forked from OSchip/llvm-project
![]() Similarly to CFI on virtual and indirect calls, this implementation tries to use program type information to make the checks as precise as possible. The basic way that it works is as follows, where `C` is the name of the class being defined or the target of a call and the function type is assumed to be `void()`. For virtual calls: - Attach type metadata to the addresses of function pointers in vtables (not the functions themselves) of type `void (B::*)()` for each `B` that is a recursive dynamic base class of `C`, including `C` itself. This type metadata has an annotation that the type is for virtual calls (to distinguish it from the non-virtual case). - At the call site, check that the computed address of the function pointer in the vtable has type `void (C::*)()`. For non-virtual calls: - Attach type metadata to each non-virtual member function whose address can be taken with a member function pointer. The type of a function in class `C` of type `void()` is each of the types `void (B::*)()` where `B` is a most-base class of `C`. A most-base class of `C` is defined as a recursive base class of `C`, including `C` itself, that does not have any bases. - At the call site, check that the function pointer has one of the types `void (B::*)()` where `B` is a most-base class of `C`. Differential Revision: https://reviews.llvm.org/D47567 llvm-svn: 335569 |
||
---|---|---|
.. | ||
ABIInfo.h | ||
Address.h | ||
BackendUtil.cpp | ||
CGAtomic.cpp | ||
CGBlocks.cpp | ||
CGBlocks.h | ||
CGBuilder.h | ||
CGBuiltin.cpp | ||
CGCUDANV.cpp | ||
CGCUDARuntime.cpp | ||
CGCUDARuntime.h | ||
CGCXX.cpp | ||
CGCXXABI.cpp | ||
CGCXXABI.h | ||
CGCall.cpp | ||
CGCall.h | ||
CGClass.cpp | ||
CGCleanup.cpp | ||
CGCleanup.h | ||
CGCoroutine.cpp | ||
CGDebugInfo.cpp | ||
CGDebugInfo.h | ||
CGDecl.cpp | ||
CGDeclCXX.cpp | ||
CGException.cpp | ||
CGExpr.cpp | ||
CGExprAgg.cpp | ||
CGExprCXX.cpp | ||
CGExprComplex.cpp | ||
CGExprConstant.cpp | ||
CGExprScalar.cpp | ||
CGGPUBuiltin.cpp | ||
CGLoopInfo.cpp | ||
CGLoopInfo.h | ||
CGNonTrivialStruct.cpp | ||
CGObjC.cpp | ||
CGObjCGNU.cpp | ||
CGObjCMac.cpp | ||
CGObjCRuntime.cpp | ||
CGObjCRuntime.h | ||
CGOpenCLRuntime.cpp | ||
CGOpenCLRuntime.h | ||
CGOpenMPRuntime.cpp | ||
CGOpenMPRuntime.h | ||
CGOpenMPRuntimeNVPTX.cpp | ||
CGOpenMPRuntimeNVPTX.h | ||
CGRecordLayout.h | ||
CGRecordLayoutBuilder.cpp | ||
CGStmt.cpp | ||
CGStmtOpenMP.cpp | ||
CGVTT.cpp | ||
CGVTables.cpp | ||
CGVTables.h | ||
CGValue.h | ||
CMakeLists.txt | ||
CodeGenABITypes.cpp | ||
CodeGenAction.cpp | ||
CodeGenFunction.cpp | ||
CodeGenFunction.h | ||
CodeGenModule.cpp | ||
CodeGenModule.h | ||
CodeGenPGO.cpp | ||
CodeGenPGO.h | ||
CodeGenTBAA.cpp | ||
CodeGenTBAA.h | ||
CodeGenTypeCache.h | ||
CodeGenTypes.cpp | ||
CodeGenTypes.h | ||
ConstantEmitter.h | ||
ConstantInitBuilder.cpp | ||
CoverageMappingGen.cpp | ||
CoverageMappingGen.h | ||
EHScopeStack.h | ||
ItaniumCXXABI.cpp | ||
MacroPPCallbacks.cpp | ||
MacroPPCallbacks.h | ||
MicrosoftCXXABI.cpp | ||
ModuleBuilder.cpp | ||
ObjectFilePCHContainerOperations.cpp | ||
README.txt | ||
SanitizerMetadata.cpp | ||
SanitizerMetadata.h | ||
SwiftCallingConv.cpp | ||
TargetInfo.cpp | ||
TargetInfo.h | ||
VarBypassDetector.cpp | ||
VarBypassDetector.h |
README.txt
IRgen optimization opportunities. //===---------------------------------------------------------------------===// The common pattern of -- short x; // or char, etc (x == 10) -- generates an zext/sext of x which can easily be avoided. //===---------------------------------------------------------------------===// Bitfields accesses can be shifted to simplify masking and sign extension. For example, if the bitfield width is 8 and it is appropriately aligned then is is a lot shorter to just load the char directly. //===---------------------------------------------------------------------===// It may be worth avoiding creation of alloca's for formal arguments for the common situation where the argument is never written to or has its address taken. The idea would be to begin generating code by using the argument directly and if its address is taken or it is stored to then generate the alloca and patch up the existing code. In theory, the same optimization could be a win for block local variables as long as the declaration dominates all statements in the block. NOTE: The main case we care about this for is for -O0 -g compile time performance, and in that scenario we will need to emit the alloca anyway currently to emit proper debug info. So this is blocked by being able to emit debug information which refers to an LLVM temporary, not an alloca. //===---------------------------------------------------------------------===// We should try and avoid generating basic blocks which only contain jumps. At -O0, this penalizes us all the way from IRgen (malloc & instruction overhead), all the way down through code generation and assembly time. On 176.gcc:expr.ll, it looks like over 12% of basic blocks are just direct branches! //===---------------------------------------------------------------------===//