLowering();
LLVMContext &Ctx = MF.getFunction().getContext();
auto &DL = MF.getDataLayout();
if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
return false;
// Don't do this for minsize because the instruction sequence is usually
// larger.
if (MF.getFunction().hasMinSize())
return false;
// Don't do this if the types are not going to be legal.
if (LI) {
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
return false;
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
return false;
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_ICMP,
{DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
DstTy}}))
return false;
}
auto CheckEltValue = [&](const Constant *C) {
if (auto *CI = dyn_cast_or_null<ConstantInt>(C))
return !CI->isZero();
return false;
};
return matchUnaryPredicate(MRI, RHS, CheckEltValue);
}
void CombinerHelper::applyUDivByConst(MachineInstr &MI) {
auto *NewMI = buildUDivUsingMul(MI);
replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
}
bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UMULH);
Register RHS = MI.getOperand(2).getReg();
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
auto MatchPow2ExceptOne = [&](const Constant *C) {
if (auto *CI = dyn_cast<ConstantInt>(C))
return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
return false;
};
if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
return false;
return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}});
}
void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
unsigned NumEltBits = Ty.getScalarSizeInBits();
Builder.setInstrAndDebugLoc(MI);
auto LogBase2 = buildLogBase2(RHS, Builder);
auto ShiftAmt =
Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
Builder.buildLShr(Dst, LHS, Trunc);
MI.eraseFromParent();
}
bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
BuildFnTy &MatchInfo) {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||
Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA);
Register Dst = MI.getOperand(0).getReg();
Register X = MI.getOperand(1).getReg();
Register Y = MI.getOperand(2).getReg();
LLT Type = MRI.getType(Dst);
// fold (fadd x, fneg(y)) -> (fsub x, y)
// fold (fadd fneg(y), x) -> (fsub x, y)
// G_ADD is commutative so both cases are checked by m_GFAdd
if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
Opc = TargetOpcode::G_FSUB;
}
/// fold (fsub x, fneg(y)) -> (fadd x, y)
else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
Opc = TargetOpcode::G_FADD;
}
// fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
// fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
// fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
// fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
// no opcode change
} else
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Observer.changingInstr(MI);
MI.setDesc(B.getTII().get(Opc));
MI.getOperand(1).setReg(X);
MI.getOperand(2).setReg(Y);
Observer.changedInstr(MI);
};
return true;
}
/// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
/// due to global flags or MachineInstr flags.
static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
if (MI.getOpcode() != TargetOpcode::G_FMUL)
return false;
return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
}
static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
const MachineRegisterInfo &MRI) {
return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
MRI.use_instr_nodbg_end()) >
std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
MRI.use_instr_nodbg_end());
}
bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
bool &AllowFusionGlobally,
bool &HasFMAD, bool &Aggressive,
bool CanReassociate) {
auto *MF = MI.getMF();
const auto &TLI = *MF->getSubtarget().getTargetLowering();
const TargetOptions &Options = MF->getTarget().Options;
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
if (CanReassociate &&
!(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
return false;
// Floating-point multiply-add with intermediate rounding.
HasFMAD = (LI && TLI.isFMADLegal(MI, DstType));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return false;
AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
Options.UnsafeFPMath || HasFMAD;
// If the addition is not contractable, do not combine.
if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
return false;
Aggressive = TLI.enableAggressiveFMAFusion(DstType);
return true;
}
bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FADD);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
std::swap(LHS, RHS);
}
// fold (fadd (fmul x, y), z) -> (fma x, y, z)
if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{LHS.MI->getOperand(1).getReg(),
LHS.MI->getOperand(2).getReg(), RHS.Reg});
};
return true;
}
// fold (fadd x, (fmul y, z)) -> (fma y, z, x)
if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{RHS.MI->getOperand(1).getReg(),
RHS.MI->getOperand(2).getReg(), LHS.Reg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FADD);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
std::swap(LHS, RHS);
}
// fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
MachineInstr *FpExtSrc;
if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
};
return true;
}
// fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
// Note: Commutes FADD operands.
if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FADD);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
return false;
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
std::swap(LHS, RHS);
}
MachineInstr *FMA = nullptr;
Register Z;
// fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
(MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
TargetOpcode::G_FMUL) &&
MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
FMA = LHS.MI;
Z = RHS.Reg;
}
// fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
(MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
TargetOpcode::G_FMUL) &&
MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
Z = LHS.Reg;
FMA = RHS.MI;
}
if (FMA) {
MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
Register X = FMA->getOperand(1).getReg();
Register Y = FMA->getOperand(2).getReg();
Register U = FMulMI->getOperand(1).getReg();
Register V = FMulMI->getOperand(2).getReg();
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{X, Y, InnerFMA});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FADD);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
if (!Aggressive)
return false;
const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
std::swap(LHS, RHS);
}
// Builds: (fma x, y, (fma (fpext u), (fpext v), z))
auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
Register Y, MachineIRBuilder &B) {
Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
Register InnerFMA =
B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
.getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{X, Y, InnerFMA});
};
MachineInstr *FMulMI, *FMAMI;
// fold (fadd (fma x, y, (fpext (fmul u, v))), z)
// -> (fma x, y, (fma (fpext u), (fpext v), z))
if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
mi_match(LHS.MI->getOperand(3).getReg(), MRI,
m_GFPExt(m_MInstr(FMulMI))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FMulMI->getOperand(0).getReg()))) {
MatchInfo = [=](MachineIRBuilder &B) {
buildMatchInfo(FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), RHS.Reg,
LHS.MI->getOperand(1).getReg(),
LHS.MI->getOperand(2).getReg(), B);
};
return true;
}
// fold (fadd (fpext (fma x, y, (fmul u, v))), z)
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
FMAMI->getOpcode() == PreferredFusedOpcode) {
MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FMAMI->getOperand(0).getReg()))) {
MatchInfo = [=](MachineIRBuilder &B) {
Register X = FMAMI->getOperand(1).getReg();
Register Y = FMAMI->getOperand(2).getReg();
X = B.buildFPExt(DstType, X).getReg(0);
Y = B.buildFPExt(DstType, Y).getReg(0);
buildMatchInfo(FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
};
return true;
}
}
// fold (fadd z, (fma x, y, (fpext (fmul u, v)))
// -> (fma x, y, (fma (fpext u), (fpext v), z))
if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
mi_match(RHS.MI->getOperand(3).getReg(), MRI,
m_GFPExt(m_MInstr(FMulMI))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FMulMI->getOperand(0).getReg()))) {
MatchInfo = [=](MachineIRBuilder &B) {
buildMatchInfo(FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), LHS.Reg,
RHS.MI->getOperand(1).getReg(),
RHS.MI->getOperand(2).getReg(), B);
};
return true;
}
// fold (fadd z, (fpext (fma x, y, (fmul u, v)))
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
FMAMI->getOpcode() == PreferredFusedOpcode) {
MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FMAMI->getOperand(0).getReg()))) {
MatchInfo = [=](MachineIRBuilder &B) {
Register X = FMAMI->getOperand(1).getReg();
Register Y = FMAMI->getOperand(2).getReg();
X = B.buildFPExt(DstType, X).getReg(0);
Y = B.buildFPExt(DstType, Y).getReg(0);
buildMatchInfo(FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
};
return true;
}
}
return false;
}
bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
int FirstMulHasFewerUses = true;
if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
hasMoreUses(*LHS.MI, *RHS.MI, MRI))
FirstMulHasFewerUses = false;
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// fold (fsub (fmul x, y), z) -> (fma x, y, -z)
if (FirstMulHasFewerUses &&
(isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{LHS.MI->getOperand(1).getReg(),
LHS.MI->getOperand(2).getReg(), NegZ});
};
return true;
}
// fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register NegY =
B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
MachineInstr *FMulMI;
// fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
(Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally)) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register NegX =
B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{NegX, FMulMI->getOperand(2).getReg(), NegZ});
};
return true;
}
// fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
(Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally)) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), LHSReg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
MachineInstr *FMulMI;
// fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z))
if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(LHSReg))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register FpExtX =
B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
Register FpExtY =
B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{FpExtX, FpExtY, NegZ});
};
return true;
}
// fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x)
if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(RHSReg))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register FpExtY =
B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0);
Register FpExtZ =
B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{NegY, FpExtZ, LHSReg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z,
MachineIRBuilder &B) {
Register FpExtX = B.buildFPExt(DstTy, X).getReg(0);
Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0);
B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z});
};
MachineInstr *FMulMI;
// fold (fsub (fpext (fneg (fmul x, y))), z) ->
// (fneg (fma (fpext x), (fpext y), z))
// fold (fsub (fneg (fpext (fmul x, y))), z) ->
// (fneg (fma (fpext x), (fpext y), z))
if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
MRI.getType(FMulMI->getOperand(0).getReg()))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register FMAReg = MRI.createGenericVirtualRegister(DstTy);
buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), RHSReg, B);
B.buildFNeg(MI.getOperand(0).getReg(), FMAReg);
};
return true;
}
// fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
// fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
MRI.getType(FMulMI->getOperand(0).getReg()))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), LHSReg, B);
};
return true;
}
return false;
}
bool CombinerHelper::matchSelectToLogical(MachineInstr &MI,
BuildFnTy &MatchInfo) {
GSelect &Sel = cast<GSelect>(MI);
Register DstReg = Sel.getReg(0);
Register Cond = Sel.getCondReg();
Register TrueReg = Sel.getTrueReg();
Register FalseReg = Sel.getFalseReg();
auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI);
auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI);
const LLT CondTy = MRI.getType(Cond);
const LLT OpTy = MRI.getType(TrueReg);
if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1)
return false;
// We have a boolean select.
// select Cond, Cond, F --> or Cond, F
// select Cond, 1, F --> or Cond, F
auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI);
if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) {
MatchInfo = [=](MachineIRBuilder &MIB) {
MIB.buildOr(DstReg, Cond, FalseReg);
};
return true;
}
// select Cond, T, Cond --> and Cond, T
// select Cond, T, 0 --> and Cond, T
auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI);
if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) {
MatchInfo = [=](MachineIRBuilder &MIB) {
MIB.buildAnd(DstReg, Cond, TrueReg);
};
return true;
}
// select Cond, T, 1 --> or (not Cond), T
if (MaybeCstFalse && MaybeCstFalse->isOne()) {
MatchInfo = [=](MachineIRBuilder &MIB) {
MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg);
};
return true;
}
// select Cond, 0, F --> and (not Cond), F
if (MaybeCstTrue && MaybeCstTrue->isZero()) {
MatchInfo = [=](MachineIRBuilder &MIB) {
MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg);
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI,
unsigned &IdxToPropagate) {
bool PropagateNaN;
switch (MI.getOpcode()) {
default:
return false;
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM:
PropagateNaN = false;
break;
case TargetOpcode::G_FMINIMUM:
case TargetOpcode::G_FMAXIMUM:
PropagateNaN = true;
break;
}
auto MatchNaN = [&](unsigned Idx) {
Register MaybeNaNReg = MI.getOperand(Idx).getReg();
const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI);
if (!MaybeCst || !MaybeCst->getValueAPF().isNaN())
return false;
IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1);
return true;
};
return MatchNaN(1) || MatchNaN(2);
}
bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) {
assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD");
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
// Helper lambda to check for opportunities for
// A + (B - A) -> B
// (B - A) + A -> B
auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) {
Register Reg;
return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) &&
Reg == MaybeSameReg;
};
return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
}
bool CombinerHelper::tryCombine(MachineInstr &MI) {
if (tryCombineCopy(MI))
return true;
if (tryCombineExtendingLoads(MI))
return true;
if (tryCombineIndexedLoadStore(MI))
return true;
return false;
}