forked from OSchip/llvm-project
247 lines
8.1 KiB
C++
247 lines
8.1 KiB
C++
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the X86 specific subclass of TargetMachine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86TargetMachine.h"
|
|
#include "X86.h"
|
|
#include "X86TargetObjectFile.h"
|
|
#include "X86TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
extern "C" void LLVMInitializeX86Target() {
|
|
// Register the target.
|
|
RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
|
|
RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
|
|
}
|
|
|
|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
|
if (TT.isOSBinFormatMachO()) {
|
|
if (TT.getArch() == Triple::x86_64)
|
|
return make_unique<X86_64MachoTargetObjectFile>();
|
|
return make_unique<TargetLoweringObjectFileMachO>();
|
|
}
|
|
|
|
if (TT.isOSLinux())
|
|
return make_unique<X86LinuxTargetObjectFile>();
|
|
if (TT.isOSBinFormatELF())
|
|
return make_unique<TargetLoweringObjectFileELF>();
|
|
if (TT.isKnownWindowsMSVCEnvironment())
|
|
return make_unique<X86WindowsTargetObjectFile>();
|
|
if (TT.isOSBinFormatCOFF())
|
|
return make_unique<TargetLoweringObjectFileCOFF>();
|
|
llvm_unreachable("unknown subtarget type");
|
|
}
|
|
|
|
static std::string computeDataLayout(const Triple &TT) {
|
|
// X86 is little endian
|
|
std::string Ret = "e";
|
|
|
|
Ret += DataLayout::getManglingComponent(TT);
|
|
// X86 and x32 have 32 bit pointers.
|
|
if ((TT.isArch64Bit() &&
|
|
(TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
|
|
!TT.isArch64Bit())
|
|
Ret += "-p:32:32";
|
|
|
|
// Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
|
|
if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
|
|
Ret += "-i64:64";
|
|
else
|
|
Ret += "-f64:32:64";
|
|
|
|
// Some ABIs align long double to 128 bits, others to 32.
|
|
if (TT.isOSNaCl())
|
|
; // No f80
|
|
else if (TT.isArch64Bit() || TT.isOSDarwin())
|
|
Ret += "-f80:128";
|
|
else
|
|
Ret += "-f80:32";
|
|
|
|
// The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
|
|
if (TT.isArch64Bit())
|
|
Ret += "-n8:16:32:64";
|
|
else
|
|
Ret += "-n8:16:32";
|
|
|
|
// The stack is aligned to 32 bits on some ABIs and 128 bits on others.
|
|
if (!TT.isArch64Bit() && TT.isOSWindows())
|
|
Ret += "-S32";
|
|
else
|
|
Ret += "-S128";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
/// X86TargetMachine ctor - Create an X86 target.
|
|
///
|
|
X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
|
|
StringRef FS, const TargetOptions &Options,
|
|
Reloc::Model RM, CodeModel::Model CM,
|
|
CodeGenOpt::Level OL)
|
|
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
|
|
TLOF(createTLOF(Triple(getTargetTriple()))),
|
|
DL(computeDataLayout(Triple(TT))),
|
|
Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
|
|
// default to hard float ABI
|
|
if (Options.FloatABIType == FloatABI::Default)
|
|
this->Options.FloatABIType = FloatABI::Hard;
|
|
|
|
// Windows stack unwinder gets confused when execution flow "falls through"
|
|
// after a call to 'noreturn' function.
|
|
// To prevent that, we emit a trap for 'unreachable' IR instructions.
|
|
// (which on X86, happens to be the 'ud2' instruction)
|
|
if (Subtarget.isTargetWin64())
|
|
this->Options.TrapUnreachable = true;
|
|
|
|
initAsmInfo();
|
|
}
|
|
|
|
X86TargetMachine::~X86TargetMachine() {}
|
|
|
|
const X86Subtarget *
|
|
X86TargetMachine::getSubtargetImpl(const Function &F) const {
|
|
AttributeSet FnAttrs = F.getAttributes();
|
|
Attribute CPUAttr =
|
|
FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
|
|
Attribute FSAttr =
|
|
FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
|
|
|
|
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
|
|
? CPUAttr.getValueAsString().str()
|
|
: TargetCPU;
|
|
std::string FS = !FSAttr.hasAttribute(Attribute::None)
|
|
? FSAttr.getValueAsString().str()
|
|
: TargetFS;
|
|
|
|
// FIXME: This is related to the code below to reset the target options,
|
|
// we need to know whether or not the soft float flag is set on the
|
|
// function before we can generate a subtarget. We also need to use
|
|
// it as a key for the subtarget since that can be the only difference
|
|
// between two functions.
|
|
Attribute SFAttr =
|
|
FnAttrs.getAttribute(AttributeSet::FunctionIndex, "use-soft-float");
|
|
bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
|
|
? SFAttr.getValueAsString() == "true"
|
|
: Options.UseSoftFloat;
|
|
|
|
auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
|
|
: "use-soft-float=false")];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
|
|
Options.StackAlignmentOverride);
|
|
}
|
|
return I.get();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Command line options for x86
|
|
//===----------------------------------------------------------------------===//
|
|
static cl::opt<bool>
|
|
UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
|
|
cl::desc("Minimize AVX to SSE transition penalty"),
|
|
cl::init(true));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 TTI query.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() {
|
|
return TargetIRAnalysis(
|
|
[this](Function &F) { return TargetTransformInfo(X86TTIImpl(this, F)); });
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pass Pipeline Configuration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// X86 Code Generator Pass Configuration Options.
|
|
class X86PassConfig : public TargetPassConfig {
|
|
public:
|
|
X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
X86TargetMachine &getX86TargetMachine() const {
|
|
return getTM<X86TargetMachine>();
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
bool addInstSelector() override;
|
|
bool addILPOpts() override;
|
|
void addPreRegAlloc() override;
|
|
void addPostRegAlloc() override;
|
|
void addPreEmitPass() override;
|
|
};
|
|
} // namespace
|
|
|
|
TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new X86PassConfig(this, PM);
|
|
}
|
|
|
|
void X86PassConfig::addIRPasses() {
|
|
addPass(createAtomicExpandPass(&getX86TargetMachine()));
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
}
|
|
|
|
bool X86PassConfig::addInstSelector() {
|
|
// Install an instruction selector.
|
|
addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
|
|
|
|
// For ELF, cleanup any local-dynamic TLS accesses.
|
|
if (Triple(TM->getTargetTriple()).isOSBinFormatELF() &&
|
|
getOptLevel() != CodeGenOpt::None)
|
|
addPass(createCleanupLocalDynamicTLSPass());
|
|
|
|
addPass(createX86GlobalBaseRegPass());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86PassConfig::addILPOpts() {
|
|
addPass(&EarlyIfConverterID);
|
|
return true;
|
|
}
|
|
|
|
void X86PassConfig::addPreRegAlloc() {
|
|
addPass(createX86CallFrameOptimization());
|
|
}
|
|
|
|
void X86PassConfig::addPostRegAlloc() {
|
|
addPass(createX86FloatingPointStackifierPass());
|
|
}
|
|
|
|
void X86PassConfig::addPreEmitPass() {
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
|
|
|
|
if (UseVZeroUpper)
|
|
addPass(createX86IssueVZeroUpperPass());
|
|
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createX86PadShortFunctions());
|
|
addPass(createX86FixupLEAs());
|
|
}
|
|
}
|