llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp

1436 lines
51 KiB
C++

//===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file defines CallEvent and its subclasses, which represent path-
/// sensitive instances of different kinds of function and method calls
/// (C, C++, and Objective-C).
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/CrossTU/CrossTranslationUnit.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <utility>
#define DEBUG_TYPE "static-analyzer-call-event"
using namespace clang;
using namespace ento;
QualType CallEvent::getResultType() const {
ASTContext &Ctx = getState()->getStateManager().getContext();
const Expr *E = getOriginExpr();
if (!E)
return Ctx.VoidTy;
assert(E);
QualType ResultTy = E->getType();
// A function that returns a reference to 'int' will have a result type
// of simply 'int'. Check the origin expr's value kind to recover the
// proper type.
switch (E->getValueKind()) {
case VK_LValue:
ResultTy = Ctx.getLValueReferenceType(ResultTy);
break;
case VK_XValue:
ResultTy = Ctx.getRValueReferenceType(ResultTy);
break;
case VK_RValue:
// No adjustment is necessary.
break;
}
return ResultTy;
}
static bool isCallback(QualType T) {
// If a parameter is a block or a callback, assume it can modify pointer.
if (T->isBlockPointerType() ||
T->isFunctionPointerType() ||
T->isObjCSelType())
return true;
// Check if a callback is passed inside a struct (for both, struct passed by
// reference and by value). Dig just one level into the struct for now.
if (T->isAnyPointerType() || T->isReferenceType())
T = T->getPointeeType();
if (const RecordType *RT = T->getAsStructureType()) {
const RecordDecl *RD = RT->getDecl();
for (const auto *I : RD->fields()) {
QualType FieldT = I->getType();
if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
return true;
}
}
return false;
}
static bool isVoidPointerToNonConst(QualType T) {
if (const auto *PT = T->getAs<PointerType>()) {
QualType PointeeTy = PT->getPointeeType();
if (PointeeTy.isConstQualified())
return false;
return PointeeTy->isVoidType();
} else
return false;
}
bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
unsigned NumOfArgs = getNumArgs();
// If calling using a function pointer, assume the function does not
// satisfy the callback.
// TODO: We could check the types of the arguments here.
if (!getDecl())
return false;
unsigned Idx = 0;
for (CallEvent::param_type_iterator I = param_type_begin(),
E = param_type_end();
I != E && Idx < NumOfArgs; ++I, ++Idx) {
// If the parameter is 0, it's harmless.
if (getArgSVal(Idx).isZeroConstant())
continue;
if (Condition(*I))
return true;
}
return false;
}
bool CallEvent::hasNonZeroCallbackArg() const {
return hasNonNullArgumentsWithType(isCallback);
}
bool CallEvent::hasVoidPointerToNonConstArg() const {
return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
}
bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
if (!FD)
return false;
return CheckerContext::isCLibraryFunction(FD, FunctionName);
}
AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
const Decl *D = getDecl();
if (!D)
return nullptr;
// TODO: For now we skip functions without definitions, even if we have
// our own getDecl(), because it's hard to find out which re-declaration
// is going to be used, and usually clients don't really care about this
// situation because there's a loss of precision anyway because we cannot
// inline the call.
RuntimeDefinition RD = getRuntimeDefinition();
if (!RD.getDecl())
return nullptr;
AnalysisDeclContext *ADC =
LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
// TODO: For now we skip virtual functions, because this also rises
// the problem of which decl to use, but now it's across different classes.
if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
return nullptr;
return ADC;
}
const StackFrameContext *CallEvent::getCalleeStackFrame() const {
AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
if (!ADC)
return nullptr;
const Expr *E = getOriginExpr();
if (!E)
return nullptr;
// Recover CFG block via reverse lookup.
// TODO: If we were to keep CFG element information as part of the CallEvent
// instead of doing this reverse lookup, we would be able to build the stack
// frame for non-expression-based calls, and also we wouldn't need the reverse
// lookup.
CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
const CFGBlock *B = Map->getBlock(E);
assert(B);
// Also recover CFG index by scanning the CFG block.
unsigned Idx = 0, Sz = B->size();
for (; Idx < Sz; ++Idx)
if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
if (StmtElem->getStmt() == E)
break;
assert(Idx < Sz);
return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
}
const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
const StackFrameContext *SFC = getCalleeStackFrame();
// We cannot construct a VarRegion without a stack frame.
if (!SFC)
return nullptr;
// Retrieve parameters of the definition, which are different from
// CallEvent's parameters() because getDecl() isn't necessarily
// the definition. SFC contains the definition that would be used
// during analysis.
const Decl *D = SFC->getDecl();
// TODO: Refactor into a virtual method of CallEvent, like parameters().
const ParmVarDecl *PVD = nullptr;
if (const auto *FD = dyn_cast<FunctionDecl>(D))
PVD = FD->parameters()[Index];
else if (const auto *BD = dyn_cast<BlockDecl>(D))
PVD = BD->parameters()[Index];
else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
PVD = MD->parameters()[Index];
else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
PVD = CD->parameters()[Index];
assert(PVD && "Unexpected Decl kind!");
const VarRegion *VR =
State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
// This sanity check would fail if our parameter declaration doesn't
// correspond to the stack frame's function declaration.
assert(VR->getStackFrame() == SFC);
return VR;
}
/// Returns true if a type is a pointer-to-const or reference-to-const
/// with no further indirection.
static bool isPointerToConst(QualType Ty) {
QualType PointeeTy = Ty->getPointeeType();
if (PointeeTy == QualType())
return false;
if (!PointeeTy.isConstQualified())
return false;
if (PointeeTy->isAnyPointerType())
return false;
return true;
}
// Try to retrieve the function declaration and find the function parameter
// types which are pointers/references to a non-pointer const.
// We will not invalidate the corresponding argument regions.
static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
const CallEvent &Call) {
unsigned Idx = 0;
for (CallEvent::param_type_iterator I = Call.param_type_begin(),
E = Call.param_type_end();
I != E; ++I, ++Idx) {
if (isPointerToConst(*I))
PreserveArgs.insert(Idx);
}
}
ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
ProgramStateRef Orig) const {
ProgramStateRef Result = (Orig ? Orig : getState());
// Don't invalidate anything if the callee is marked pure/const.
if (const Decl *callee = getDecl())
if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
return Result;
SmallVector<SVal, 8> ValuesToInvalidate;
RegionAndSymbolInvalidationTraits ETraits;
getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
// Indexes of arguments whose values will be preserved by the call.
llvm::SmallSet<unsigned, 4> PreserveArgs;
if (!argumentsMayEscape())
findPtrToConstParams(PreserveArgs, *this);
for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
// Mark this region for invalidation. We batch invalidate regions
// below for efficiency.
if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) {
bool UseBaseRegion = true;
if (const auto *FR = MR->getAs<FieldRegion>()) {
if (const auto *TVR = FR->getSuperRegion()->getAs<TypedValueRegion>()) {
if (!TVR->getValueType()->isUnionType()) {
ETraits.setTrait(MR, RegionAndSymbolInvalidationTraits::
TK_DoNotInvalidateSuperRegion);
UseBaseRegion = false;
}
}
}
// todo: factor this out + handle the lower level const pointers.
if (PreserveArgs.count(Idx))
ETraits.setTrait(
UseBaseRegion ? MR->getBaseRegion() : MR,
RegionAndSymbolInvalidationTraits::TK_PreserveContents);
}
ValuesToInvalidate.push_back(getArgSVal(Idx));
// If a function accepts an object by argument (which would of course be a
// temporary that isn't lifetime-extended), invalidate the object itself,
// not only other objects reachable from it. This is necessary because the
// destructor has access to the temporary object after the call.
// TODO: Support placement arguments once we start
// constructing them directly.
// TODO: This is unnecessary when there's no destructor, but that's
// currently hard to figure out.
if (getKind() != CE_CXXAllocator)
if (isArgumentConstructedDirectly(Idx))
if (auto AdjIdx = getAdjustedParameterIndex(Idx))
if (const VarRegion *VR = getParameterLocation(*AdjIdx))
ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
}
// Invalidate designated regions using the batch invalidation API.
// NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
// global variables.
return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
BlockCount, getLocationContext(),
/*CausedByPointerEscape*/ true,
/*Symbols=*/nullptr, this, &ETraits);
}
ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
const ProgramPointTag *Tag) const {
if (const Expr *E = getOriginExpr()) {
if (IsPreVisit)
return PreStmt(E, getLocationContext(), Tag);
return PostStmt(E, getLocationContext(), Tag);
}
const Decl *D = getDecl();
assert(D && "Cannot get a program point without a statement or decl");
SourceLocation Loc = getSourceRange().getBegin();
if (IsPreVisit)
return PreImplicitCall(D, Loc, getLocationContext(), Tag);
return PostImplicitCall(D, Loc, getLocationContext(), Tag);
}
bool CallEvent::isCalled(const CallDescription &CD) const {
// FIXME: Add ObjC Message support.
if (getKind() == CE_ObjCMessage)
return false;
if (!CD.IsLookupDone) {
CD.IsLookupDone = true;
CD.II = &getState()->getStateManager().getContext().Idents.get(
CD.getFunctionName());
}
const IdentifierInfo *II = getCalleeIdentifier();
if (!II || II != CD.II)
return false;
const Decl *D = getDecl();
// If CallDescription provides prefix names, use them to improve matching
// accuracy.
if (CD.QualifiedName.size() > 1 && D) {
const DeclContext *Ctx = D->getDeclContext();
// See if we'll be able to match them all.
size_t NumUnmatched = CD.QualifiedName.size() - 1;
for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
if (NumUnmatched == 0)
break;
if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
--NumUnmatched;
continue;
}
if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
--NumUnmatched;
continue;
}
}
if (NumUnmatched > 0)
return false;
}
return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
CD.RequiredArgs == getNumArgs());
}
SVal CallEvent::getArgSVal(unsigned Index) const {
const Expr *ArgE = getArgExpr(Index);
if (!ArgE)
return UnknownVal();
return getSVal(ArgE);
}
SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
const Expr *ArgE = getArgExpr(Index);
if (!ArgE)
return {};
return ArgE->getSourceRange();
}
SVal CallEvent::getReturnValue() const {
const Expr *E = getOriginExpr();
if (!E)
return UndefinedVal();
return getSVal(E);
}
LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
void CallEvent::dump(raw_ostream &Out) const {
ASTContext &Ctx = getState()->getStateManager().getContext();
if (const Expr *E = getOriginExpr()) {
E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
Out << "\n";
return;
}
if (const Decl *D = getDecl()) {
Out << "Call to ";
D->print(Out, Ctx.getPrintingPolicy());
return;
}
// FIXME: a string representation of the kind would be nice.
Out << "Unknown call (type " << getKind() << ")";
}
bool CallEvent::isCallStmt(const Stmt *S) {
return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
|| isa<CXXConstructExpr>(S)
|| isa<CXXNewExpr>(S);
}
QualType CallEvent::getDeclaredResultType(const Decl *D) {
assert(D);
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getReturnType();
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getReturnType();
if (const auto *BD = dyn_cast<BlockDecl>(D)) {
// Blocks are difficult because the return type may not be stored in the
// BlockDecl itself. The AST should probably be enhanced, but for now we
// just do what we can.
// If the block is declared without an explicit argument list, the
// signature-as-written just includes the return type, not the entire
// function type.
// FIXME: All blocks should have signatures-as-written, even if the return
// type is inferred. (That's signified with a dependent result type.)
if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
QualType Ty = TSI->getType();
if (const FunctionType *FT = Ty->getAs<FunctionType>())
Ty = FT->getReturnType();
if (!Ty->isDependentType())
return Ty;
}
return {};
}
llvm_unreachable("unknown callable kind");
}
bool CallEvent::isVariadic(const Decl *D) {
assert(D);
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->isVariadic();
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->isVariadic();
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->isVariadic();
llvm_unreachable("unknown callable kind");
}
static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
CallEvent::BindingsTy &Bindings,
SValBuilder &SVB,
const CallEvent &Call,
ArrayRef<ParmVarDecl*> parameters) {
MemRegionManager &MRMgr = SVB.getRegionManager();
// If the function has fewer parameters than the call has arguments, we simply
// do not bind any values to them.
unsigned NumArgs = Call.getNumArgs();
unsigned Idx = 0;
ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
for (; I != E && Idx < NumArgs; ++I, ++Idx) {
const ParmVarDecl *ParamDecl = *I;
assert(ParamDecl && "Formal parameter has no decl?");
// TODO: Support allocator calls.
if (Call.getKind() != CE_CXXAllocator)
if (Call.isArgumentConstructedDirectly(Idx))
continue;
// TODO: Allocators should receive the correct size and possibly alignment,
// determined in compile-time but not represented as arg-expressions,
// which makes getArgSVal() fail and return UnknownVal.
SVal ArgVal = Call.getArgSVal(Idx);
if (!ArgVal.isUnknown()) {
Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
}
}
// FIXME: Variadic arguments are not handled at all right now.
}
ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
const FunctionDecl *D = getDecl();
if (!D)
return None;
return D->parameters();
}
RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
const FunctionDecl *FD = getDecl();
if (!FD)
return {};
// Note that the AnalysisDeclContext will have the FunctionDecl with
// the definition (if one exists).
AnalysisDeclContext *AD =
getLocationContext()->getAnalysisDeclContext()->
getManager()->getContext(FD);
bool IsAutosynthesized;
Stmt* Body = AD->getBody(IsAutosynthesized);
LLVM_DEBUG({
if (IsAutosynthesized)
llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
<< "\n";
});
if (Body) {
const Decl* Decl = AD->getDecl();
return RuntimeDefinition(Decl);
}
SubEngine &Engine = getState()->getStateManager().getOwningEngine();
AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
// Try to get CTU definition only if CTUDir is provided.
if (!Opts.IsNaiveCTUEnabled)
return {};
cross_tu::CrossTranslationUnitContext &CTUCtx =
*Engine.getCrossTranslationUnitContext();
llvm::Expected<const FunctionDecl *> CTUDeclOrError =
CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
Opts.DisplayCTUProgress);
if (!CTUDeclOrError) {
handleAllErrors(CTUDeclOrError.takeError(),
[&](const cross_tu::IndexError &IE) {
CTUCtx.emitCrossTUDiagnostics(IE);
});
return {};
}
return RuntimeDefinition(*CTUDeclOrError);
}
void AnyFunctionCall::getInitialStackFrameContents(
const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
D->parameters());
}
bool AnyFunctionCall::argumentsMayEscape() const {
if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
return true;
const FunctionDecl *D = getDecl();
if (!D)
return true;
const IdentifierInfo *II = D->getIdentifier();
if (!II)
return false;
// This set of "escaping" APIs is
// - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
// value into thread local storage. The value can later be retrieved with
// 'void *ptheread_getspecific(pthread_key)'. So even thought the
// parameter is 'const void *', the region escapes through the call.
if (II->isStr("pthread_setspecific"))
return true;
// - xpc_connection_set_context stores a value which can be retrieved later
// with xpc_connection_get_context.
if (II->isStr("xpc_connection_set_context"))
return true;
// - funopen - sets a buffer for future IO calls.
if (II->isStr("funopen"))
return true;
// - __cxa_demangle - can reallocate memory and can return the pointer to
// the input buffer.
if (II->isStr("__cxa_demangle"))
return true;
StringRef FName = II->getName();
// - CoreFoundation functions that end with "NoCopy" can free a passed-in
// buffer even if it is const.
if (FName.endswith("NoCopy"))
return true;
// - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
// be deallocated by NSMapRemove.
if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
return true;
// - Many CF containers allow objects to escape through custom
// allocators/deallocators upon container construction. (PR12101)
if (FName.startswith("CF") || FName.startswith("CG")) {
return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
StrInStrNoCase(FName, "WithData") != StringRef::npos ||
StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
}
return false;
}
const FunctionDecl *SimpleFunctionCall::getDecl() const {
const FunctionDecl *D = getOriginExpr()->getDirectCallee();
if (D)
return D;
return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
}
const FunctionDecl *CXXInstanceCall::getDecl() const {
const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
if (!CE)
return AnyFunctionCall::getDecl();
const FunctionDecl *D = CE->getDirectCallee();
if (D)
return D;
return getSVal(CE->getCallee()).getAsFunctionDecl();
}
void CXXInstanceCall::getExtraInvalidatedValues(
ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
SVal ThisVal = getCXXThisVal();
Values.push_back(ThisVal);
// Don't invalidate if the method is const and there are no mutable fields.
if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
if (!D->isConst())
return;
// Get the record decl for the class of 'This'. D->getParent() may return a
// base class decl, rather than the class of the instance which needs to be
// checked for mutable fields.
// TODO: We might as well look at the dynamic type of the object.
const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
QualType T = Ex->getType();
if (T->isPointerType()) // Arrow or implicit-this syntax?
T = T->getPointeeType();
const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
assert(ParentRecord);
if (ParentRecord->hasMutableFields())
return;
// Preserve CXXThis.
const MemRegion *ThisRegion = ThisVal.getAsRegion();
if (!ThisRegion)
return;
ETraits->setTrait(ThisRegion->getBaseRegion(),
RegionAndSymbolInvalidationTraits::TK_PreserveContents);
}
}
SVal CXXInstanceCall::getCXXThisVal() const {
const Expr *Base = getCXXThisExpr();
// FIXME: This doesn't handle an overloaded ->* operator.
if (!Base)
return UnknownVal();
SVal ThisVal = getSVal(Base);
assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
return ThisVal;
}
RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
// Do we have a decl at all?
const Decl *D = getDecl();
if (!D)
return {};
// If the method is non-virtual, we know we can inline it.
const auto *MD = cast<CXXMethodDecl>(D);
if (!MD->isVirtual())
return AnyFunctionCall::getRuntimeDefinition();
// Do we know the implicit 'this' object being called?
const MemRegion *R = getCXXThisVal().getAsRegion();
if (!R)
return {};
// Do we know anything about the type of 'this'?
DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
if (!DynType.isValid())
return {};
// Is the type a C++ class? (This is mostly a defensive check.)
QualType RegionType = DynType.getType()->getPointeeType();
assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
if (!RD || !RD->hasDefinition())
return {};
// Find the decl for this method in that class.
const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
if (!Result) {
// We might not even get the original statically-resolved method due to
// some particularly nasty casting (e.g. casts to sister classes).
// However, we should at least be able to search up and down our own class
// hierarchy, and some real bugs have been caught by checking this.
assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
// FIXME: This is checking that our DynamicTypeInfo is at least as good as
// the static type. However, because we currently don't update
// DynamicTypeInfo when an object is cast, we can't actually be sure the
// DynamicTypeInfo is up to date. This assert should be re-enabled once
// this is fixed. <rdar://problem/12287087>
//assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
return {};
}
// Does the decl that we found have an implementation?
const FunctionDecl *Definition;
if (!Result->hasBody(Definition))
return {};
// We found a definition. If we're not sure that this devirtualization is
// actually what will happen at runtime, make sure to provide the region so
// that ExprEngine can decide what to do with it.
if (DynType.canBeASubClass())
return RuntimeDefinition(Definition, R->StripCasts());
return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
}
void CXXInstanceCall::getInitialStackFrameContents(
const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
// Handle the binding of 'this' in the new stack frame.
SVal ThisVal = getCXXThisVal();
if (!ThisVal.isUnknown()) {
ProgramStateManager &StateMgr = getState()->getStateManager();
SValBuilder &SVB = StateMgr.getSValBuilder();
const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
// If we devirtualized to a different member function, we need to make sure
// we have the proper layering of CXXBaseObjectRegions.
if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
ASTContext &Ctx = SVB.getContext();
const CXXRecordDecl *Class = MD->getParent();
QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
// FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
bool Failed;
ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
if (Failed) {
// We might have suffered some sort of placement new earlier, so
// we're constructing in a completely unexpected storage.
// Fall back to a generic pointer cast for this-value.
const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
const CXXRecordDecl *StaticClass = StaticMD->getParent();
QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
}
}
if (!ThisVal.isUnknown())
Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
}
}
const Expr *CXXMemberCall::getCXXThisExpr() const {
return getOriginExpr()->getImplicitObjectArgument();
}
RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
// C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
// id-expression in the class member access expression is a qualified-id,
// that function is called. Otherwise, its final overrider in the dynamic type
// of the object expression is called.
if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
if (ME->hasQualifier())
return AnyFunctionCall::getRuntimeDefinition();
return CXXInstanceCall::getRuntimeDefinition();
}
const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
return getOriginExpr()->getArg(0);
}
const BlockDataRegion *BlockCall::getBlockRegion() const {
const Expr *Callee = getOriginExpr()->getCallee();
const MemRegion *DataReg = getSVal(Callee).getAsRegion();
return dyn_cast_or_null<BlockDataRegion>(DataReg);
}
ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
const BlockDecl *D = getDecl();
if (!D)
return None;
return D->parameters();
}
void BlockCall::getExtraInvalidatedValues(ValueList &Values,
RegionAndSymbolInvalidationTraits *ETraits) const {
// FIXME: This also needs to invalidate captured globals.
if (const MemRegion *R = getBlockRegion())
Values.push_back(loc::MemRegionVal(R));
}
void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
ArrayRef<ParmVarDecl*> Params;
if (isConversionFromLambda()) {
auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
Params = LambdaOperatorDecl->parameters();
// For blocks converted from a C++ lambda, the callee declaration is the
// operator() method on the lambda so we bind "this" to
// the lambda captured by the block.
const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
} else {
Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
}
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
Params);
}
SVal CXXConstructorCall::getCXXThisVal() const {
if (Data)
return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
return UnknownVal();
}
void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
RegionAndSymbolInvalidationTraits *ETraits) const {
if (Data) {
loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
if (SymbolRef Sym = MV.getAsSymbol(true))
ETraits->setTrait(Sym,
RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
Values.push_back(MV);
}
}
void CXXConstructorCall::getInitialStackFrameContents(
const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
SVal ThisVal = getCXXThisVal();
if (!ThisVal.isUnknown()) {
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
}
}
SVal CXXDestructorCall::getCXXThisVal() const {
if (Data)
return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
return UnknownVal();
}
RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
// Base destructors are always called non-virtually.
// Skip CXXInstanceCall's devirtualization logic in this case.
if (isBaseDestructor())
return AnyFunctionCall::getRuntimeDefinition();
return CXXInstanceCall::getRuntimeDefinition();
}
ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
const ObjCMethodDecl *D = getDecl();
if (!D)
return None;
return D->parameters();
}
void ObjCMethodCall::getExtraInvalidatedValues(
ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
// If the method call is a setter for property known to be backed by
// an instance variable, don't invalidate the entire receiver, just
// the storage for that instance variable.
if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
ETraits->setTrait(
IvarRegion,
RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
ETraits->setTrait(
IvarRegion,
RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
Values.push_back(IvarLVal);
}
return;
}
}
Values.push_back(getReceiverSVal());
}
SVal ObjCMethodCall::getSelfSVal() const {
const LocationContext *LCtx = getLocationContext();
const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
if (!SelfDecl)
return SVal();
return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
}
SVal ObjCMethodCall::getReceiverSVal() const {
// FIXME: Is this the best way to handle class receivers?
if (!isInstanceMessage())
return UnknownVal();
if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
return getSVal(RecE);
// An instance message with no expression means we are sending to super.
// In this case the object reference is the same as 'self'.
assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
SVal SelfVal = getSelfSVal();
assert(SelfVal.isValid() && "Calling super but not in ObjC method");
return SelfVal;
}
bool ObjCMethodCall::isReceiverSelfOrSuper() const {
if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
return true;
if (!isInstanceMessage())
return false;
SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
return (RecVal == getSelfSVal());
}
SourceRange ObjCMethodCall::getSourceRange() const {
switch (getMessageKind()) {
case OCM_Message:
return getOriginExpr()->getSourceRange();
case OCM_PropertyAccess:
case OCM_Subscript:
return getContainingPseudoObjectExpr()->getSourceRange();
}
llvm_unreachable("unknown message kind");
}
using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
assert(Data && "Lazy lookup not yet performed.");
assert(getMessageKind() != OCM_Message && "Explicit message send.");
return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
}
static const Expr *
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
const Expr *Syntactic = POE->getSyntacticForm();
// This handles the funny case of assigning to the result of a getter.
// This can happen if the getter returns a non-const reference.
if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
Syntactic = BO->getLHS();
return Syntactic;
}
ObjCMessageKind ObjCMethodCall::getMessageKind() const {
if (!Data) {
// Find the parent, ignoring implicit casts.
ParentMap &PM = getLocationContext()->getParentMap();
const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
// Check if parent is a PseudoObjectExpr.
if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
ObjCMessageKind K;
switch (Syntactic->getStmtClass()) {
case Stmt::ObjCPropertyRefExprClass:
K = OCM_PropertyAccess;
break;
case Stmt::ObjCSubscriptRefExprClass:
K = OCM_Subscript;
break;
default:
// FIXME: Can this ever happen?
K = OCM_Message;
break;
}
if (K != OCM_Message) {
const_cast<ObjCMethodCall *>(this)->Data
= ObjCMessageDataTy(POE, K).getOpaqueValue();
assert(getMessageKind() == K);
return K;
}
}
const_cast<ObjCMethodCall *>(this)->Data
= ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
assert(getMessageKind() == OCM_Message);
return OCM_Message;
}
ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
if (!Info.getPointer())
return OCM_Message;
return static_cast<ObjCMessageKind>(Info.getInt());
}
const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
// Look for properties accessed with property syntax (foo.bar = ...)
if ( getMessageKind() == OCM_PropertyAccess) {
const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
assert(POE && "Property access without PseudoObjectExpr?");
const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
if (RefExpr->isExplicitProperty())
return RefExpr->getExplicitProperty();
}
// Look for properties accessed with method syntax ([foo setBar:...]).
const ObjCMethodDecl *MD = getDecl();
if (!MD || !MD->isPropertyAccessor())
return nullptr;
// Note: This is potentially quite slow.
return MD->findPropertyDecl();
}
bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
Selector Sel) const {
assert(IDecl);
AnalysisManager &AMgr =
getState()->getStateManager().getOwningEngine().getAnalysisManager();
// If the class interface is declared inside the main file, assume it is not
// subcassed.
// TODO: It could actually be subclassed if the subclass is private as well.
// This is probably very rare.
SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
return false;
// Assume that property accessors are not overridden.
if (getMessageKind() == OCM_PropertyAccess)
return false;
// We assume that if the method is public (declared outside of main file) or
// has a parent which publicly declares the method, the method could be
// overridden in a subclass.
// Find the first declaration in the class hierarchy that declares
// the selector.
ObjCMethodDecl *D = nullptr;
while (true) {
D = IDecl->lookupMethod(Sel, true);
// Cannot find a public definition.
if (!D)
return false;
// If outside the main file,
if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
return true;
if (D->isOverriding()) {
// Search in the superclass on the next iteration.
IDecl = D->getClassInterface();
if (!IDecl)
return false;
IDecl = IDecl->getSuperClass();
if (!IDecl)
return false;
continue;
}
return false;
};
llvm_unreachable("The while loop should always terminate.");
}
static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
if (!MD)
return MD;
// Find the redeclaration that defines the method.
if (!MD->hasBody()) {
for (auto I : MD->redecls())
if (I->hasBody())
MD = cast<ObjCMethodDecl>(I);
}
return MD;
}
static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
const Expr* InstRec = ME->getInstanceReceiver();
if (!InstRec)
return false;
const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
// Check that receiver is called 'self'.
if (!InstRecIg || !InstRecIg->getFoundDecl() ||
!InstRecIg->getFoundDecl()->getName().equals("self"))
return false;
// Check that the method name is 'class'.
if (ME->getSelector().getNumArgs() != 0 ||
!ME->getSelector().getNameForSlot(0).equals("class"))
return false;
return true;
}
RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
const ObjCMessageExpr *E = getOriginExpr();
assert(E);
Selector Sel = E->getSelector();
if (E->isInstanceMessage()) {
// Find the receiver type.
const ObjCObjectPointerType *ReceiverT = nullptr;
bool CanBeSubClassed = false;
QualType SupersType = E->getSuperType();
const MemRegion *Receiver = nullptr;
if (!SupersType.isNull()) {
// The receiver is guaranteed to be 'super' in this case.
// Super always means the type of immediate predecessor to the method
// where the call occurs.
ReceiverT = cast<ObjCObjectPointerType>(SupersType);
} else {
Receiver = getReceiverSVal().getAsRegion();
if (!Receiver)
return {};
DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
if (!DTI.isValid()) {
assert(isa<AllocaRegion>(Receiver) &&
"Unhandled untyped region class!");
return {};
}
QualType DynType = DTI.getType();
CanBeSubClassed = DTI.canBeASubClass();
ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
if (ReceiverT && CanBeSubClassed)
if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
if (!canBeOverridenInSubclass(IDecl, Sel))
CanBeSubClassed = false;
}
// Handle special cases of '[self classMethod]' and
// '[[self class] classMethod]', which are treated by the compiler as
// instance (not class) messages. We will statically dispatch to those.
if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
// For [self classMethod], return the compiler visible declaration.
if (PT->getObjectType()->isObjCClass() &&
Receiver == getSelfSVal().getAsRegion())
return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
// Similarly, handle [[self class] classMethod].
// TODO: We are currently doing a syntactic match for this pattern with is
// limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
// shows. A better way would be to associate the meta type with the symbol
// using the dynamic type info tracking and use it here. We can add a new
// SVal for ObjC 'Class' values that know what interface declaration they
// come from. Then 'self' in a class method would be filled in with
// something meaningful in ObjCMethodCall::getReceiverSVal() and we could
// do proper dynamic dispatch for class methods just like we do for
// instance methods now.
if (E->getInstanceReceiver())
if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
if (isCallToSelfClass(M))
return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
}
// Lookup the instance method implementation.
if (ReceiverT)
if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
// Repeatedly calling lookupPrivateMethod() is expensive, especially
// when in many cases it returns null. We cache the results so
// that repeated queries on the same ObjCIntefaceDecl and Selector
// don't incur the same cost. On some test cases, we can see the
// same query being issued thousands of times.
//
// NOTE: This cache is essentially a "global" variable, but it
// only gets lazily created when we get here. The value of the
// cache probably comes from it being global across ExprEngines,
// where the same queries may get issued. If we are worried about
// concurrency, or possibly loading/unloading ASTs, etc., we may
// need to revisit this someday. In terms of memory, this table
// stays around until clang quits, which also may be bad if we
// need to release memory.
using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
using PrivateMethodCache =
llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
static PrivateMethodCache PMC;
Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
// Query lookupPrivateMethod() if the cache does not hit.
if (!Val.hasValue()) {
Val = IDecl->lookupPrivateMethod(Sel);
// If the method is a property accessor, we should try to "inline" it
// even if we don't actually have an implementation.
if (!*Val)
if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
if (CompileTimeMD->isPropertyAccessor()) {
if (!CompileTimeMD->getSelfDecl() &&
isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
// If the method is an accessor in a category, and it doesn't
// have a self declaration, first
// try to find the method in a class extension. This
// works around a bug in Sema where multiple accessors
// are synthesized for properties in class
// extensions that are redeclared in a category and the
// the implicit parameters are not filled in for
// the method on the category.
// This ensures we find the accessor in the extension, which
// has the implicit parameters filled in.
auto *ID = CompileTimeMD->getClassInterface();
for (auto *CatDecl : ID->visible_extensions()) {
Val = CatDecl->getMethod(Sel,
CompileTimeMD->isInstanceMethod());
if (*Val)
break;
}
}
if (!*Val)
Val = IDecl->lookupInstanceMethod(Sel);
}
}
const ObjCMethodDecl *MD = Val.getValue();
if (CanBeSubClassed)
return RuntimeDefinition(MD, Receiver);
else
return RuntimeDefinition(MD, nullptr);
}
} else {
// This is a class method.
// If we have type info for the receiver class, we are calling via
// class name.
if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
// Find/Return the method implementation.
return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
}
}
return {};
}
bool ObjCMethodCall::argumentsMayEscape() const {
if (isInSystemHeader() && !isInstanceMessage()) {
Selector Sel = getSelector();
if (Sel.getNumArgs() == 1 &&
Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
return true;
}
return CallEvent::argumentsMayEscape();
}
void ObjCMethodCall::getInitialStackFrameContents(
const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
D->parameters());
SVal SelfVal = getReceiverSVal();
if (!SelfVal.isUnknown()) {
const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
MemRegionManager &MRMgr = SVB.getRegionManager();
Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
}
}
CallEventRef<>
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
const LocationContext *LCtx) {
if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
return create<CXXMemberCall>(MCE, State, LCtx);
if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
if (MD->isInstance())
return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
} else if (CE->getCallee()->getType()->isBlockPointerType()) {
return create<BlockCall>(CE, State, LCtx);
}
// Otherwise, it's a normal function call, static member function call, or
// something we can't reason about.
return create<SimpleFunctionCall>(CE, State, LCtx);
}
CallEventRef<>
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
ProgramStateRef State) {
const LocationContext *ParentCtx = CalleeCtx->getParent();
const LocationContext *CallerCtx = ParentCtx->getStackFrame();
assert(CallerCtx && "This should not be used for top-level stack frames");
const Stmt *CallSite = CalleeCtx->getCallSite();
if (CallSite) {
if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
return Out;
// All other cases are handled by getCall.
assert(isa<CXXConstructExpr>(CallSite) &&
"This is not an inlineable statement");
SValBuilder &SVB = State->getStateManager().getSValBuilder();
const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
SVal ThisVal = State->getSVal(ThisPtr);
return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
ThisVal.getAsRegion(), State, CallerCtx);
}
// Fall back to the CFG. The only thing we haven't handled yet is
// destructors, though this could change in the future.
const CFGBlock *B = CalleeCtx->getCallSiteBlock();
CFGElement E = (*B)[CalleeCtx->getIndex()];
assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
"All other CFG elements should have exprs");
SValBuilder &SVB = State->getStateManager().getSValBuilder();
const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
SVal ThisVal = State->getSVal(ThisPtr);
const Stmt *Trigger;
if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
Trigger = AutoDtor->getTriggerStmt();
else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
Trigger = DeleteDtor->getDeleteExpr();
else
Trigger = Dtor->getBody();
return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
E.getAs<CFGBaseDtor>().hasValue(), State,
CallerCtx);
}
CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
const LocationContext *LC) {
if (const auto *CE = dyn_cast<CallExpr>(S)) {
return getSimpleCall(CE, State, LC);
} else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
return getCXXAllocatorCall(NE, State, LC);
} else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
return getObjCMethodCall(ME, State, LC);
} else {
return nullptr;
}
}