llvm-project/llvm/lib/DebugInfo/PDB/Native/DbiModuleList.cpp

274 lines
8.1 KiB
C++

//===- DbiModuleList.cpp - PDB module information list ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/PDB/Native/DbiModuleList.h"
#include "llvm/DebugInfo/PDB/Native/RawError.h"
#include "llvm/Support/Error.h"
using namespace llvm;
using namespace llvm::pdb;
DbiModuleSourceFilesIterator::DbiModuleSourceFilesIterator(
const DbiModuleList &Modules, uint32_t Modi, uint16_t Filei)
: Modules(&Modules), Modi(Modi), Filei(Filei) {
setValue();
}
bool DbiModuleSourceFilesIterator::
operator==(const DbiModuleSourceFilesIterator &R) const {
// incompatible iterators are never equal
if (!isCompatible(R))
return false;
// If they're compatible, and they're both ends, then they're equal.
if (isEnd() && R.isEnd())
return true;
// If one is an end and the other is not, they're not equal.
if (isEnd() != R.isEnd())
return false;
// Now we know:
// - They're compatible
// - They're not *both* end iterators
// - Their endness is the same.
// Thus, they're compatible iterators pointing to a valid file on the same
// module. All we need to check are the file indices.
assert(Modules == R.Modules);
assert(Modi == R.Modi);
assert(!isEnd());
assert(!R.isEnd());
return (Filei == R.Filei);
}
bool DbiModuleSourceFilesIterator::
operator<(const DbiModuleSourceFilesIterator &R) const {
assert(isCompatible(R));
// It's not sufficient to compare the file indices, because default
// constructed iterators could be equal to iterators with valid indices. To
// account for this, early-out if they're equal.
if (*this == R)
return false;
return Filei < R.Filei;
}
std::ptrdiff_t DbiModuleSourceFilesIterator::
operator-(const DbiModuleSourceFilesIterator &R) const {
assert(isCompatible(R));
assert(!(*this < R));
// If they're both end iterators, the distance is 0.
if (isEnd() && R.isEnd())
return 0;
assert(!R.isEnd());
// At this point, R cannot be end, but *this can, which means that *this
// might be a universal end iterator with none of its fields set. So in that
// case have to rely on R as the authority to figure out how many files there
// are to compute the distance.
uint32_t Thisi = Filei;
if (isEnd()) {
uint32_t RealModi = R.Modi;
Thisi = R.Modules->getSourceFileCount(RealModi);
}
assert(Thisi >= R.Filei);
return Thisi - R.Filei;
}
DbiModuleSourceFilesIterator &DbiModuleSourceFilesIterator::
operator+=(std::ptrdiff_t N) {
assert(!isEnd());
Filei += N;
assert(Filei <= Modules->getSourceFileCount(Modi));
setValue();
return *this;
}
DbiModuleSourceFilesIterator &DbiModuleSourceFilesIterator::
operator-=(std::ptrdiff_t N) {
// Note that we can subtract from an end iterator, but not a universal end
// iterator.
assert(!isUniversalEnd());
assert(N <= Filei);
Filei -= N;
return *this;
}
void DbiModuleSourceFilesIterator::setValue() {
if (isEnd()) {
ThisValue = "";
return;
}
uint32_t Off = Modules->ModuleInitialFileIndex[Modi] + Filei;
auto ExpectedValue = Modules->getFileName(Off);
if (!ExpectedValue) {
consumeError(ExpectedValue.takeError());
Filei = Modules->getSourceFileCount(Modi);
} else
ThisValue = *ExpectedValue;
}
bool DbiModuleSourceFilesIterator::isEnd() const {
if (isUniversalEnd())
return true;
assert(Modules);
assert(Modi <= Modules->getModuleCount());
assert(Filei <= Modules->getSourceFileCount(Modi));
if (Modi == Modules->getModuleCount())
return true;
if (Filei == Modules->getSourceFileCount(Modi))
return true;
return false;
}
bool DbiModuleSourceFilesIterator::isUniversalEnd() const { return !Modules; }
bool DbiModuleSourceFilesIterator::isCompatible(
const DbiModuleSourceFilesIterator &R) const {
// Universal iterators are compatible with any other iterator.
if (isUniversalEnd() || R.isUniversalEnd())
return true;
// At this point, neither iterator is a universal end iterator, although one
// or both might be non-universal end iterators. Regardless, the module index
// is valid, so they are compatible if and only if they refer to the same
// module.
return Modi == R.Modi;
}
Error DbiModuleList::initialize(BinaryStreamRef ModInfo,
BinaryStreamRef FileInfo) {
if (auto EC = initializeModInfo(ModInfo))
return EC;
if (auto EC = initializeFileInfo(FileInfo))
return EC;
return Error::success();
}
Error DbiModuleList::initializeModInfo(BinaryStreamRef ModInfo) {
ModInfoSubstream = ModInfo;
if (ModInfo.getLength() == 0)
return Error::success();
BinaryStreamReader Reader(ModInfo);
if (auto EC = Reader.readArray(Descriptors, ModInfo.getLength()))
return EC;
return Error::success();
}
Error DbiModuleList::initializeFileInfo(BinaryStreamRef FileInfo) {
FileInfoSubstream = FileInfo;
if (FileInfo.getLength() == 0)
return Error::success();
BinaryStreamReader FISR(FileInfo);
if (auto EC = FISR.readObject(FileInfoHeader))
return EC;
// First is an array of `NumModules` module indices. This does not seem to be
// used for anything meaningful, so we ignore it.
FixedStreamArray<support::ulittle16_t> ModuleIndices;
if (auto EC = FISR.readArray(ModuleIndices, FileInfoHeader->NumModules))
return EC;
if (auto EC = FISR.readArray(ModFileCountArray, FileInfoHeader->NumModules))
return EC;
// Compute the real number of source files. We can't trust the value in
// `FileInfoHeader->NumSourceFiles` because it is a unit16, and the sum of all
// source file counts might be larger than a unit16. So we compute the real
// count by summing up the individual counts.
uint32_t NumSourceFiles = 0;
for (auto Count : ModFileCountArray)
NumSourceFiles += Count;
// In the reference implementation, this array is where the pointer documented
// at the definition of ModuleInfoHeader::FileNameOffs points to. Note that
// although the field in ModuleInfoHeader is ignored this array is not, as it
// is the authority on where each filename begins in the names buffer.
if (auto EC = FISR.readArray(FileNameOffsets, NumSourceFiles))
return EC;
if (auto EC = FISR.readStreamRef(NamesBuffer))
return EC;
auto DescriptorIter = Descriptors.begin();
uint32_t NextFileIndex = 0;
ModuleInitialFileIndex.resize(FileInfoHeader->NumModules);
ModuleDescriptorOffsets.resize(FileInfoHeader->NumModules);
for (size_t I = 0; I < FileInfoHeader->NumModules; ++I) {
assert(DescriptorIter != Descriptors.end());
ModuleInitialFileIndex[I] = NextFileIndex;
ModuleDescriptorOffsets[I] = DescriptorIter.offset();
NextFileIndex += ModFileCountArray[I];
++DescriptorIter;
}
assert(DescriptorIter == Descriptors.end());
assert(NextFileIndex == NumSourceFiles);
return Error::success();
}
uint32_t DbiModuleList::getModuleCount() const {
return FileInfoHeader->NumModules;
}
uint32_t DbiModuleList::getSourceFileCount() const {
return FileNameOffsets.size();
}
uint16_t DbiModuleList::getSourceFileCount(uint32_t Modi) const {
return ModFileCountArray[Modi];
}
DbiModuleDescriptor DbiModuleList::getModuleDescriptor(uint32_t Modi) const {
assert(Modi < getModuleCount());
uint32_t Offset = ModuleDescriptorOffsets[Modi];
auto Iter = Descriptors.at(Offset);
assert(Iter != Descriptors.end());
return *Iter;
}
iterator_range<DbiModuleSourceFilesIterator>
DbiModuleList::source_files(uint32_t Modi) const {
return make_range<DbiModuleSourceFilesIterator>(
DbiModuleSourceFilesIterator(*this, Modi, 0),
DbiModuleSourceFilesIterator());
}
Expected<StringRef> DbiModuleList::getFileName(uint32_t Index) const {
BinaryStreamReader Names(NamesBuffer);
if (Index >= getSourceFileCount())
return make_error<RawError>(raw_error_code::index_out_of_bounds);
uint32_t FileOffset = FileNameOffsets[Index];
Names.setOffset(FileOffset);
StringRef Name;
if (auto EC = Names.readCString(Name))
return std::move(EC);
return Name;
}