llvm-project/lld/ELF/SymbolTable.cpp

254 lines
8.3 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Symbol table is a bag of all known symbols. We put all symbols of
// all input files to the symbol table. The symbol table is basically
// a hash table with the logic to resolve symbol name conflicts using
// the symbol types.
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "Error.h"
#include "Symbols.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf2;
template <class ELFT> SymbolTable<ELFT>::SymbolTable() {}
// All input object files must be for the same architecture
// (e.g. it does not make sense to link x86 object files with
// MIPS object files.) This function checks for that error.
template <class ELFT>
static void checkCompatibility(InputFile *FileP) {
auto *F = dyn_cast<ELFFileBase<ELFT>>(FileP);
if (!F)
return;
if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine)
return;
StringRef A = F->getName();
StringRef B = Config->Emulation;
if (B.empty())
B = Config->FirstElf->getName();
error(A + " is incompatible with " + B);
}
// Add symbols in File to the symbol table.
template <class ELFT>
void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
InputFile *FileP = File.get();
checkCompatibility<ELFT>(FileP);
// .a file
if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
F->parse();
for (Lazy &Sym : F->getLazySymbols())
addLazy(&Sym);
return;
}
// .so file
if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
// DSOs are uniquified not by filename but by soname.
F->parseSoName();
if (!IncludedSoNames.insert(F->getSoName()).second)
return;
SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
F->parseRest();
for (SharedSymbol<ELFT> &B : F->getSharedSymbols())
resolve(&B);
return;
}
// .o file
auto *F = cast<ObjectFile<ELFT>>(FileP);
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
F->parse(ComdatGroups);
for (SymbolBody *B : F->getSymbols())
resolve(B);
}
// Add an undefined symbol.
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addUndefined(StringRef Name) {
auto *Sym = new (Alloc) Undefined(Name, false, STV_DEFAULT, false);
resolve(Sym);
return Sym;
}
// Add an undefined symbol. Unlike addUndefined, that symbol
// doesn't have to be resolved, thus "opt" (optional).
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addUndefinedOpt(StringRef Name) {
auto *Sym = new (Alloc) Undefined(Name, false, STV_HIDDEN, true);
resolve(Sym);
return Sym;
}
template <class ELFT>
void SymbolTable<ELFT>::addAbsolute(StringRef Name,
typename ELFFile<ELFT>::Elf_Sym &ESym) {
resolve(new (Alloc) DefinedRegular<ELFT>(Name, ESym, nullptr));
}
template <class ELFT>
void SymbolTable<ELFT>::addSynthetic(StringRef Name,
OutputSectionBase<ELFT> &Section,
typename ELFFile<ELFT>::uintX_t Value) {
auto *Sym = new (Alloc) DefinedSynthetic<ELFT>(Name, Value, Section);
resolve(Sym);
}
// Add Name as an "ignored" symbol. An ignored symbol is a regular
// linker-synthesized defined symbol, but it is not recorded to the output
// file's symbol table. Such symbols are useful for some linker-defined symbols.
template <class ELFT>
SymbolBody *SymbolTable<ELFT>::addIgnored(StringRef Name) {
auto *Sym = new (Alloc)
DefinedRegular<ELFT>(Name, ElfSym<ELFT>::IgnoreUndef, nullptr);
resolve(Sym);
return Sym;
}
// Returns a file from which symbol B was created.
// If B does not belong to any file, returns a nullptr.
template <class ELFT>
ELFFileBase<ELFT> *SymbolTable<ELFT>::findFile(SymbolBody *B) {
for (const std::unique_ptr<ObjectFile<ELFT>> &F : ObjectFiles) {
ArrayRef<SymbolBody *> Syms = F->getSymbols();
if (std::find(Syms.begin(), Syms.end(), B) != Syms.end())
return F.get();
}
return nullptr;
}
template <class ELFT>
std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Old, SymbolBody *New) {
ELFFileBase<ELFT> *OldFile = findFile(Old);
ELFFileBase<ELFT> *NewFile = findFile(New);
StringRef Sym = Old->getName();
StringRef F1 = OldFile ? OldFile->getName() : "(internal)";
StringRef F2 = NewFile ? NewFile->getName() : "(internal)";
return (Sym + " in " + F1 + " and " + F2).str();
}
// This function resolves conflicts if there's an existing symbol with
// the same name. Decisions are made based on symbol type.
template <class ELFT> void SymbolTable<ELFT>::resolve(SymbolBody *New) {
Symbol *Sym = insert(New);
if (Sym->Body == New)
return;
SymbolBody *Existing = Sym->Body;
if (Lazy *L = dyn_cast<Lazy>(Existing)) {
if (auto *Undef = dyn_cast<Undefined>(New)) {
addMemberFile(Undef, L);
return;
}
// Found a definition for something also in an archive.
// Ignore the archive definition.
Sym->Body = New;
return;
}
if (New->isTls() != Existing->isTls())
error("TLS attribute mismatch for symbol: " + conflictMsg(Existing, New));
// compare() returns -1, 0, or 1 if the lhs symbol is less preferable,
// equivalent (conflicting), or more preferable, respectively.
int Comp = Existing->compare<ELFT>(New);
if (Comp == 0) {
std::string S = "duplicate symbol: " + conflictMsg(Existing, New);
if (!Config->AllowMultipleDefinition)
error(S);
warning(S);
return;
}
if (Comp < 0)
Sym->Body = New;
}
template <class ELFT> Symbol *SymbolTable<ELFT>::insert(SymbolBody *New) {
// Find an existing Symbol or create and insert a new one.
StringRef Name = New->getName();
Symbol *&Sym = Symtab[Name];
if (!Sym)
Sym = new (Alloc) Symbol{New};
New->setBackref(Sym);
return Sym;
}
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
auto It = Symtab.find(Name);
if (It == Symtab.end())
return nullptr;
return It->second->Body;
}
template <class ELFT> void SymbolTable<ELFT>::addLazy(Lazy *L) {
Symbol *Sym = insert(L);
if (Sym->Body == L)
return;
if (auto *Undef = dyn_cast<Undefined>(Sym->Body)) {
Sym->Body = L;
addMemberFile(Undef, L);
}
}
template <class ELFT>
void SymbolTable<ELFT>::addMemberFile(Undefined *Undef, Lazy *L) {
// Weak undefined symbols should not fetch members from archives.
// If we were to keep old symbol we would not know that an archive member was
// available if a strong undefined symbol shows up afterwards in the link.
// If a strong undefined symbol never shows up, this lazy symbol will
// get to the end of the link and must be treated as the weak undefined one.
// We set UsedInRegularObj in a similar way to what is done with shared
// symbols and mark it as weak to reduce how many special cases are needed.
if (Undef->isWeak()) {
L->setUsedInRegularObj();
L->setWeak();
return;
}
// Fetch a member file that has the definition for L.
// getMember returns nullptr if the member was already read from the library.
if (std::unique_ptr<InputFile> File = L->getMember())
addFile(std::move(File));
}
// This function takes care of the case in which shared libraries depend on
// the user program (not the other way, which is usual). Shared libraries
// may have undefined symbols, expecting that the user program provides
// the definitions for them. An example is BSD's __progname symbol.
// We need to put such symbols to the main program's .dynsym so that
// shared libraries can find them.
// Except this, we ignore undefined symbols in DSOs.
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
for (StringRef U : File->getUndefinedSymbols())
if (SymbolBody *Sym = find(U))
if (Sym->isDefined())
Sym->setUsedInDynamicReloc();
}
template class elf2::SymbolTable<ELF32LE>;
template class elf2::SymbolTable<ELF32BE>;
template class elf2::SymbolTable<ELF64LE>;
template class elf2::SymbolTable<ELF64BE>;