llvm-project/clang-tools-extra/clangd/SemanticHighlighting.cpp

549 lines
20 KiB
C++

//===--- SemanticHighlighting.cpp - ------------------------- ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SemanticHighlighting.h"
#include "FindTarget.h"
#include "Logger.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "SourceCode.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
namespace clang {
namespace clangd {
namespace {
/// Some names are not written in the source code and cannot be highlighted,
/// e.g. anonymous classes. This function detects those cases.
bool canHighlightName(DeclarationName Name) {
if (Name.getNameKind() == DeclarationName::CXXConstructorName ||
Name.getNameKind() == DeclarationName::CXXUsingDirective)
return true;
auto *II = Name.getAsIdentifierInfo();
return II && !II->getName().empty();
}
llvm::Optional<HighlightingKind> kindForType(const Type *TP);
llvm::Optional<HighlightingKind> kindForDecl(const NamedDecl *D) {
if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
if (auto *Target = USD->getTargetDecl())
D = Target;
}
if (auto *TD = dyn_cast<TemplateDecl>(D)) {
if (auto *Templated = TD->getTemplatedDecl())
D = Templated;
}
if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
// We try to highlight typedefs as their underlying type.
if (auto K = kindForType(TD->getUnderlyingType().getTypePtrOrNull()))
return K;
// And fallback to a generic kind if this fails.
return HighlightingKind::Typedef;
}
// We highlight class decls, constructor decls and destructor decls as
// `Class` type. The destructor decls are handled in `VisitTagTypeLoc` (we
// will visit a TypeLoc where the underlying Type is a CXXRecordDecl).
if (auto *RD = llvm::dyn_cast<RecordDecl>(D)) {
// We don't want to highlight lambdas like classes.
if (RD->isLambda())
return llvm::None;
return HighlightingKind::Class;
}
if (isa<ClassTemplateDecl>(D) || isa<RecordDecl>(D) ||
isa<CXXConstructorDecl>(D))
return HighlightingKind::Class;
if (auto *MD = dyn_cast<CXXMethodDecl>(D))
return MD->isStatic() ? HighlightingKind::StaticMethod
: HighlightingKind::Method;
if (isa<FieldDecl>(D))
return HighlightingKind::Field;
if (isa<EnumDecl>(D))
return HighlightingKind::Enum;
if (isa<EnumConstantDecl>(D))
return HighlightingKind::EnumConstant;
if (isa<ParmVarDecl>(D))
return HighlightingKind::Parameter;
if (auto *VD = dyn_cast<VarDecl>(D))
return VD->isStaticDataMember()
? HighlightingKind::StaticField
: VD->isLocalVarDecl() ? HighlightingKind::LocalVariable
: HighlightingKind::Variable;
if (isa<BindingDecl>(D))
return HighlightingKind::Variable;
if (isa<FunctionDecl>(D))
return HighlightingKind::Function;
if (isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D) ||
isa<UsingDirectiveDecl>(D))
return HighlightingKind::Namespace;
if (isa<TemplateTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
isa<NonTypeTemplateParmDecl>(D))
return HighlightingKind::TemplateParameter;
return llvm::None;
}
llvm::Optional<HighlightingKind> kindForType(const Type *TP) {
if (!TP)
return llvm::None;
if (TP->isBuiltinType()) // Builtins are special, they do not have decls.
return HighlightingKind::Primitive;
if (auto *TD = dyn_cast<TemplateTypeParmType>(TP))
return kindForDecl(TD->getDecl());
if (auto *TD = TP->getAsTagDecl())
return kindForDecl(TD);
return llvm::None;
}
llvm::Optional<HighlightingKind> kindForReference(const ReferenceLoc &R) {
llvm::Optional<HighlightingKind> Result;
for (const NamedDecl *Decl : R.Targets) {
if (!canHighlightName(Decl->getDeclName()))
return llvm::None;
auto Kind = kindForDecl(Decl);
if (!Kind || (Result && Kind != Result))
return llvm::None;
Result = Kind;
}
return Result;
}
/// Consumes source locations and maps them to text ranges for highlightings.
class HighlightingsBuilder {
public:
HighlightingsBuilder(const SourceManager &SourceMgr,
const LangOptions &LangOpts)
: SourceMgr(SourceMgr), LangOpts(LangOpts) {}
void addToken(HighlightingToken T) { Tokens.push_back(T); }
void addToken(SourceLocation Loc, HighlightingKind Kind) {
if (Loc.isInvalid())
return;
if (Loc.isMacroID()) {
// Only intereseted in highlighting arguments in macros (DEF_X(arg)).
if (!SourceMgr.isMacroArgExpansion(Loc))
return;
Loc = SourceMgr.getSpellingLoc(Loc);
}
// Non top level decls that are included from a header are not filtered by
// topLevelDecls. (example: method declarations being included from
// another file for a class from another file).
// There are also cases with macros where the spelling loc will not be in
// the main file and the highlighting would be incorrect.
if (!isInsideMainFile(Loc, SourceMgr))
return;
auto Range = getTokenRange(SourceMgr, LangOpts, Loc);
if (!Range) {
// R should always have a value, if it doesn't something is very wrong.
elog("Tried to add semantic token with an invalid range");
return;
}
Tokens.push_back(HighlightingToken{Kind, *Range});
}
std::vector<HighlightingToken> collect(ParsedAST &AST) && {
// Initializer lists can give duplicates of tokens, therefore all tokens
// must be deduplicated.
llvm::sort(Tokens);
auto Last = std::unique(Tokens.begin(), Tokens.end());
Tokens.erase(Last, Tokens.end());
// Macros can give tokens that have the same source range but conflicting
// kinds. In this case all tokens sharing this source range should be
// removed.
std::vector<HighlightingToken> NonConflicting;
NonConflicting.reserve(Tokens.size());
for (ArrayRef<HighlightingToken> TokRef = Tokens; !TokRef.empty();) {
ArrayRef<HighlightingToken> Conflicting =
TokRef.take_while([&](const HighlightingToken &T) {
// TokRef is guaranteed at least one element here because otherwise
// this predicate would never fire.
return T.R == TokRef.front().R;
});
// If there is exactly one token with this range it's non conflicting and
// should be in the highlightings.
if (Conflicting.size() == 1)
NonConflicting.push_back(TokRef.front());
// TokRef[Conflicting.size()] is the next token with a different range (or
// the end of the Tokens).
TokRef = TokRef.drop_front(Conflicting.size());
}
// Add tokens indicating lines skipped by the preprocessor.
for (const Range &R : AST.getMacros().SkippedRanges) {
// Create one token for each line in the skipped range, so it works
// with line-based diffing.
assert(R.start.line <= R.end.line);
for (int Line = R.start.line; Line < R.end.line; ++Line) {
// Don't bother computing the offset for the end of the line, just use
// zero. The client will treat this highlighting kind specially, and
// highlight the entire line visually (i.e. not just to where the text
// on the line ends, but to the end of the screen).
NonConflicting.push_back({HighlightingKind::InactiveCode,
{Position{Line, 0}, Position{Line, 0}}});
}
}
// Re-sort the tokens because that's what the diffing expects.
llvm::sort(NonConflicting);
return NonConflicting;
}
private:
const SourceManager &SourceMgr;
const LangOptions &LangOpts;
std::vector<HighlightingToken> Tokens;
};
/// Produces highlightings, which are not captured by findExplicitReferences,
/// e.g. highlights dependent names and 'auto' as the underlying type.
class CollectExtraHighlightings
: public RecursiveASTVisitor<CollectExtraHighlightings> {
public:
CollectExtraHighlightings(HighlightingsBuilder &H) : H(H) {}
bool VisitDecltypeTypeLoc(DecltypeTypeLoc L) {
if (auto K = kindForType(L.getTypePtr()))
H.addToken(L.getBeginLoc(), *K);
return true;
}
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
auto *AT = D->getType()->getContainedAutoType();
if (!AT)
return true;
if (auto K = kindForType(AT->getDeducedType().getTypePtrOrNull()))
H.addToken(D->getTypeSpecStartLoc(), *K);
return true;
}
bool VisitOverloadExpr(OverloadExpr *E) {
if (!E->decls().empty())
return true; // handled by findExplicitReferences.
H.addToken(E->getNameLoc(), HighlightingKind::DependentName);
return true;
}
bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
H.addToken(E->getMemberNameInfo().getLoc(),
HighlightingKind::DependentName);
return true;
}
bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
H.addToken(E->getNameInfo().getLoc(), HighlightingKind::DependentName);
return true;
}
bool VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
H.addToken(L.getNameLoc(), HighlightingKind::DependentType);
return true;
}
bool VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc L) {
H.addToken(L.getTemplateNameLoc(), HighlightingKind::DependentType);
return true;
}
// findExplicitReferences will walk nested-name-specifiers and
// find anything that can be resolved to a Decl. However, non-leaf
// components of nested-name-specifiers which are dependent names
// (kind "Identifier") cannot be resolved to a decl, so we visit
// them here.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc Q) {
if (NestedNameSpecifier *NNS = Q.getNestedNameSpecifier()) {
if (NNS->getKind() == NestedNameSpecifier::Identifier)
H.addToken(Q.getLocalBeginLoc(), HighlightingKind::DependentType);
}
return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(Q);
}
private:
HighlightingsBuilder &H;
};
// Encode binary data into base64.
// This was copied from compiler-rt/lib/fuzzer/FuzzerUtil.cpp.
// FIXME: Factor this out into llvm/Support?
std::string encodeBase64(const llvm::SmallVectorImpl<char> &Bytes) {
static const char Table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
std::string Res;
size_t I;
for (I = 0; I + 2 < Bytes.size(); I += 3) {
uint32_t X = (Bytes[I] << 16) + (Bytes[I + 1] << 8) + Bytes[I + 2];
Res += Table[(X >> 18) & 63];
Res += Table[(X >> 12) & 63];
Res += Table[(X >> 6) & 63];
Res += Table[X & 63];
}
if (I + 1 == Bytes.size()) {
uint32_t X = (Bytes[I] << 16);
Res += Table[(X >> 18) & 63];
Res += Table[(X >> 12) & 63];
Res += "==";
} else if (I + 2 == Bytes.size()) {
uint32_t X = (Bytes[I] << 16) + (Bytes[I + 1] << 8);
Res += Table[(X >> 18) & 63];
Res += Table[(X >> 12) & 63];
Res += Table[(X >> 6) & 63];
Res += "=";
}
return Res;
}
void write32be(uint32_t I, llvm::raw_ostream &OS) {
std::array<char, 4> Buf;
llvm::support::endian::write32be(Buf.data(), I);
OS.write(Buf.data(), Buf.size());
}
void write16be(uint16_t I, llvm::raw_ostream &OS) {
std::array<char, 2> Buf;
llvm::support::endian::write16be(Buf.data(), I);
OS.write(Buf.data(), Buf.size());
}
// Get the highlightings on \c Line where the first entry of line is at \c
// StartLineIt. If it is not at \c StartLineIt an empty vector is returned.
ArrayRef<HighlightingToken>
takeLine(ArrayRef<HighlightingToken> AllTokens,
ArrayRef<HighlightingToken>::iterator StartLineIt, int Line) {
return ArrayRef<HighlightingToken>(StartLineIt, AllTokens.end())
.take_while([Line](const HighlightingToken &Token) {
return Token.R.start.line == Line;
});
}
} // namespace
std::vector<HighlightingToken> getSemanticHighlightings(ParsedAST &AST) {
auto &C = AST.getASTContext();
// Add highlightings for AST nodes.
HighlightingsBuilder Builder(AST.getSourceManager(), C.getLangOpts());
// Highlight 'decltype' and 'auto' as their underlying types.
CollectExtraHighlightings(Builder).TraverseAST(C);
// Highlight all decls and references coming from the AST.
findExplicitReferences(C, [&](ReferenceLoc R) {
if (auto Kind = kindForReference(R))
Builder.addToken(R.NameLoc, *Kind);
});
// Add highlightings for macro references.
for (const auto &SIDToRefs : AST.getMacros().MacroRefs) {
for (const auto &M : SIDToRefs.second)
Builder.addToken({HighlightingKind::Macro, M});
}
for (const auto &M : AST.getMacros().UnknownMacros)
Builder.addToken({HighlightingKind::Macro, M});
return std::move(Builder).collect(AST);
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, HighlightingKind K) {
switch (K) {
case HighlightingKind::Variable:
return OS << "Variable";
case HighlightingKind::LocalVariable:
return OS << "LocalVariable";
case HighlightingKind::Parameter:
return OS << "Parameter";
case HighlightingKind::Function:
return OS << "Function";
case HighlightingKind::Method:
return OS << "Method";
case HighlightingKind::StaticMethod:
return OS << "StaticMethod";
case HighlightingKind::Field:
return OS << "Field";
case HighlightingKind::StaticField:
return OS << "StaticField";
case HighlightingKind::Class:
return OS << "Class";
case HighlightingKind::Enum:
return OS << "Enum";
case HighlightingKind::EnumConstant:
return OS << "EnumConstant";
case HighlightingKind::Typedef:
return OS << "Typedef";
case HighlightingKind::DependentType:
return OS << "DependentType";
case HighlightingKind::DependentName:
return OS << "DependentName";
case HighlightingKind::Namespace:
return OS << "Namespace";
case HighlightingKind::TemplateParameter:
return OS << "TemplateParameter";
case HighlightingKind::Primitive:
return OS << "Primitive";
case HighlightingKind::Macro:
return OS << "Macro";
case HighlightingKind::InactiveCode:
return OS << "InactiveCode";
}
llvm_unreachable("invalid HighlightingKind");
}
std::vector<LineHighlightings>
diffHighlightings(ArrayRef<HighlightingToken> New,
ArrayRef<HighlightingToken> Old) {
assert(std::is_sorted(New.begin(), New.end()) &&
"New must be a sorted vector");
assert(std::is_sorted(Old.begin(), Old.end()) &&
"Old must be a sorted vector");
// FIXME: There's an edge case when tokens span multiple lines. If the first
// token on the line started on a line above the current one and the rest of
// the line is the equal to the previous one than we will remove all
// highlights but the ones for the token spanning multiple lines. This means
// that when we get into the LSP layer the only highlights that will be
// visible are the ones for the token spanning multiple lines.
// Example:
// EndOfMultilineToken Token Token Token
// If "Token Token Token" don't differ from previously the line is
// incorrectly removed. Suggestion to fix is to separate any multiline tokens
// into one token for every line it covers. This requires reading from the
// file buffer to figure out the length of each line though.
std::vector<LineHighlightings> DiffedLines;
// ArrayRefs to the current line in the highlightings.
ArrayRef<HighlightingToken> NewLine(New.begin(),
/*length*/ static_cast<size_t>(0));
ArrayRef<HighlightingToken> OldLine(Old.begin(),
/*length*/ static_cast<size_t>(0));
auto NewEnd = New.end();
auto OldEnd = Old.end();
auto NextLineNumber = [&]() {
int NextNew = NewLine.end() != NewEnd ? NewLine.end()->R.start.line
: std::numeric_limits<int>::max();
int NextOld = OldLine.end() != OldEnd ? OldLine.end()->R.start.line
: std::numeric_limits<int>::max();
return std::min(NextNew, NextOld);
};
for (int LineNumber = 0; NewLine.end() < NewEnd || OldLine.end() < OldEnd;
LineNumber = NextLineNumber()) {
NewLine = takeLine(New, NewLine.end(), LineNumber);
OldLine = takeLine(Old, OldLine.end(), LineNumber);
if (NewLine != OldLine) {
DiffedLines.push_back({LineNumber, NewLine, /*IsInactive=*/false});
// Turn a HighlightingKind::InactiveCode token into the IsInactive flag.
auto &AddedLine = DiffedLines.back();
llvm::erase_if(AddedLine.Tokens, [&](const HighlightingToken &T) {
if (T.Kind == HighlightingKind::InactiveCode) {
AddedLine.IsInactive = true;
return true;
}
return false;
});
}
}
return DiffedLines;
}
bool operator==(const HighlightingToken &L, const HighlightingToken &R) {
return std::tie(L.R, L.Kind) == std::tie(R.R, R.Kind);
}
bool operator<(const HighlightingToken &L, const HighlightingToken &R) {
return std::tie(L.R, L.Kind) < std::tie(R.R, R.Kind);
}
bool operator==(const LineHighlightings &L, const LineHighlightings &R) {
return std::tie(L.Line, L.Tokens) == std::tie(R.Line, R.Tokens);
}
std::vector<SemanticHighlightingInformation>
toSemanticHighlightingInformation(llvm::ArrayRef<LineHighlightings> Tokens) {
if (Tokens.size() == 0)
return {};
// FIXME: Tokens might be multiple lines long (block comments) in this case
// this needs to add multiple lines for those tokens.
std::vector<SemanticHighlightingInformation> Lines;
Lines.reserve(Tokens.size());
for (const auto &Line : Tokens) {
llvm::SmallVector<char, 128> LineByteTokens;
llvm::raw_svector_ostream OS(LineByteTokens);
for (const auto &Token : Line.Tokens) {
// Writes the token to LineByteTokens in the byte format specified by the
// LSP proposal. Described below.
// |<---- 4 bytes ---->|<-- 2 bytes -->|<--- 2 bytes -->|
// | character | length | index |
write32be(Token.R.start.character, OS);
write16be(Token.R.end.character - Token.R.start.character, OS);
write16be(static_cast<int>(Token.Kind), OS);
}
Lines.push_back({Line.Line, encodeBase64(LineByteTokens), Line.IsInactive});
}
return Lines;
}
llvm::StringRef toTextMateScope(HighlightingKind Kind) {
// FIXME: Add scopes for C and Objective C.
switch (Kind) {
case HighlightingKind::Function:
return "entity.name.function.cpp";
case HighlightingKind::Method:
return "entity.name.function.method.cpp";
case HighlightingKind::StaticMethod:
return "entity.name.function.method.static.cpp";
case HighlightingKind::Variable:
return "variable.other.cpp";
case HighlightingKind::LocalVariable:
return "variable.other.local.cpp";
case HighlightingKind::Parameter:
return "variable.parameter.cpp";
case HighlightingKind::Field:
return "variable.other.field.cpp";
case HighlightingKind::StaticField:
return "variable.other.field.static.cpp";
case HighlightingKind::Class:
return "entity.name.type.class.cpp";
case HighlightingKind::Enum:
return "entity.name.type.enum.cpp";
case HighlightingKind::EnumConstant:
return "variable.other.enummember.cpp";
case HighlightingKind::Typedef:
return "entity.name.type.typedef.cpp";
case HighlightingKind::DependentType:
return "entity.name.type.dependent.cpp";
case HighlightingKind::DependentName:
return "entity.name.other.dependent.cpp";
case HighlightingKind::Namespace:
return "entity.name.namespace.cpp";
case HighlightingKind::TemplateParameter:
return "entity.name.type.template.cpp";
case HighlightingKind::Primitive:
return "storage.type.primitive.cpp";
case HighlightingKind::Macro:
return "entity.name.function.preprocessor.cpp";
case HighlightingKind::InactiveCode:
return "meta.disabled";
}
llvm_unreachable("unhandled HighlightingKind");
}
} // namespace clangd
} // namespace clang