llvm-project/clang/test/SemaCXX/aggregate-initialization.cpp

237 lines
6.4 KiB
C++

// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++14 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++17 %s
// Verify that using an initializer list for a non-aggregate looks for
// constructors..
struct NonAggr1 { // expected-note 2 {{candidate constructor}}
NonAggr1(int, int) { } // expected-note {{candidate constructor}}
int m;
};
struct Base { };
struct NonAggr2 : public Base { // expected-note 0-3 {{candidate constructor}}
int m;
};
class NonAggr3 { // expected-note 3 {{candidate constructor}}
int m;
};
struct NonAggr4 { // expected-note 3 {{candidate constructor}}
int m;
virtual void f();
};
NonAggr1 na1 = { 17 }; // expected-error{{no matching constructor for initialization of 'NonAggr1'}}
NonAggr2 na2 = { 17 };
NonAggr3 na3 = { 17 }; // expected-error{{no matching constructor for initialization of 'NonAggr3'}}
NonAggr4 na4 = { 17 }; // expected-error{{no matching constructor for initialization of 'NonAggr4'}}
#if __cplusplus <= 201402L
// expected-error@-4{{no matching constructor for initialization of 'NonAggr2'}}
#else
// expected-error@-6{{requires explicit braces}}
NonAggr2 na2b = { {}, 17 }; // ok
#endif
// PR5817
typedef int type[][2];
const type foo = {0};
// Vector initialization.
typedef short __v4hi __attribute__ ((__vector_size__ (8)));
__v4hi v1 = { (void *)1, 2, 3 }; // expected-error {{cannot initialize a vector element of type 'short' with an rvalue of type 'void *'}}
// Array initialization.
int a[] = { (void *)1 }; // expected-error {{cannot initialize an array element of type 'int' with an rvalue of type 'void *'}}
// Struct initialization.
struct S { int a; } s = { (void *)1 }; // expected-error {{cannot initialize a member subobject of type 'int' with an rvalue of type 'void *'}}
// Check that we're copy-initializing the structs.
struct A {
A();
A(int);
~A();
A(const A&) = delete; // expected-note 0-2{{'A' has been explicitly marked deleted here}}
};
struct B {
A a;
};
struct C {
const A& a;
};
void f() {
A as1[1] = { };
A as2[1] = { 1 };
#if __cplusplus <= 201402L
// expected-error@-2 {{copying array element of type 'A' invokes deleted constructor}}
#endif
B b1 = { };
B b2 = { 1 };
#if __cplusplus <= 201402L
// expected-error@-2 {{copying member subobject of type 'A' invokes deleted constructor}}
#endif
C c1 = { 1 };
}
class Agg {
public:
int i, j;
};
class AggAgg {
public:
Agg agg1;
Agg agg2;
};
AggAgg aggagg = { 1, 2, 3, 4 };
namespace diff_cpp14_dcl_init_aggr_example {
struct derived;
struct base {
friend struct derived;
private:
base();
};
struct derived : base {};
derived d1{};
#if __cplusplus > 201402L
// expected-error@-2 {{private}}
// expected-note@-7 {{here}}
#endif
derived d2;
}
namespace ProtectedBaseCtor {
// FIXME: It's unclear whether f() and g() should be valid in C++1z. What is
// the object expression in a constructor call -- the base class subobject or
// the complete object?
struct A {
protected:
A();
};
struct B : public A {
friend B f();
friend B g();
friend B h();
};
B f() { return {}; }
#if __cplusplus > 201402L
// expected-error@-2 {{protected default constructor}}
// expected-note@-12 {{here}}
#endif
B g() { return {{}}; }
#if __cplusplus <= 201402L
// expected-error@-2 {{no matching constructor}}
// expected-note@-15 3{{candidate}}
#else
// expected-error@-5 {{protected default constructor}}
// expected-note@-21 {{here}}
#endif
B h() { return {A{}}; }
#if __cplusplus <= 201402L
// expected-error@-2 {{no matching constructor}}
// expected-note@-24 3{{candidate}}
#endif
// expected-error@-5 {{protected constructor}}
// expected-note@-30 {{here}}
}
namespace IdiomaticStdArrayInitDoesNotWarn {
#pragma clang diagnostic push
#pragma clang diagnostic warning "-Wmissing-braces"
template<typename T, int N> struct StdArray {
T contents[N];
};
StdArray<int, 3> x = {1, 2, 3};
template<typename T, int N> struct ArrayAndSomethingElse {
T contents[N];
int something_else;
};
ArrayAndSomethingElse<int, 3> y = {1, 2, 3}; // expected-warning {{suggest braces}}
#if __cplusplus >= 201703L
template<typename T, int N> struct ArrayAndBaseClass : StdArray<int, 3> {
T contents[N];
};
ArrayAndBaseClass<int, 3> z = {1, 2, 3}; // expected-warning {{suggest braces}}
// It's not clear whether we should be warning in this case. If this
// pattern becomes idiomatic, it would be reasonable to suppress the
// warning here too.
template<typename T, int N> struct JustABaseClass : StdArray<T, N> {};
JustABaseClass<int, 3> w = {1, 2, 3}; // expected-warning {{suggest braces}}
#endif
#pragma clang diagnostic pop
}
namespace HugeArraysUseArrayFiller {
// All we're checking here is that initialization completes in a reasonable
// amount of time.
struct A { int n; int arr[1000 * 1000 * 1000]; } a = {1, {2}};
}
namespace ElementDestructor {
// The destructor for each element of class type is potentially invoked
// (15.4 [class.dtor]) from the context where the aggregate initialization
// occurs. Produce a diagnostic if an element's destructor isn't accessible.
class X { int f; ~X(); }; // expected-note {{implicitly declared private here}}
struct Y { X x; };
void test0() {
auto *y = new Y {}; // expected-error {{temporary of type 'ElementDestructor::X' has private destructor}}
}
struct S0 { int f; ~S0() = delete; }; // expected-note 3 {{'~S0' has been explicitly marked deleted here}}
struct S1 { S0 s0; int f; };
S1 test1() {
auto *t = new S1 { .f = 1 }; // expected-error {{attempt to use a deleted function}}
return {2}; // expected-error {{attempt to use a deleted function}}
}
// Check if the type of an array element has a destructor.
struct S2 { S0 a[4]; };
void test2() {
auto *t = new S2 {1,2,3,4}; // expected-error {{attempt to use a deleted function}}
}
#if __cplusplus >= 201703L
namespace BaseDestructor {
struct S0 { int f; ~S0() = delete; }; // expected-note {{'~S0' has been explicitly marked deleted here}}
// Check destructor of base class.
struct S3 : S0 {};
void test3() {
S3 s3 = {1}; // expected-error {{attempt to use a deleted function}}
}
}
#endif
// A's destructor doesn't have to be accessible from the context of C's
// initialization.
struct A { friend struct B; private: ~A(); };
struct B { B(); A a; };
struct C { B b; };
C c = { B() };
}