llvm-project/llvm/lib/Target/X86/X86CallFrameOptimization.cpp

637 lines
23 KiB
C++

//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass that optimizes call sequences on x86.
// Currently, it converts movs of function parameters onto the stack into
// pushes. This is beneficial for two main reasons:
// 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
// 2) It is possible to push memory arguments directly. So, if the
// the transformation is performed pre-reg-alloc, it can help relieve
// register pressure.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86FrameLowering.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "x86-cf-opt"
static cl::opt<bool>
NoX86CFOpt("no-x86-call-frame-opt",
cl::desc("Avoid optimizing x86 call frames for size"),
cl::init(false), cl::Hidden);
namespace llvm {
void initializeX86CallFrameOptimizationPass(PassRegistry &);
}
namespace {
class X86CallFrameOptimization : public MachineFunctionPass {
public:
X86CallFrameOptimization() : MachineFunctionPass(ID) {
initializeX86CallFrameOptimizationPass(
*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
static char ID;
private:
// Information we know about a particular call site
struct CallContext {
CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
// Iterator referring to the frame setup instruction
MachineBasicBlock::iterator FrameSetup;
// Actual call instruction
MachineInstr *Call = nullptr;
// A copy of the stack pointer
MachineInstr *SPCopy = nullptr;
// The total displacement of all passed parameters
int64_t ExpectedDist = 0;
// The sequence of storing instructions used to pass the parameters
SmallVector<MachineInstr *, 4> ArgStoreVector;
// True if this call site has no stack parameters
bool NoStackParams = false;
// True if this call site can use push instructions
bool UsePush = false;
};
typedef SmallVector<CallContext, 8> ContextVector;
bool isLegal(MachineFunction &MF);
bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, CallContext &Context);
void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
unsigned Reg);
enum InstClassification { Convert, Skip, Exit };
InstClassification classifyInstruction(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const X86RegisterInfo &RegInfo,
DenseSet<unsigned int> &UsedRegs);
StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
const X86InstrInfo *TII;
const X86FrameLowering *TFL;
const X86Subtarget *STI;
MachineRegisterInfo *MRI;
unsigned SlotSize;
unsigned Log2SlotSize;
};
} // end anonymous namespace
char X86CallFrameOptimization::ID = 0;
INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
"X86 Call Frame Optimization", false, false)
// This checks whether the transformation is legal.
// Also returns false in cases where it's potentially legal, but
// we don't even want to try.
bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
if (NoX86CFOpt.getValue())
return false;
// We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
// in the compact unwind encoding that Darwin uses. So, bail if there
// is a danger of that being generated.
if (STI->isTargetDarwin() &&
(!MF.getLandingPads().empty() ||
(MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
return false;
// It is not valid to change the stack pointer outside the prolog/epilog
// on 64-bit Windows.
if (STI->isTargetWin64())
return false;
// You would expect straight-line code between call-frame setup and
// call-frame destroy. You would be wrong. There are circumstances (e.g.
// CMOV_GR8 expansion of a select that feeds a function call!) where we can
// end up with the setup and the destroy in different basic blocks.
// This is bad, and breaks SP adjustment.
// So, check that all of the frames in the function are closed inside
// the same block, and, for good measure, that there are no nested frames.
unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
for (MachineBasicBlock &BB : MF) {
bool InsideFrameSequence = false;
for (MachineInstr &MI : BB) {
if (MI.getOpcode() == FrameSetupOpcode) {
if (InsideFrameSequence)
return false;
InsideFrameSequence = true;
} else if (MI.getOpcode() == FrameDestroyOpcode) {
if (!InsideFrameSequence)
return false;
InsideFrameSequence = false;
}
}
if (InsideFrameSequence)
return false;
}
return true;
}
// Check whether this transformation is profitable for a particular
// function - in terms of code size.
bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
ContextVector &CallSeqVector) {
// This transformation is always a win when we do not expect to have
// a reserved call frame. Under other circumstances, it may be either
// a win or a loss, and requires a heuristic.
bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
if (CannotReserveFrame)
return true;
unsigned StackAlign = TFL->getStackAlignment();
int64_t Advantage = 0;
for (auto CC : CallSeqVector) {
// Call sites where no parameters are passed on the stack
// do not affect the cost, since there needs to be no
// stack adjustment.
if (CC.NoStackParams)
continue;
if (!CC.UsePush) {
// If we don't use pushes for a particular call site,
// we pay for not having a reserved call frame with an
// additional sub/add esp pair. The cost is ~3 bytes per instruction,
// depending on the size of the constant.
// TODO: Callee-pop functions should have a smaller penalty, because
// an add is needed even with a reserved call frame.
Advantage -= 6;
} else {
// We can use pushes. First, account for the fixed costs.
// We'll need a add after the call.
Advantage -= 3;
// If we have to realign the stack, we'll also need a sub before
if (CC.ExpectedDist % StackAlign)
Advantage -= 3;
// Now, for each push, we save ~3 bytes. For small constants, we actually,
// save more (up to 5 bytes), but 3 should be a good approximation.
Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
}
}
return Advantage >= 0;
}
bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
STI = &MF.getSubtarget<X86Subtarget>();
TII = STI->getInstrInfo();
TFL = STI->getFrameLowering();
MRI = &MF.getRegInfo();
const X86RegisterInfo &RegInfo =
*static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
SlotSize = RegInfo.getSlotSize();
assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
Log2SlotSize = Log2_32(SlotSize);
if (skipFunction(MF.getFunction()) || !isLegal(MF))
return false;
unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
bool Changed = false;
ContextVector CallSeqVector;
for (auto &MBB : MF)
for (auto &MI : MBB)
if (MI.getOpcode() == FrameSetupOpcode) {
CallContext Context;
collectCallInfo(MF, MBB, MI, Context);
CallSeqVector.push_back(Context);
}
if (!isProfitable(MF, CallSeqVector))
return false;
for (auto CC : CallSeqVector) {
if (CC.UsePush) {
adjustCallSequence(MF, CC);
Changed = true;
}
}
return Changed;
}
X86CallFrameOptimization::InstClassification
X86CallFrameOptimization::classifyInstruction(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
if (MI == MBB.end())
return Exit;
// The instructions we actually care about are movs onto the stack or special
// cases of constant-stores to stack
switch (MI->getOpcode()) {
case X86::AND16mi8:
case X86::AND32mi8:
case X86::AND64mi8: {
MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
return ImmOp.getImm() == 0 ? Convert : Exit;
}
case X86::OR16mi8:
case X86::OR32mi8:
case X86::OR64mi8: {
MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
return ImmOp.getImm() == -1 ? Convert : Exit;
}
case X86::MOV32mi:
case X86::MOV32mr:
case X86::MOV64mi32:
case X86::MOV64mr:
return Convert;
}
// Not all calling conventions have only stack MOVs between the stack
// adjust and the call.
// We want to tolerate other instructions, to cover more cases.
// In particular:
// a) PCrel calls, where we expect an additional COPY of the basereg.
// b) Passing frame-index addresses.
// c) Calling conventions that have inreg parameters. These generate
// both copies and movs into registers.
// To avoid creating lots of special cases, allow any instruction
// that does not write into memory, does not def or use the stack
// pointer, and does not def any register that was used by a preceding
// push.
// (Reading from memory is allowed, even if referenced through a
// frame index, since these will get adjusted properly in PEI)
// The reason for the last condition is that the pushes can't replace
// the movs in place, because the order must be reversed.
// So if we have a MOV32mr that uses EDX, then an instruction that defs
// EDX, and then the call, after the transformation the push will use
// the modified version of EDX, and not the original one.
// Since we are still in SSA form at this point, we only need to
// make sure we don't clobber any *physical* registers that were
// used by an earlier mov that will become a push.
if (MI->isCall() || MI->mayStore())
return Exit;
for (const MachineOperand &MO : MI->operands()) {
if (!MO.isReg())
continue;
unsigned int Reg = MO.getReg();
if (!RegInfo.isPhysicalRegister(Reg))
continue;
if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
return Exit;
if (MO.isDef()) {
for (unsigned int U : UsedRegs)
if (RegInfo.regsOverlap(Reg, U))
return Exit;
}
}
return Skip;
}
void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
CallContext &Context) {
// Check that this particular call sequence is amenable to the
// transformation.
const X86RegisterInfo &RegInfo =
*static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
// We expect to enter this at the beginning of a call sequence
assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
MachineBasicBlock::iterator FrameSetup = I++;
Context.FrameSetup = FrameSetup;
// How much do we adjust the stack? This puts an upper bound on
// the number of parameters actually passed on it.
unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
// A zero adjustment means no stack parameters
if (!MaxAdjust) {
Context.NoStackParams = true;
return;
}
// Skip over DEBUG_VALUE.
// For globals in PIC mode, we can have some LEAs here. Skip them as well.
// TODO: Extend this to something that covers more cases.
while (I->getOpcode() == X86::LEA32r || I->isDebugValue())
++I;
unsigned StackPtr = RegInfo.getStackRegister();
auto StackPtrCopyInst = MBB.end();
// SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
// register. If it's there, use that virtual register as stack pointer
// instead. Also, we need to locate this instruction so that we can later
// safely ignore it while doing the conservative processing of the call chain.
// The COPY can be located anywhere between the call-frame setup
// instruction and its first use. We use the call instruction as a boundary
// because it is usually cheaper to check if an instruction is a call than
// checking if an instruction uses a register.
for (auto J = I; !J->isCall(); ++J)
if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
J->getOperand(1).getReg() == StackPtr) {
StackPtrCopyInst = J;
Context.SPCopy = &*J++;
StackPtr = Context.SPCopy->getOperand(0).getReg();
break;
}
// Scan the call setup sequence for the pattern we're looking for.
// We only handle a simple case - a sequence of store instructions that
// push a sequence of stack-slot-aligned values onto the stack, with
// no gaps between them.
if (MaxAdjust > 4)
Context.ArgStoreVector.resize(MaxAdjust, nullptr);
DenseSet<unsigned int> UsedRegs;
for (InstClassification Classification = Skip; Classification != Exit; ++I) {
// If this is the COPY of the stack pointer, it's ok to ignore.
if (I == StackPtrCopyInst)
continue;
Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
if (Classification != Convert)
continue;
// We know the instruction has a supported store opcode.
// We only want movs of the form:
// mov imm/reg, k(%StackPtr)
// If we run into something else, bail.
// Note that AddrBaseReg may, counter to its name, not be a register,
// but rather a frame index.
// TODO: Support the fi case. This should probably work now that we
// have the infrastructure to track the stack pointer within a call
// sequence.
if (!I->getOperand(X86::AddrBaseReg).isReg() ||
(I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
!I->getOperand(X86::AddrScaleAmt).isImm() ||
(I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
(I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
(I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
!I->getOperand(X86::AddrDisp).isImm())
return;
int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
assert(StackDisp >= 0 &&
"Negative stack displacement when passing parameters");
// We really don't want to consider the unaligned case.
if (StackDisp & (SlotSize - 1))
return;
StackDisp >>= Log2SlotSize;
assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
"Function call has more parameters than the stack is adjusted for.");
// If the same stack slot is being filled twice, something's fishy.
if (Context.ArgStoreVector[StackDisp] != nullptr)
return;
Context.ArgStoreVector[StackDisp] = &*I;
for (const MachineOperand &MO : I->uses()) {
if (!MO.isReg())
continue;
unsigned int Reg = MO.getReg();
if (RegInfo.isPhysicalRegister(Reg))
UsedRegs.insert(Reg);
}
}
--I;
// We now expect the end of the sequence. If we stopped early,
// or reached the end of the block without finding a call, bail.
if (I == MBB.end() || !I->isCall())
return;
Context.Call = &*I;
if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
return;
// Now, go through the vector, and see that we don't have any gaps,
// but only a series of storing instructions.
auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
if (*MMI == nullptr)
break;
// If the call had no parameters, do nothing
if (MMI == Context.ArgStoreVector.begin())
return;
// We are either at the last parameter, or a gap.
// Make sure it's not a gap
for (; MMI != MME; ++MMI)
if (*MMI != nullptr)
return;
Context.UsePush = true;
}
void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
const CallContext &Context) {
// Ok, we can in fact do the transformation for this call.
// Do not remove the FrameSetup instruction, but adjust the parameters.
// PEI will end up finalizing the handling of this.
MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
MachineBasicBlock &MBB = *(FrameSetup->getParent());
TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
DebugLoc DL = FrameSetup->getDebugLoc();
bool Is64Bit = STI->is64Bit();
// Now, iterate through the vector in reverse order, and replace the store to
// stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
// replace uses.
for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
MachineBasicBlock::iterator Push = nullptr;
unsigned PushOpcode;
switch (Store->getOpcode()) {
default:
llvm_unreachable("Unexpected Opcode!");
case X86::AND16mi8:
case X86::AND32mi8:
case X86::AND64mi8:
case X86::OR16mi8:
case X86::OR32mi8:
case X86::OR64mi8:
case X86::MOV32mi:
case X86::MOV64mi32:
PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
// If the operand is a small (8-bit) immediate, we can use a
// PUSH instruction with a shorter encoding.
// Note that isImm() may fail even though this is a MOVmi, because
// the operand can also be a symbol.
if (PushOp.isImm()) {
int64_t Val = PushOp.getImm();
if (isInt<8>(Val))
PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
}
Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
break;
case X86::MOV32mr:
case X86::MOV64mr: {
unsigned int Reg = PushOp.getReg();
// If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
// in preparation for the PUSH64. The upper 32 bits can be undef.
if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
.addReg(UndefReg)
.add(PushOp)
.addImm(X86::sub_32bit);
}
// If PUSHrmm is not slow on this target, try to fold the source of the
// push into the instruction.
bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
// Check that this is legal to fold. Right now, we're extremely
// conservative about that.
MachineInstr *DefMov = nullptr;
if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
unsigned NumOps = DefMov->getDesc().getNumOperands();
for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
Push->addOperand(DefMov->getOperand(i));
DefMov->eraseFromParent();
} else {
PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
.addReg(Reg)
.getInstr();
}
break;
}
}
// For debugging, when using SP-based CFA, we need to adjust the CFA
// offset after each push.
// TODO: This is needed only if we require precise CFA.
if (!TFL->hasFP(MF))
TFL->BuildCFI(
MBB, std::next(Push), DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
MBB.erase(Store);
}
// The stack-pointer copy is no longer used in the call sequences.
// There should not be any other users, but we can't commit to that, so:
if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
Context.SPCopy->eraseFromParent();
// Once we've done this, we need to make sure PEI doesn't assume a reserved
// frame.
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
FuncInfo->setHasPushSequences(true);
}
MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
// Do an extremely restricted form of load folding.
// ISel will often create patterns like:
// movl 4(%edi), %eax
// movl 8(%edi), %ecx
// movl 12(%edi), %edx
// movl %edx, 8(%esp)
// movl %ecx, 4(%esp)
// movl %eax, (%esp)
// call
// Get rid of those with prejudice.
if (!TargetRegisterInfo::isVirtualRegister(Reg))
return nullptr;
// Make sure this is the only use of Reg.
if (!MRI->hasOneNonDBGUse(Reg))
return nullptr;
MachineInstr &DefMI = *MRI->getVRegDef(Reg);
// Make sure the def is a MOV from memory.
// If the def is in another block, give up.
if ((DefMI.getOpcode() != X86::MOV32rm &&
DefMI.getOpcode() != X86::MOV64rm) ||
DefMI.getParent() != FrameSetup->getParent())
return nullptr;
// Make sure we don't have any instructions between DefMI and the
// push that make folding the load illegal.
for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
if (I->isLoadFoldBarrier())
return nullptr;
return &DefMI;
}
FunctionPass *llvm::createX86CallFrameOptimization() {
return new X86CallFrameOptimization();
}