llvm-project/llvm/lib/Target/Sparc/SparcISelLowering.cpp

2482 lines
97 KiB
C++

//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Sparc uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "SparcISelLowering.h"
#include "SparcMachineFunctionInfo.h"
#include "SparcRegisterInfo.h"
#include "SparcTargetMachine.h"
#include "MCTargetDesc/SparcBaseInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
assert (ArgFlags.isSRet());
// Assign SRet argument.
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
0,
LocVT, LocInfo));
return true;
}
static bool CC_Sparc_Assign_f64(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
static const uint16_t RegList[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
// Try to get first reg.
if (unsigned Reg = State.AllocateReg(RegList, 6)) {
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
} else {
// Assign whole thing in stack.
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(8,4),
LocVT, LocInfo));
return true;
}
// Try to get second reg.
if (unsigned Reg = State.AllocateReg(RegList, 6))
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
else
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(4,4),
LocVT, LocInfo));
return true;
}
// Allocate a full-sized argument for the 64-bit ABI.
static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
assert((LocVT == MVT::f32 || LocVT.getSizeInBits() == 64) &&
"Can't handle non-64 bits locations");
// Stack space is allocated for all arguments starting from [%fp+BIAS+128].
unsigned Offset = State.AllocateStack(8, 8);
unsigned Reg = 0;
if (LocVT == MVT::i64 && Offset < 6*8)
// Promote integers to %i0-%i5.
Reg = SP::I0 + Offset/8;
else if (LocVT == MVT::f64 && Offset < 16*8)
// Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
Reg = SP::D0 + Offset/8;
else if (LocVT == MVT::f32 && Offset < 16*8)
// Promote floats to %f1, %f3, ...
Reg = SP::F1 + Offset/4;
// Promote to register when possible, otherwise use the stack slot.
if (Reg) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return true;
}
// This argument goes on the stack in an 8-byte slot.
// When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
// the right-aligned float. The first 4 bytes of the stack slot are undefined.
if (LocVT == MVT::f32)
Offset += 4;
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
// Allocate a half-sized argument for the 64-bit ABI.
//
// This is used when passing { float, int } structs by value in registers.
static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
unsigned Offset = State.AllocateStack(4, 4);
if (LocVT == MVT::f32 && Offset < 16*8) {
// Promote floats to %f0-%f31.
State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
LocVT, LocInfo));
return true;
}
if (LocVT == MVT::i32 && Offset < 6*8) {
// Promote integers to %i0-%i5, using half the register.
unsigned Reg = SP::I0 + Offset/8;
LocVT = MVT::i64;
LocInfo = CCValAssign::AExt;
// Set the Custom bit if this i32 goes in the high bits of a register.
if (Offset % 8 == 0)
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
LocVT, LocInfo));
else
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return true;
}
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
#include "SparcGenCallingConv.inc"
// The calling conventions in SparcCallingConv.td are described in terms of the
// callee's register window. This function translates registers to the
// corresponding caller window %o register.
static unsigned toCallerWindow(unsigned Reg) {
assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7 && "Unexpected enum");
if (Reg >= SP::I0 && Reg <= SP::I7)
return Reg - SP::I0 + SP::O0;
return Reg;
}
SDValue
SparcTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
if (Subtarget->is64Bit())
return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
}
SDValue
SparcTargetLowering::LowerReturn_32(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
DAG.getTarget(), RVLocs, *DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Make room for the return address offset.
RetOps.push_back(SDValue());
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(),
OutVals[i], Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
// If the function returns a struct, copy the SRetReturnReg to I0
if (MF.getFunction()->hasStructRetAttr()) {
SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
unsigned Reg = SFI->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in the entry block");
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(SP::I0, getPointerTy()));
RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
}
RetOps[0] = Chain; // Update chain.
RetOps[1] = DAG.getConstant(RetAddrOffset, MVT::i32);
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other,
&RetOps[0], RetOps.size());
}
// Lower return values for the 64-bit ABI.
// Return values are passed the exactly the same way as function arguments.
SDValue
SparcTargetLowering::LowerReturn_64(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
DAG.getTarget(), RVLocs, *DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, CC_Sparc64);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// The second operand on the return instruction is the return address offset.
// The return address is always %i7+8 with the 64-bit ABI.
RetOps.push_back(DAG.getConstant(8, MVT::i32));
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue OutVal = OutVals[i];
// Integer return values must be sign or zero extended by the callee.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::ZExt:
OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::AExt:
OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
default:
break;
}
// The custom bit on an i32 return value indicates that it should be passed
// in the high bits of the register.
if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
DAG.getConstant(32, MVT::i32));
// The next value may go in the low bits of the same register.
// Handle both at once.
if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
// Skip the next value, it's already done.
++i;
}
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other,
&RetOps[0], RetOps.size());
}
SDValue SparcTargetLowering::
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
if (Subtarget->is64Bit())
return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
DL, DAG, InVals);
return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
DL, DAG, InVals);
}
/// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
/// passed in either one or two GPRs, including FP values. TODO: we should
/// pass FP values in FP registers for fastcc functions.
SDValue SparcTargetLowering::
LowerFormalArguments_32(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
const unsigned StackOffset = 92;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (i == 0 && Ins[i].Flags.isSRet()) {
// Get SRet from [%fp+64].
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, 64, true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
SDValue Arg = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
InVals.push_back(Arg);
continue;
}
if (VA.isRegLoc()) {
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::f64);
unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
assert(i+1 < e);
CCValAssign &NextVA = ArgLocs[++i];
SDValue LoVal;
if (NextVA.isMemLoc()) {
int FrameIdx = MF.getFrameInfo()->
CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
} else {
unsigned loReg = MF.addLiveIn(NextVA.getLocReg(),
&SP::IntRegsRegClass);
LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
}
SDValue WholeValue =
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
InVals.push_back(WholeValue);
continue;
}
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
if (VA.getLocVT() == MVT::f32)
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
else if (VA.getLocVT() != MVT::i32) {
Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
DAG.getValueType(VA.getLocVT()));
Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
}
InVals.push_back(Arg);
continue;
}
assert(VA.isMemLoc());
unsigned Offset = VA.getLocMemOffset()+StackOffset;
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::f64);
// If it is double-word aligned, just load.
if (Offset % 8 == 0) {
int FI = MF.getFrameInfo()->CreateFixedObject(8,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
MachinePointerInfo(),
false,false, false, 0);
InVals.push_back(Load);
continue;
}
int FI = MF.getFrameInfo()->CreateFixedObject(4,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
int FI2 = MF.getFrameInfo()->CreateFixedObject(4,
Offset+4,
true);
SDValue FIPtr2 = DAG.getFrameIndex(FI2, getPointerTy());
SDValue LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr2,
MachinePointerInfo(),
false, false, false, 0);
SDValue WholeValue =
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
InVals.push_back(WholeValue);
continue;
}
int FI = MF.getFrameInfo()->CreateFixedObject(4,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue Load ;
if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
} else {
ISD::LoadExtType LoadOp = ISD::SEXTLOAD;
// Sparc is big endian, so add an offset based on the ObjectVT.
unsigned Offset = 4-std::max(1U, VA.getValVT().getSizeInBits()/8);
FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr,
DAG.getConstant(Offset, MVT::i32));
Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr,
MachinePointerInfo(),
VA.getValVT(), false, false,0);
Load = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Load);
}
InVals.push_back(Load);
}
if (MF.getFunction()->hasStructRetAttr()) {
// Copy the SRet Argument to SRetReturnReg.
SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
unsigned Reg = SFI->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
SFI->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
// Store remaining ArgRegs to the stack if this is a varargs function.
if (isVarArg) {
static const uint16_t ArgRegs[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs, 6);
const uint16_t *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
unsigned ArgOffset = CCInfo.getNextStackOffset();
if (NumAllocated == 6)
ArgOffset += StackOffset;
else {
assert(!ArgOffset);
ArgOffset = 68+4*NumAllocated;
}
// Remember the vararg offset for the va_start implementation.
FuncInfo->setVarArgsFrameOffset(ArgOffset);
std::vector<SDValue> OutChains;
for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr,
MachinePointerInfo(),
false, false, 0));
ArgOffset += 4;
}
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], OutChains.size());
}
}
return Chain;
}
// Lower formal arguments for the 64 bit ABI.
SDValue SparcTargetLowering::
LowerFormalArguments_64(SDValue Chain,
CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
// Analyze arguments according to CC_Sparc64.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
// The argument array begins at %fp+BIAS+128, after the register save area.
const unsigned ArgArea = 128;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc()) {
// This argument is passed in a register.
// All integer register arguments are promoted by the caller to i64.
// Create a virtual register for the promoted live-in value.
unsigned VReg = MF.addLiveIn(VA.getLocReg(),
getRegClassFor(VA.getLocVT()));
SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
// Get the high bits for i32 struct elements.
if (VA.getValVT() == MVT::i32 && VA.needsCustom())
Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
DAG.getConstant(32, MVT::i32));
// The caller promoted the argument, so insert an Assert?ext SDNode so we
// won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
default:
break;
}
// Truncate the register down to the argument type.
if (VA.isExtInLoc())
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
InVals.push_back(Arg);
continue;
}
// The registers are exhausted. This argument was passed on the stack.
assert(VA.isMemLoc());
// The CC_Sparc64_Full/Half functions compute stack offsets relative to the
// beginning of the arguments area at %fp+BIAS+128.
unsigned Offset = VA.getLocMemOffset() + ArgArea;
unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
// Adjust offset for extended arguments, SPARC is big-endian.
// The caller will have written the full slot with extended bytes, but we
// prefer our own extending loads.
if (VA.isExtInLoc())
Offset += 8 - ValSize;
int FI = MF.getFrameInfo()->CreateFixedObject(ValSize, Offset, true);
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain,
DAG.getFrameIndex(FI, getPointerTy()),
MachinePointerInfo::getFixedStack(FI),
false, false, false, 0));
}
if (!IsVarArg)
return Chain;
// This function takes variable arguments, some of which may have been passed
// in registers %i0-%i5. Variable floating point arguments are never passed
// in floating point registers. They go on %i0-%i5 or on the stack like
// integer arguments.
//
// The va_start intrinsic needs to know the offset to the first variable
// argument.
unsigned ArgOffset = CCInfo.getNextStackOffset();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Skip the 128 bytes of register save area.
FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
Subtarget->getStackPointerBias());
// Save the variable arguments that were passed in registers.
// The caller is required to reserve stack space for 6 arguments regardless
// of how many arguments were actually passed.
SmallVector<SDValue, 8> OutChains;
for (; ArgOffset < 6*8; ArgOffset += 8) {
unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
int FI = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset + ArgArea, true);
OutChains.push_back(DAG.getStore(Chain, DL, VArg,
DAG.getFrameIndex(FI, getPointerTy()),
MachinePointerInfo::getFixedStack(FI),
false, false, 0));
}
if (!OutChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
&OutChains[0], OutChains.size());
return Chain;
}
SDValue
SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
if (Subtarget->is64Bit())
return LowerCall_64(CLI, InVals);
return LowerCall_32(CLI, InVals);
}
static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
ImmutableCallSite *CS) {
if (CS)
return CS->hasFnAttr(Attribute::ReturnsTwice);
const Function *CalleeFn = 0;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
CalleeFn = dyn_cast<Function>(G->getGlobal());
} else if (ExternalSymbolSDNode *E =
dyn_cast<ExternalSymbolSDNode>(Callee)) {
const Function *Fn = DAG.getMachineFunction().getFunction();
const Module *M = Fn->getParent();
const char *CalleeName = E->getSymbol();
CalleeFn = M->getFunction(CalleeName);
}
if (!CalleeFn)
return false;
return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
}
// Lower a call for the 32-bit ABI.
SDValue
SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
// Sparc target does not yet support tail call optimization.
isTailCall = false;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
DAG.getTarget(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
// Get the size of the outgoing arguments stack space requirement.
unsigned ArgsSize = CCInfo.getNextStackOffset();
// Keep stack frames 8-byte aligned.
ArgsSize = (ArgsSize+7) & ~7;
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
// Create local copies for byval args.
SmallVector<SDValue, 8> ByValArgs;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (!Flags.isByVal())
continue;
SDValue Arg = OutVals[i];
unsigned Size = Flags.getByValSize();
unsigned Align = Flags.getByValAlign();
int FI = MFI->CreateStackObject(Size, Align, false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align,
false, // isVolatile,
(Size <= 32), // AlwaysInline if size <= 32
MachinePointerInfo(), MachinePointerInfo());
ByValArgs.push_back(FIPtr);
}
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true),
dl);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
const unsigned StackOffset = 92;
bool hasStructRetAttr = false;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
// Use local copy if it is a byval arg.
if (Flags.isByVal())
Arg = ByValArgs[byvalArgIdx++];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (Flags.isSRet()) {
assert(VA.needsCustom());
// store SRet argument in %sp+64
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(64);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
hasStructRetAttr = true;
continue;
}
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::f64);
if (VA.isMemLoc()) {
unsigned Offset = VA.getLocMemOffset() + StackOffset;
// if it is double-word aligned, just store.
if (Offset % 8 == 0) {
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
continue;
}
}
SDValue StackPtr = DAG.CreateStackTemporary(MVT::f64, MVT::i32);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
Arg, StackPtr, MachinePointerInfo(),
false, false, 0);
// Sparc is big-endian, so the high part comes first.
SDValue Hi = DAG.getLoad(MVT::i32, dl, Store, StackPtr,
MachinePointerInfo(), false, false, false, 0);
// Increment the pointer to the other half.
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getIntPtrConstant(4));
// Load the low part.
SDValue Lo = DAG.getLoad(MVT::i32, dl, Store, StackPtr,
MachinePointerInfo(), false, false, false, 0);
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Hi));
assert(i+1 != e);
CCValAssign &NextVA = ArgLocs[++i];
if (NextVA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Lo));
} else {
// Store the low part in stack.
unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
} else {
unsigned Offset = VA.getLocMemOffset() + StackOffset;
// Store the high part.
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Hi, PtrOff,
MachinePointerInfo(),
false, false, 0));
// Store the low part.
PtrOff = DAG.getIntPtrConstant(Offset+4);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
continue;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
if (VA.getLocVT() != MVT::f32) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()+StackOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
// Emit all stores, make sure the occur before any copies into physregs.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
unsigned Reg = toCallerWindow(RegsToPass[i].first);
Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0;
bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
// Returns a chain & a flag for retval copy to use
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
if (hasStructRetAttr)
Ops.push_back(DAG.getTargetConstant(SRetArgSize, MVT::i32));
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first),
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const SparcRegisterInfo *TRI =
((const SparcTargetMachine&)getTargetMachine()).getRegisterInfo();
const uint32_t *Mask = ((hasReturnsTwice)
? TRI->getRTCallPreservedMask(CallConv)
: TRI->getCallPreservedMask(CallConv));
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
DAG.getIntPtrConstant(0, true), InFlag, dl);
InFlag = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(),
DAG.getTarget(), RVLocs, *DAG.getContext());
RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
// This functions returns true if CalleeName is a ABI function that returns
// a long double (fp128).
static bool isFP128ABICall(const char *CalleeName)
{
static const char *const ABICalls[] =
{ "_Q_add", "_Q_sub", "_Q_mul", "_Q_div",
"_Q_sqrt", "_Q_neg",
"_Q_itoq", "_Q_stoq", "_Q_dtoq", "_Q_utoq",
0
};
for (const char * const *I = ABICalls; I != 0; ++I)
if (strcmp(CalleeName, *I) == 0)
return true;
return false;
}
unsigned
SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const
{
const Function *CalleeFn = 0;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
CalleeFn = dyn_cast<Function>(G->getGlobal());
} else if (ExternalSymbolSDNode *E =
dyn_cast<ExternalSymbolSDNode>(Callee)) {
const Function *Fn = DAG.getMachineFunction().getFunction();
const Module *M = Fn->getParent();
const char *CalleeName = E->getSymbol();
CalleeFn = M->getFunction(CalleeName);
if (!CalleeFn && isFP128ABICall(CalleeName))
return 16; // Return sizeof(fp128)
}
if (!CalleeFn)
return 0;
assert(CalleeFn->hasStructRetAttr() &&
"Callee does not have the StructRet attribute.");
PointerType *Ty = cast<PointerType>(CalleeFn->arg_begin()->getType());
Type *ElementTy = Ty->getElementType();
return getDataLayout()->getTypeAllocSize(ElementTy);
}
// Fixup floating point arguments in the ... part of a varargs call.
//
// The SPARC v9 ABI requires that floating point arguments are treated the same
// as integers when calling a varargs function. This does not apply to the
// fixed arguments that are part of the function's prototype.
//
// This function post-processes a CCValAssign array created by
// AnalyzeCallOperands().
static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
ArrayRef<ISD::OutputArg> Outs) {
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
const CCValAssign &VA = ArgLocs[i];
// FIXME: What about f32 arguments? C promotes them to f64 when calling
// varargs functions.
if (!VA.isRegLoc() || VA.getLocVT() != MVT::f64)
continue;
// The fixed arguments to a varargs function still go in FP registers.
if (Outs[VA.getValNo()].IsFixed)
continue;
// This floating point argument should be reassigned.
CCValAssign NewVA;
// Determine the offset into the argument array.
unsigned Offset = 8 * (VA.getLocReg() - SP::D0);
assert(Offset < 16*8 && "Offset out of range, bad register enum?");
if (Offset < 6*8) {
// This argument should go in %i0-%i5.
unsigned IReg = SP::I0 + Offset/8;
// Full register, just bitconvert into i64.
NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(),
IReg, MVT::i64, CCValAssign::BCvt);
} else {
// This needs to go to memory, we're out of integer registers.
NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(),
Offset, VA.getLocVT(), VA.getLocInfo());
}
ArgLocs[i] = NewVA;
}
}
// Lower a call for the 64-bit ABI.
SDValue
SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc DL = CLI.DL;
SDValue Chain = CLI.Chain;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
DAG.getTarget(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
// Get the size of the outgoing arguments stack space requirement.
// The stack offset computed by CC_Sparc64 includes all arguments.
// Called functions expect 6 argument words to exist in the stack frame, used
// or not.
unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset());
// Keep stack frames 16-byte aligned.
ArgsSize = RoundUpToAlignment(ArgsSize, 16);
// Varargs calls require special treatment.
if (CLI.IsVarArg)
fixupVariableFloatArgs(ArgLocs, CLI.Outs);
// Adjust the stack pointer to make room for the arguments.
// FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
// with more than 6 arguments.
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true),
DL);
// Collect the set of registers to pass to the function and their values.
// This will be emitted as a sequence of CopyToReg nodes glued to the call
// instruction.
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
// Collect chains from all the memory opeations that copy arguments to the
// stack. They must follow the stack pointer adjustment above and precede the
// call instruction itself.
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
const CCValAssign &VA = ArgLocs[i];
SDValue Arg = CLI.OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown location info!");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
}
if (VA.isRegLoc()) {
// The custom bit on an i32 return value indicates that it should be
// passed in the high bits of the register.
if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
DAG.getConstant(32, MVT::i32));
// The next value may go in the low bits of the same register.
// Handle both at once.
if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
CLI.OutVals[i+1]);
Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
// Skip the next value, it's already done.
++i;
}
}
RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(SP::O6, getPointerTy());
// The argument area starts at %fp+BIAS+128 in the callee frame,
// %sp+BIAS+128 in ours.
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
Subtarget->getStackPointerBias() +
128);
PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, DL, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
// Emit all stores, make sure they occur before the call.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of CopyToReg nodes glued together with token chain and
// glue operands which copy the outgoing args into registers. The InGlue is
// necessary since all emitted instructions must be stuck together in order
// to pass the live physical registers.
SDValue InGlue;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, DL,
RegsToPass[i].first, RegsToPass[i].second, InGlue);
InGlue = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
SDValue Callee = CLI.Callee;
bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy());
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy());
// Build the operands for the call instruction itself.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const SparcRegisterInfo *TRI =
((const SparcTargetMachine&)getTargetMachine()).getRegisterInfo();
const uint32_t *Mask = ((hasReturnsTwice)
? TRI->getRTCallPreservedMask(CLI.CallConv)
: TRI->getCallPreservedMask(CLI.CallConv));
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Make sure the CopyToReg nodes are glued to the call instruction which
// consumes the registers.
if (InGlue.getNode())
Ops.push_back(InGlue);
// Now the call itself.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
InGlue = Chain.getValue(1);
// Revert the stack pointer immediately after the call.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
DAG.getIntPtrConstant(0, true), InGlue, DL);
InGlue = Chain.getValue(1);
// Now extract the return values. This is more or less the same as
// LowerFormalArguments_64.
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
DAG.getTarget(), RVLocs, *DAG.getContext());
RVInfo.AnalyzeCallResult(CLI.Ins, CC_Sparc64);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
unsigned Reg = toCallerWindow(VA.getLocReg());
// When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
// reside in the same register in the high and low bits. Reuse the
// CopyFromReg previous node to avoid duplicate copies.
SDValue RV;
if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
RV = Chain.getValue(0);
// But usually we'll create a new CopyFromReg for a different register.
if (!RV.getNode()) {
RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
Chain = RV.getValue(1);
InGlue = Chain.getValue(2);
}
// Get the high bits for i32 struct elements.
if (VA.getValVT() == MVT::i32 && VA.needsCustom())
RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
DAG.getConstant(32, MVT::i32));
// The callee promoted the return value, so insert an Assert?ext SDNode so
// we won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
default:
break;
}
// Truncate the register down to the return value type.
if (VA.isExtInLoc())
RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
InVals.push_back(RV);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
/// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
/// condition.
static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown integer condition code!");
case ISD::SETEQ: return SPCC::ICC_E;
case ISD::SETNE: return SPCC::ICC_NE;
case ISD::SETLT: return SPCC::ICC_L;
case ISD::SETGT: return SPCC::ICC_G;
case ISD::SETLE: return SPCC::ICC_LE;
case ISD::SETGE: return SPCC::ICC_GE;
case ISD::SETULT: return SPCC::ICC_CS;
case ISD::SETULE: return SPCC::ICC_LEU;
case ISD::SETUGT: return SPCC::ICC_GU;
case ISD::SETUGE: return SPCC::ICC_CC;
}
}
/// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
/// FCC condition.
static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return SPCC::FCC_E;
case ISD::SETNE:
case ISD::SETUNE: return SPCC::FCC_NE;
case ISD::SETLT:
case ISD::SETOLT: return SPCC::FCC_L;
case ISD::SETGT:
case ISD::SETOGT: return SPCC::FCC_G;
case ISD::SETLE:
case ISD::SETOLE: return SPCC::FCC_LE;
case ISD::SETGE:
case ISD::SETOGE: return SPCC::FCC_GE;
case ISD::SETULT: return SPCC::FCC_UL;
case ISD::SETULE: return SPCC::FCC_ULE;
case ISD::SETUGT: return SPCC::FCC_UG;
case ISD::SETUGE: return SPCC::FCC_UGE;
case ISD::SETUO: return SPCC::FCC_U;
case ISD::SETO: return SPCC::FCC_O;
case ISD::SETONE: return SPCC::FCC_LG;
case ISD::SETUEQ: return SPCC::FCC_UE;
}
}
SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
: TargetLowering(TM, new TargetLoweringObjectFileELF()) {
Subtarget = &TM.getSubtarget<SparcSubtarget>();
// Set up the register classes.
addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
if (Subtarget->is64Bit())
addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
// Turn FP extload into load/fextend
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
// Sparc doesn't have i1 sign extending load
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
// Custom legalize GlobalAddress nodes into LO/HI parts.
setOperationAction(ISD::GlobalAddress, getPointerTy(), Custom);
setOperationAction(ISD::GlobalTLSAddress, getPointerTy(), Custom);
setOperationAction(ISD::ConstantPool, getPointerTy(), Custom);
setOperationAction(ISD::BlockAddress, getPointerTy(), Custom);
// Sparc doesn't have sext_inreg, replace them with shl/sra
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
// Sparc has no REM or DIVREM operations.
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
// Custom expand fp<->sint
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
// Expand fp<->uint
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
// Sparc has no select or setcc: expand to SELECT_CC.
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::f128, Expand);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SETCC, MVT::f128, Expand);
// Sparc doesn't have BRCOND either, it has BR_CC.
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::BITCAST, MVT::f64, Expand);
setOperationAction(ISD::BITCAST, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SETCC, MVT::i64, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
}
// FIXME: There are instructions available for ATOMIC_FENCE
// on SparcV8 and later.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
if (!Subtarget->isV9()) {
// SparcV8 does not have FNEGD and FABSD.
setOperationAction(ISD::FNEG, MVT::f64, Custom);
setOperationAction(ISD::FABS, MVT::f64, Custom);
}
setOperationAction(ISD::FSIN , MVT::f128, Expand);
setOperationAction(ISD::FCOS , MVT::f128, Expand);
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
setOperationAction(ISD::FREM , MVT::f128, Expand);
setOperationAction(ISD::FMA , MVT::f128, Expand);
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FMA , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FMA , MVT::f32, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ , MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FPOW , MVT::f128, Expand);
setOperationAction(ISD::FPOW , MVT::f64, Expand);
setOperationAction(ISD::FPOW , MVT::f32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
// FIXME: Sparc provides these multiplies, but we don't have them yet.
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex.
setOperationAction(ISD::VASTART , MVT::Other, Custom);
// VAARG needs to be lowered to not do unaligned accesses for doubles.
setOperationAction(ISD::VAARG , MVT::Other, Custom);
// Use the default implementation.
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
// No debug info support yet.
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
setStackPointerRegisterToSaveRestore(SP::O6);
if (Subtarget->isV9())
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
setOperationAction(ISD::LOAD, MVT::f128, Legal);
setOperationAction(ISD::STORE, MVT::f128, Legal);
} else {
setOperationAction(ISD::LOAD, MVT::f128, Custom);
setOperationAction(ISD::STORE, MVT::f128, Custom);
}
if (Subtarget->hasHardQuad()) {
setOperationAction(ISD::FADD, MVT::f128, Legal);
setOperationAction(ISD::FSUB, MVT::f128, Legal);
setOperationAction(ISD::FMUL, MVT::f128, Legal);
setOperationAction(ISD::FDIV, MVT::f128, Legal);
setOperationAction(ISD::FSQRT, MVT::f128, Legal);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
if (Subtarget->isV9()) {
setOperationAction(ISD::FNEG, MVT::f128, Legal);
setOperationAction(ISD::FABS, MVT::f128, Legal);
} else {
setOperationAction(ISD::FNEG, MVT::f128, Custom);
setOperationAction(ISD::FABS, MVT::f128, Custom);
}
} else {
// Custom legalize f128 operations.
setOperationAction(ISD::FADD, MVT::f128, Custom);
setOperationAction(ISD::FSUB, MVT::f128, Custom);
setOperationAction(ISD::FMUL, MVT::f128, Custom);
setOperationAction(ISD::FDIV, MVT::f128, Custom);
setOperationAction(ISD::FSQRT, MVT::f128, Custom);
setOperationAction(ISD::FNEG, MVT::f128, Custom);
setOperationAction(ISD::FABS, MVT::f128, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
// Setup Runtime library names.
if (Subtarget->is64Bit()) {
setLibcallName(RTLIB::ADD_F128, "_Qp_add");
setLibcallName(RTLIB::SUB_F128, "_Qp_sub");
setLibcallName(RTLIB::MUL_F128, "_Qp_mul");
setLibcallName(RTLIB::DIV_F128, "_Qp_div");
setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
} else {
setLibcallName(RTLIB::ADD_F128, "_Q_add");
setLibcallName(RTLIB::SUB_F128, "_Q_sub");
setLibcallName(RTLIB::MUL_F128, "_Q_mul");
setLibcallName(RTLIB::DIV_F128, "_Q_div");
setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
}
}
setMinFunctionAlignment(2);
computeRegisterProperties();
}
const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case SPISD::CMPICC: return "SPISD::CMPICC";
case SPISD::CMPFCC: return "SPISD::CMPFCC";
case SPISD::BRICC: return "SPISD::BRICC";
case SPISD::BRXCC: return "SPISD::BRXCC";
case SPISD::BRFCC: return "SPISD::BRFCC";
case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC";
case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
case SPISD::Hi: return "SPISD::Hi";
case SPISD::Lo: return "SPISD::Lo";
case SPISD::FTOI: return "SPISD::FTOI";
case SPISD::ITOF: return "SPISD::ITOF";
case SPISD::CALL: return "SPISD::CALL";
case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
case SPISD::FLUSHW: return "SPISD::FLUSHW";
}
}
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
/// be zero. Op is expected to be a target specific node. Used by DAG
/// combiner.
void SparcTargetLowering::computeMaskedBitsForTargetNode
(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
APInt KnownZero2, KnownOne2;
KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
switch (Op.getOpcode()) {
default: break;
case SPISD::SELECT_ICC:
case SPISD::SELECT_XCC:
case SPISD::SELECT_FCC:
DAG.ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
}
}
// Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
// set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
ISD::CondCode CC, unsigned &SPCC) {
if (isa<ConstantSDNode>(RHS) &&
cast<ConstantSDNode>(RHS)->isNullValue() &&
CC == ISD::SETNE &&
(((LHS.getOpcode() == SPISD::SELECT_ICC ||
LHS.getOpcode() == SPISD::SELECT_XCC) &&
LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
(LHS.getOpcode() == SPISD::SELECT_FCC &&
LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
isa<ConstantSDNode>(LHS.getOperand(0)) &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
cast<ConstantSDNode>(LHS.getOperand(0))->isOne() &&
cast<ConstantSDNode>(LHS.getOperand(1))->isNullValue()) {
SDValue CMPCC = LHS.getOperand(3);
SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
LHS = CMPCC.getOperand(0);
RHS = CMPCC.getOperand(1);
}
}
// Convert to a target node and set target flags.
SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
SelectionDAG &DAG) const {
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
return DAG.getTargetGlobalAddress(GA->getGlobal(),
SDLoc(GA),
GA->getValueType(0),
GA->getOffset(), TF);
if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
return DAG.getTargetConstantPool(CP->getConstVal(),
CP->getValueType(0),
CP->getAlignment(),
CP->getOffset(), TF);
if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
return DAG.getTargetBlockAddress(BA->getBlockAddress(),
Op.getValueType(),
0,
TF);
if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
return DAG.getTargetExternalSymbol(ES->getSymbol(),
ES->getValueType(0), TF);
llvm_unreachable("Unhandled address SDNode");
}
// Split Op into high and low parts according to HiTF and LoTF.
// Return an ADD node combining the parts.
SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
unsigned HiTF, unsigned LoTF,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}
// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
// or ExternalSymbol SDNode.
SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = getPointerTy();
// Handle PIC mode first.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
// This is the pic32 code model, the GOT is known to be smaller than 4GB.
SDValue HiLo = makeHiLoPair(Op, SPII::MO_HI, SPII::MO_LO, DAG);
SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, HiLo);
return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
MachinePointerInfo::getGOT(), false, false, false, 0);
}
// This is one of the absolute code models.
switch(getTargetMachine().getCodeModel()) {
default:
llvm_unreachable("Unsupported absolute code model");
case CodeModel::Small:
// abs32.
return makeHiLoPair(Op, SPII::MO_HI, SPII::MO_LO, DAG);
case CodeModel::Medium: {
// abs44.
SDValue H44 = makeHiLoPair(Op, SPII::MO_H44, SPII::MO_M44, DAG);
H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, MVT::i32));
SDValue L44 = withTargetFlags(Op, SPII::MO_L44, DAG);
L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
}
case CodeModel::Large: {
// abs64.
SDValue Hi = makeHiLoPair(Op, SPII::MO_HH, SPII::MO_HM, DAG);
Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, MVT::i32));
SDValue Lo = makeHiLoPair(Op, SPII::MO_HI, SPII::MO_LO, DAG);
return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}
}
}
SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue
SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, ArgListTy &Args,
SDValue Arg, SDLoc DL,
SelectionDAG &DAG) const {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
if (ArgTy->isFP128Ty()) {
// Create a stack object and pass the pointer to the library function.
int FI = MFI->CreateStackObject(16, 8, false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
Chain = DAG.getStore(Chain,
DL,
Entry.Node,
FIPtr,
MachinePointerInfo(),
false,
false,
8);
Entry.Node = FIPtr;
Entry.Ty = PointerType::getUnqual(ArgTy);
}
Args.push_back(Entry);
return Chain;
}
SDValue
SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
const char *LibFuncName,
unsigned numArgs) const {
ArgListTy Args;
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
SDValue Callee = DAG.getExternalSymbol(LibFuncName, getPointerTy());
Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
Type *RetTyABI = RetTy;
SDValue Chain = DAG.getEntryNode();
SDValue RetPtr;
if (RetTy->isFP128Ty()) {
// Create a Stack Object to receive the return value of type f128.
ArgListEntry Entry;
int RetFI = MFI->CreateStackObject(16, 8, false);
RetPtr = DAG.getFrameIndex(RetFI, getPointerTy());
Entry.Node = RetPtr;
Entry.Ty = PointerType::getUnqual(RetTy);
if (!Subtarget->is64Bit())
Entry.isSRet = true;
Entry.isReturned = false;
Args.push_back(Entry);
RetTyABI = Type::getVoidTy(*DAG.getContext());
}
assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
for (unsigned i = 0, e = numArgs; i != e; ++i) {
Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
}
TargetLowering::
CallLoweringInfo CLI(Chain,
RetTyABI,
false, false, false, false,
0, CallingConv::C,
false, false, true,
Callee, Args, DAG, SDLoc(Op));
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
// chain is in second result.
if (RetTyABI == RetTy)
return CallInfo.first;
assert (RetTy->isFP128Ty() && "Unexpected return type!");
Chain = CallInfo.second;
// Load RetPtr to get the return value.
return DAG.getLoad(Op.getValueType(),
SDLoc(Op),
Chain,
RetPtr,
MachinePointerInfo(),
false, false, false, 8);
}
SDValue
SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
unsigned &SPCC,
SDLoc DL,
SelectionDAG &DAG) const {
const char *LibCall = 0;
bool is64Bit = Subtarget->is64Bit();
switch(SPCC) {
default: llvm_unreachable("Unhandled conditional code!");
case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
case SPCC::FCC_UL :
case SPCC::FCC_ULE:
case SPCC::FCC_UG :
case SPCC::FCC_UGE:
case SPCC::FCC_U :
case SPCC::FCC_O :
case SPCC::FCC_LG :
case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
}
SDValue Callee = DAG.getExternalSymbol(LibCall, getPointerTy());
Type *RetTy = Type::getInt32Ty(*DAG.getContext());
ArgListTy Args;
SDValue Chain = DAG.getEntryNode();
Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
TargetLowering::
CallLoweringInfo CLI(Chain,
RetTy,
false, false, false, false,
0, CallingConv::C,
false, false, true,
Callee, Args, DAG, DL);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
// result is in first, and chain is in second result.
SDValue Result = CallInfo.first;
switch(SPCC) {
default: {
SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UL : {
SDValue Mask = DAG.getTargetConstant(1, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_ULE: {
SDValue RHS = DAG.getTargetConstant(2, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UG : {
SDValue RHS = DAG.getTargetConstant(1, Result.getValueType());
SPCC = SPCC::ICC_G;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UGE: {
SDValue RHS = DAG.getTargetConstant(1, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_U : {
SDValue RHS = DAG.getTargetConstant(3, Result.getValueType());
SPCC = SPCC::ICC_E;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_O : {
SDValue RHS = DAG.getTargetConstant(3, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_LG : {
SDValue Mask = DAG.getTargetConstant(3, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UE : {
SDValue Mask = DAG.getTargetConstant(3, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
SPCC = SPCC::ICC_E;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
}
}
static SDValue
LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
if (Op.getOperand(0).getValueType() == MVT::f64)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
if (Op.getOperand(0).getValueType() == MVT::f32)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
llvm_unreachable("fpextend with non-float operand!");
return SDValue(0, 0);
}
static SDValue
LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
// FP_ROUND on f64 and f32 are legal.
if (Op.getOperand(0).getValueType() != MVT::f128)
return Op;
if (Op.getValueType() == MVT::f64)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
if (Op.getValueType() == MVT::f32)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
llvm_unreachable("fpround to non-float!");
return SDValue(0, 0);
}
static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
// Convert the fp value to integer in an FP register.
assert(Op.getValueType() == MVT::i32);
if (Op.getOperand(0).getValueType() == MVT::f128 && !hasHardQuad)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPTOSINT_F128_I32), 1);
Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
}
static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
assert(Op.getOperand(0).getValueType() == MVT::i32);
SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
// Convert the int value to FP in an FP register.
if (Op.getValueType() == MVT::f128 && hasHardQuad)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::SINTTOFP_I32_F128), 1);
return DAG.getNode(SPISD::ITOF, dl, Op.getValueType(), Tmp);
}
static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
unsigned Opc, SPCC = ~0U;
// If this is a br_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
// Get the condition flag.
SDValue CompareFlag;
if (LHS.getValueType().isInteger()) {
CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
// 32-bit compares use the icc flags, 64-bit uses the xcc flags.
Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC;
} else {
if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
Opc = SPISD::BRICC;
} else {
CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
Opc = SPISD::BRFCC;
}
}
return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
DAG.getConstant(SPCC, MVT::i32), CompareFlag);
}
static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
SDLoc dl(Op);
unsigned Opc, SPCC = ~0U;
// If this is a select_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
SDValue CompareFlag;
if (LHS.getValueType().isInteger()) {
CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
Opc = LHS.getValueType() == MVT::i32 ?
SPISD::SELECT_ICC : SPISD::SELECT_XCC;
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
} else {
if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
Opc = SPISD::SELECT_ICC;
} else {
CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
Opc = SPISD::SELECT_FCC;
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
}
}
return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
DAG.getConstant(SPCC, MVT::i32), CompareFlag);
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
MachineFunction &MF = DAG.getMachineFunction();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Need frame address to find the address of VarArgsFrameIndex.
MF.getFrameInfo()->setFrameAddressIsTaken(true);
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDLoc DL(Op);
SDValue Offset =
DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(),
DAG.getRegister(SP::I6, TLI.getPointerTy()),
DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset()));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
MachinePointerInfo(SV), false, false, 0);
}
static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
EVT PtrVT = VAListPtr.getValueType();
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc DL(Node);
SDValue VAList = DAG.getLoad(PtrVT, DL, InChain, VAListPtr,
MachinePointerInfo(SV), false, false, false, 0);
// Increment the pointer, VAList, to the next vaarg.
SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getIntPtrConstant(VT.getSizeInBits()/8));
// Store the incremented VAList to the legalized pointer.
InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr,
VAListPtr, MachinePointerInfo(SV), false, false, 0);
// Load the actual argument out of the pointer VAList.
// We can't count on greater alignment than the word size.
return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
false, false, false,
std::min(PtrVT.getSizeInBits(), VT.getSizeInBits())/8);
}
static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
SDValue Chain = Op.getOperand(0); // Legalize the chain.
SDValue Size = Op.getOperand(1); // Legalize the size.
SDLoc dl(Op);
unsigned SPReg = SP::O6;
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
SDValue NewSP = DAG.getNode(ISD::SUB, dl, MVT::i32, SP, Size); // Value
Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
// The resultant pointer is actually 16 words from the bottom of the stack,
// to provide a register spill area.
SDValue NewVal = DAG.getNode(ISD::ADD, dl, MVT::i32, NewSP,
DAG.getConstant(96, MVT::i32));
SDValue Ops[2] = { NewVal, Chain };
return DAG.getMergeValues(Ops, 2, dl);
}
static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
SDValue Chain = DAG.getNode(SPISD::FLUSHW,
dl, MVT::Other, DAG.getEntryNode());
return Chain;
}
static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned FrameReg = SP::I6;
uint64_t depth = Op.getConstantOperandVal(0);
SDValue FrameAddr;
if (depth == 0)
FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
else {
// flush first to make sure the windowed registers' values are in stack
SDValue Chain = getFLUSHW(Op, DAG);
FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
for (uint64_t i = 0; i != depth; ++i) {
SDValue Ptr = DAG.getNode(ISD::ADD,
dl, MVT::i32,
FrameAddr, DAG.getIntPtrConstant(56));
FrameAddr = DAG.getLoad(MVT::i32, dl,
Chain,
Ptr,
MachinePointerInfo(), false, false, false, 0);
}
}
return FrameAddr;
}
static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MFI->setReturnAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op);
uint64_t depth = Op.getConstantOperandVal(0);
SDValue RetAddr;
if (depth == 0) {
unsigned RetReg = MF.addLiveIn(SP::I7,
TLI.getRegClassFor(TLI.getPointerTy()));
RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
} else {
// Need frame address to find return address of the caller.
MFI->setFrameAddressIsTaken(true);
// flush first to make sure the windowed registers' values are in stack
SDValue Chain = getFLUSHW(Op, DAG);
RetAddr = DAG.getCopyFromReg(Chain, dl, SP::I6, VT);
for (uint64_t i = 0; i != depth; ++i) {
SDValue Ptr = DAG.getNode(ISD::ADD,
dl, MVT::i32,
RetAddr,
DAG.getIntPtrConstant((i == depth-1)?60:56));
RetAddr = DAG.getLoad(MVT::i32, dl,
Chain,
Ptr,
MachinePointerInfo(), false, false, false, 0);
}
}
return RetAddr;
}
static SDValue LowerF64Op(SDValue Op, SelectionDAG &DAG)
{
SDLoc dl(Op);
assert(Op.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
assert(Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS);
// Lower fneg/fabs on f64 to fneg/fabs on f32.
// fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
// fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
SDValue SrcReg64 = Op.getOperand(0);
SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
SrcReg64);
SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
SrcReg64);
Hi32 = DAG.getNode(Op.getOpcode(), dl, MVT::f32, Hi32);
SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f64), 0);
DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
DstReg64, Hi32);
DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
DstReg64, Lo32);
return DstReg64;
}
// Lower a f128 load into two f64 loads.
static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
{
SDLoc dl(Op);
LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
assert(LdNode && LdNode->getOffset().getOpcode() == ISD::UNDEF
&& "Unexpected node type");
SDValue Hi64 = DAG.getLoad(MVT::f64,
dl,
LdNode->getChain(),
LdNode->getBasePtr(),
LdNode->getPointerInfo(),
false, false, false, 8);
EVT addrVT = LdNode->getBasePtr().getValueType();
SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
LdNode->getBasePtr(),
DAG.getConstant(8, addrVT));
SDValue Lo64 = DAG.getLoad(MVT::f64,
dl,
LdNode->getChain(),
LoPtr,
LdNode->getPointerInfo(),
false, false, false, 8);
SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, MVT::i32);
SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, MVT::i32);
SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f128);
InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
MVT::f128,
SDValue(InFP128, 0),
Hi64,
SubRegEven);
InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
MVT::f128,
SDValue(InFP128, 0),
Lo64,
SubRegOdd);
SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
SDValue(Lo64.getNode(), 1) };
SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], 2);
SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
return DAG.getMergeValues(Ops, 2, dl);
}
// Lower a f128 store into two f64 stores.
static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
assert(StNode && StNode->getOffset().getOpcode() == ISD::UNDEF
&& "Unexpected node type");
SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, MVT::i32);
SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, MVT::i32);
SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl,
MVT::f64,
StNode->getValue(),
SubRegEven);
SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl,
MVT::f64,
StNode->getValue(),
SubRegOdd);
SDValue OutChains[2];
OutChains[0] = DAG.getStore(StNode->getChain(),
dl,
SDValue(Hi64, 0),
StNode->getBasePtr(),
MachinePointerInfo(),
false, false, 8);
EVT addrVT = StNode->getBasePtr().getValueType();
SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
StNode->getBasePtr(),
DAG.getConstant(8, addrVT));
OutChains[1] = DAG.getStore(StNode->getChain(),
dl,
SDValue(Lo64, 0),
LoPtr,
MachinePointerInfo(),
false, false, 8);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], 2);
}
static SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool is64Bit) {
if (Op.getValueType() == MVT::f64)
return LowerF64Op(Op, DAG);
if (Op.getValueType() == MVT::f128)
return TLI.LowerF128Op(Op, DAG, ((is64Bit) ? "_Qp_neg" : "_Q_neg"), 1);
return Op;
}
static SDValue LowerFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
if (Op.getValueType() == MVT::f64)
return LowerF64Op(Op, DAG);
if (Op.getValueType() != MVT::f128)
return Op;
// Lower fabs on f128 to fabs on f64
// fabs f128 => fabs f64:sub_even64, fmov f64:sub_odd64
SDLoc dl(Op);
SDValue SrcReg128 = Op.getOperand(0);
SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
SrcReg128);
SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
SrcReg128);
if (isV9)
Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
else
Hi64 = LowerF64Op(Op, DAG);
SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f128), 0);
DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
DstReg128, Hi64);
DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
DstReg128, Lo64);
return DstReg128;
}
SDValue SparcTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const {
bool hasHardQuad = Subtarget->hasHardQuad();
bool is64Bit = Subtarget->is64Bit();
bool isV9 = Subtarget->isV9();
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::GlobalTLSAddress:
llvm_unreachable("TLS not implemented for Sparc.");
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this,
hasHardQuad);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this,
hasHardQuad);
case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this,
hasHardQuad);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this,
hasHardQuad);
case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::LOAD: return LowerF128Load(Op, DAG);
case ISD::STORE: return LowerF128Store(Op, DAG);
case ISD::FADD: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::ADD_F128), 2);
case ISD::FSUB: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::SUB_F128), 2);
case ISD::FMUL: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::MUL_F128), 2);
case ISD::FDIV: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::DIV_F128), 2);
case ISD::FSQRT: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::SQRT_F128),1);
case ISD::FNEG: return LowerFNEG(Op, DAG, *this, is64Bit);
case ISD::FABS: return LowerFABS(Op, DAG, isV9);
case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this);
case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this);
}
}
MachineBasicBlock *
SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
unsigned BROpcode;
unsigned CC;
DebugLoc dl = MI->getDebugLoc();
// Figure out the conditional branch opcode to use for this select_cc.
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown SELECT_CC!");
case SP::SELECT_CC_Int_ICC:
case SP::SELECT_CC_FP_ICC:
case SP::SELECT_CC_DFP_ICC:
case SP::SELECT_CC_QFP_ICC:
BROpcode = SP::BCOND;
break;
case SP::SELECT_CC_Int_FCC:
case SP::SELECT_CC_FP_FCC:
case SP::SELECT_CC_DFP_FCC:
case SP::SELECT_CC_QFP_FCC:
BROpcode = SP::FBCOND;
break;
}
CC = (SPCC::CondCodes)MI->getOperand(3).getImm();
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// [f]bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII.get(SP::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
//===----------------------------------------------------------------------===//
// Sparc Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
SparcTargetLowering::ConstraintType
SparcTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'r': return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass*>
SparcTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return std::make_pair(0U, &SP::IntRegsRegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
bool
SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The Sparc target isn't yet aware of offsets.
return false;
}