llvm-project/llvm/lib/Target/R600/SIInstrInfo.cpp

1972 lines
69 KiB
C++

//===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief SI Implementation of TargetInstrInfo.
//
//===----------------------------------------------------------------------===//
#include "SIInstrInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCInstrDesc.h"
using namespace llvm;
SIInstrInfo::SIInstrInfo(const AMDGPUSubtarget &st)
: AMDGPUInstrInfo(st),
RI(st) { }
//===----------------------------------------------------------------------===//
// TargetInstrInfo callbacks
//===----------------------------------------------------------------------===//
static unsigned getNumOperandsNoGlue(SDNode *Node) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
--N;
return N;
}
static SDValue findChainOperand(SDNode *Load) {
SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1);
assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node");
return LastOp;
}
/// \brief Returns true if both nodes have the same value for the given
/// operand \p Op, or if both nodes do not have this operand.
static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
unsigned Opc0 = N0->getMachineOpcode();
unsigned Opc1 = N1->getMachineOpcode();
int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
if (Op0Idx == -1 && Op1Idx == -1)
return true;
if ((Op0Idx == -1 && Op1Idx != -1) ||
(Op1Idx == -1 && Op0Idx != -1))
return false;
// getNamedOperandIdx returns the index for the MachineInstr's operands,
// which includes the result as the first operand. We are indexing into the
// MachineSDNode's operands, so we need to skip the result operand to get
// the real index.
--Op0Idx;
--Op1Idx;
return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
}
bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
int64_t &Offset0,
int64_t &Offset1) const {
if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
return false;
unsigned Opc0 = Load0->getMachineOpcode();
unsigned Opc1 = Load1->getMachineOpcode();
// Make sure both are actually loads.
if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
return false;
if (isDS(Opc0) && isDS(Opc1)) {
assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
// TODO: Also shouldn't see read2st
assert(Opc0 != AMDGPU::DS_READ2_B32 &&
Opc0 != AMDGPU::DS_READ2_B64 &&
Opc1 != AMDGPU::DS_READ2_B32 &&
Opc1 != AMDGPU::DS_READ2_B64);
// Check base reg.
if (Load0->getOperand(1) != Load1->getOperand(1))
return false;
// Check chain.
if (findChainOperand(Load0) != findChainOperand(Load1))
return false;
Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue();
Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue();
return true;
}
if (isSMRD(Opc0) && isSMRD(Opc1)) {
assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
// Check base reg.
if (Load0->getOperand(0) != Load1->getOperand(0))
return false;
// Check chain.
if (findChainOperand(Load0) != findChainOperand(Load1))
return false;
Offset0 = cast<ConstantSDNode>(Load0->getOperand(1))->getZExtValue();
Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue();
return true;
}
// MUBUF and MTBUF can access the same addresses.
if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
// MUBUF and MTBUF have vaddr at different indices.
if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
findChainOperand(Load0) != findChainOperand(Load1) ||
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
return false;
int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
if (OffIdx0 == -1 || OffIdx1 == -1)
return false;
// getNamedOperandIdx returns the index for MachineInstrs. Since they
// inlcude the output in the operand list, but SDNodes don't, we need to
// subtract the index by one.
--OffIdx0;
--OffIdx1;
SDValue Off0 = Load0->getOperand(OffIdx0);
SDValue Off1 = Load1->getOperand(OffIdx1);
// The offset might be a FrameIndexSDNode.
if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
return false;
Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
return true;
}
return false;
}
bool SIInstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt,
unsigned &BaseReg, unsigned &Offset,
const TargetRegisterInfo *TRI) const {
unsigned Opc = LdSt->getOpcode();
if (isDS(Opc)) {
const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset);
if (OffsetImm) {
// Normal, single offset LDS instruction.
const MachineOperand *AddrReg = getNamedOperand(*LdSt,
AMDGPU::OpName::addr);
BaseReg = AddrReg->getReg();
Offset = OffsetImm->getImm();
return true;
}
// The 2 offset instructions use offset0 and offset1 instead. We can treat
// these as a load with a single offset if the 2 offsets are consecutive. We
// will use this for some partially aligned loads.
const MachineOperand *Offset0Imm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset0);
const MachineOperand *Offset1Imm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset1);
uint8_t Offset0 = Offset0Imm->getImm();
uint8_t Offset1 = Offset1Imm->getImm();
assert(Offset1 > Offset0);
if (Offset1 - Offset0 == 1) {
// Each of these offsets is in element sized units, so we need to convert
// to bytes of the individual reads.
unsigned EltSize;
if (LdSt->mayLoad())
EltSize = getOpRegClass(*LdSt, 0)->getSize() / 2;
else {
assert(LdSt->mayStore());
int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
EltSize = getOpRegClass(*LdSt, Data0Idx)->getSize();
}
const MachineOperand *AddrReg = getNamedOperand(*LdSt,
AMDGPU::OpName::addr);
BaseReg = AddrReg->getReg();
Offset = EltSize * Offset0;
return true;
}
return false;
}
if (isMUBUF(Opc) || isMTBUF(Opc)) {
if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1)
return false;
const MachineOperand *AddrReg = getNamedOperand(*LdSt,
AMDGPU::OpName::vaddr);
if (!AddrReg)
return false;
const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset);
BaseReg = AddrReg->getReg();
Offset = OffsetImm->getImm();
return true;
}
if (isSMRD(Opc)) {
const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
AMDGPU::OpName::offset);
if (!OffsetImm)
return false;
const MachineOperand *SBaseReg = getNamedOperand(*LdSt,
AMDGPU::OpName::sbase);
BaseReg = SBaseReg->getReg();
Offset = OffsetImm->getImm();
return true;
}
return false;
}
void
SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
// If we are trying to copy to or from SCC, there is a bug somewhere else in
// the backend. While it may be theoretically possible to do this, it should
// never be necessary.
assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);
static const int16_t Sub0_15[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 0
};
static const int16_t Sub0_7[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 0
};
static const int16_t Sub0_3[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 0
};
static const int16_t Sub0_2[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, 0
};
static const int16_t Sub0_1[] = {
AMDGPU::sub0, AMDGPU::sub1, 0
};
unsigned Opcode;
const int16_t *SubIndices;
if (AMDGPU::M0 == DestReg) {
// Check if M0 isn't already set to this value
for (MachineBasicBlock::reverse_iterator E = MBB.rend(),
I = MachineBasicBlock::reverse_iterator(MI); I != E; ++I) {
if (!I->definesRegister(AMDGPU::M0))
continue;
unsigned Opc = I->getOpcode();
if (Opc != TargetOpcode::COPY && Opc != AMDGPU::S_MOV_B32)
break;
if (!I->readsRegister(SrcReg))
break;
// The copy isn't necessary
return;
}
}
if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B32;
SubIndices = Sub0_3;
} else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B32;
SubIndices = Sub0_7;
} else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
Opcode = AMDGPU::S_MOV_B32;
SubIndices = Sub0_15;
} else if (AMDGPU::VReg_32RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_32RegClass.contains(SrcReg) ||
AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
} else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
AMDGPU::SReg_64RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_1;
} else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_2;
} else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
AMDGPU::SReg_128RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_3;
} else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
AMDGPU::SReg_256RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_7;
} else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
AMDGPU::SReg_512RegClass.contains(SrcReg));
Opcode = AMDGPU::V_MOV_B32_e32;
SubIndices = Sub0_15;
} else {
llvm_unreachable("Can't copy register!");
}
while (unsigned SubIdx = *SubIndices++) {
MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
get(Opcode), RI.getSubReg(DestReg, SubIdx));
Builder.addReg(RI.getSubReg(SrcReg, SubIdx), getKillRegState(KillSrc));
if (*SubIndices)
Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
}
}
unsigned SIInstrInfo::commuteOpcode(unsigned Opcode) const {
int NewOpc;
// Try to map original to commuted opcode
if ((NewOpc = AMDGPU::getCommuteRev(Opcode)) != -1)
return NewOpc;
// Try to map commuted to original opcode
if ((NewOpc = AMDGPU::getCommuteOrig(Opcode)) != -1)
return NewOpc;
return Opcode;
}
void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
MachineFrameInfo *FrameInfo = MF->getFrameInfo();
DebugLoc DL = MBB.findDebugLoc(MI);
if (RI.hasVGPRs(RC)) {
LLVMContext &Ctx = MF->getFunction()->getContext();
Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Can't spill VGPR!");
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), AMDGPU::VGPR0)
.addReg(SrcReg);
} else if (RI.isSGPRClass(RC)) {
// We are only allowed to create one new instruction when spilling
// registers, so we need to use pseudo instruction for spilling
// SGPRs.
unsigned Opcode;
switch (RC->getSize() * 8) {
case 32: Opcode = AMDGPU::SI_SPILL_S32_SAVE; break;
case 64: Opcode = AMDGPU::SI_SPILL_S64_SAVE; break;
case 128: Opcode = AMDGPU::SI_SPILL_S128_SAVE; break;
case 256: Opcode = AMDGPU::SI_SPILL_S256_SAVE; break;
case 512: Opcode = AMDGPU::SI_SPILL_S512_SAVE; break;
default: llvm_unreachable("Cannot spill register class");
}
FrameInfo->setObjectAlignment(FrameIndex, 4);
BuildMI(MBB, MI, DL, get(Opcode))
.addReg(SrcReg)
.addFrameIndex(FrameIndex);
} else {
llvm_unreachable("VGPR spilling not supported");
}
}
void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
MachineFrameInfo *FrameInfo = MF->getFrameInfo();
DebugLoc DL = MBB.findDebugLoc(MI);
if (RI.hasVGPRs(RC)) {
LLVMContext &Ctx = MF->getFunction()->getContext();
Ctx.emitError("SIInstrInfo::loadRegToStackSlot - Can't retrieve spilled VGPR!");
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
.addImm(0);
} else if (RI.isSGPRClass(RC)){
unsigned Opcode;
switch(RC->getSize() * 8) {
case 32: Opcode = AMDGPU::SI_SPILL_S32_RESTORE; break;
case 64: Opcode = AMDGPU::SI_SPILL_S64_RESTORE; break;
case 128: Opcode = AMDGPU::SI_SPILL_S128_RESTORE; break;
case 256: Opcode = AMDGPU::SI_SPILL_S256_RESTORE; break;
case 512: Opcode = AMDGPU::SI_SPILL_S512_RESTORE; break;
default: llvm_unreachable("Cannot spill register class");
}
FrameInfo->setObjectAlignment(FrameIndex, 4);
BuildMI(MBB, MI, DL, get(Opcode), DestReg)
.addFrameIndex(FrameIndex);
} else {
llvm_unreachable("VGPR spilling not supported");
}
}
void SIInstrInfo::insertNOPs(MachineBasicBlock::iterator MI,
int Count) const {
while (Count > 0) {
int Arg;
if (Count >= 8)
Arg = 7;
else
Arg = Count - 1;
Count -= 8;
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(AMDGPU::S_NOP))
.addImm(Arg);
}
}
bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MBB.findDebugLoc(MI);
switch (MI->getOpcode()) {
default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
case AMDGPU::SI_CONSTDATA_PTR: {
unsigned Reg = MI->getOperand(0).getReg();
unsigned RegLo = RI.getSubReg(Reg, AMDGPU::sub0);
unsigned RegHi = RI.getSubReg(Reg, AMDGPU::sub1);
BuildMI(MBB, MI, DL, get(AMDGPU::S_GETPC_B64), Reg);
// Add 32-bit offset from this instruction to the start of the constant data.
BuildMI(MBB, MI, DL, get(AMDGPU::S_ADD_I32), RegLo)
.addReg(RegLo)
.addTargetIndex(AMDGPU::TI_CONSTDATA_START)
.addReg(AMDGPU::SCC, RegState::Define | RegState::Implicit);
BuildMI(MBB, MI, DL, get(AMDGPU::S_ADDC_U32), RegHi)
.addReg(RegHi)
.addImm(0)
.addReg(AMDGPU::SCC, RegState::Define | RegState::Implicit)
.addReg(AMDGPU::SCC, RegState::Implicit);
MI->eraseFromParent();
break;
}
}
return true;
}
MachineInstr *SIInstrInfo::commuteInstruction(MachineInstr *MI,
bool NewMI) const {
if (MI->getNumOperands() < 3 || !MI->getOperand(1).isReg())
return nullptr;
// Make sure it s legal to commute operands for VOP2.
if (isVOP2(MI->getOpcode()) &&
(!isOperandLegal(MI, 1, &MI->getOperand(2)) ||
!isOperandLegal(MI, 2, &MI->getOperand(1))))
return nullptr;
if (!MI->getOperand(2).isReg()) {
// XXX: Commute instructions with FPImm operands
if (NewMI || MI->getOperand(2).isFPImm() ||
(!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode()))) {
return nullptr;
}
// XXX: Commute VOP3 instructions with abs and neg set .
const MachineOperand *Abs = getNamedOperand(*MI, AMDGPU::OpName::abs);
const MachineOperand *Neg = getNamedOperand(*MI, AMDGPU::OpName::neg);
const MachineOperand *Src0Mods = getNamedOperand(*MI,
AMDGPU::OpName::src0_modifiers);
const MachineOperand *Src1Mods = getNamedOperand(*MI,
AMDGPU::OpName::src1_modifiers);
const MachineOperand *Src2Mods = getNamedOperand(*MI,
AMDGPU::OpName::src2_modifiers);
if ((Abs && Abs->getImm()) || (Neg && Neg->getImm()) ||
(Src0Mods && Src0Mods->getImm()) || (Src1Mods && Src1Mods->getImm()) ||
(Src2Mods && Src2Mods->getImm()))
return nullptr;
unsigned Reg = MI->getOperand(1).getReg();
unsigned SubReg = MI->getOperand(1).getSubReg();
MI->getOperand(1).ChangeToImmediate(MI->getOperand(2).getImm());
MI->getOperand(2).ChangeToRegister(Reg, false);
MI->getOperand(2).setSubReg(SubReg);
} else {
MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
}
if (MI)
MI->setDesc(get(commuteOpcode(MI->getOpcode())));
return MI;
}
MachineInstr *SIInstrInfo::buildMovInstr(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned DstReg,
unsigned SrcReg) const {
return BuildMI(*MBB, I, MBB->findDebugLoc(I), get(AMDGPU::V_MOV_B32_e32),
DstReg) .addReg(SrcReg);
}
bool SIInstrInfo::isMov(unsigned Opcode) const {
switch(Opcode) {
default: return false;
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B64:
case AMDGPU::V_MOV_B32_e32:
case AMDGPU::V_MOV_B32_e64:
return true;
}
}
bool
SIInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
return RC != &AMDGPU::EXECRegRegClass;
}
bool
SIInstrInfo::isTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA) const {
switch(MI->getOpcode()) {
default: return AMDGPUInstrInfo::isTriviallyReMaterializable(MI, AA);
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B64:
case AMDGPU::V_MOV_B32_e32:
return MI->getOperand(1).isImm();
}
}
namespace llvm {
namespace AMDGPU {
// Helper function generated by tablegen. We are wrapping this with
// an SIInstrInfo function that returns bool rather than int.
int isDS(uint16_t Opcode);
}
}
bool SIInstrInfo::isDS(uint16_t Opcode) const {
return ::AMDGPU::isDS(Opcode) != -1;
}
bool SIInstrInfo::isMIMG(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::MIMG;
}
bool SIInstrInfo::isSMRD(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SMRD;
}
bool SIInstrInfo::isMUBUF(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::MUBUF;
}
bool SIInstrInfo::isMTBUF(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::MTBUF;
}
bool SIInstrInfo::isVOP1(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP1;
}
bool SIInstrInfo::isVOP2(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP2;
}
bool SIInstrInfo::isVOP3(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP3;
}
bool SIInstrInfo::isVOPC(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOPC;
}
bool SIInstrInfo::isSALUInstr(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & SIInstrFlags::SALU;
}
bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
int32_t Val = Imm.getSExtValue();
if (Val >= -16 && Val <= 64)
return true;
// The actual type of the operand does not seem to matter as long
// as the bits match one of the inline immediate values. For example:
//
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
// so it is a legal inline immediate.
//
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
// floating-point, so it is a legal inline immediate.
return (APInt::floatToBits(0.0f) == Imm) ||
(APInt::floatToBits(1.0f) == Imm) ||
(APInt::floatToBits(-1.0f) == Imm) ||
(APInt::floatToBits(0.5f) == Imm) ||
(APInt::floatToBits(-0.5f) == Imm) ||
(APInt::floatToBits(2.0f) == Imm) ||
(APInt::floatToBits(-2.0f) == Imm) ||
(APInt::floatToBits(4.0f) == Imm) ||
(APInt::floatToBits(-4.0f) == Imm);
}
bool SIInstrInfo::isInlineConstant(const MachineOperand &MO) const {
if (MO.isImm())
return isInlineConstant(APInt(32, MO.getImm(), true));
if (MO.isFPImm()) {
APFloat FpImm = MO.getFPImm()->getValueAPF();
return isInlineConstant(FpImm.bitcastToAPInt());
}
return false;
}
bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO) const {
return (MO.isImm() || MO.isFPImm()) && !isInlineConstant(MO);
}
static bool compareMachineOp(const MachineOperand &Op0,
const MachineOperand &Op1) {
if (Op0.getType() != Op1.getType())
return false;
switch (Op0.getType()) {
case MachineOperand::MO_Register:
return Op0.getReg() == Op1.getReg();
case MachineOperand::MO_Immediate:
return Op0.getImm() == Op1.getImm();
case MachineOperand::MO_FPImmediate:
return Op0.getFPImm() == Op1.getFPImm();
default:
llvm_unreachable("Didn't expect to be comparing these operand types");
}
}
bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
const MachineOperand &MO) const {
const MCOperandInfo &OpInfo = get(MI->getOpcode()).OpInfo[OpNo];
assert(MO.isImm() || MO.isFPImm());
if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
return true;
if (OpInfo.RegClass < 0)
return false;
return RI.regClassCanUseImmediate(OpInfo.RegClass);
}
bool SIInstrInfo::canFoldOffset(unsigned OffsetSize, unsigned AS) {
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS: {
// MUBUF instructions a 12-bit offset in bytes.
return isUInt<12>(OffsetSize);
}
case AMDGPUAS::CONSTANT_ADDRESS: {
// SMRD instructions have an 8-bit offset in dwords.
return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
}
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::REGION_ADDRESS: {
// The single offset versions have a 16-bit offset in bytes.
return isUInt<16>(OffsetSize);
}
case AMDGPUAS::PRIVATE_ADDRESS:
// Indirect register addressing does not use any offsets.
default:
return 0;
}
}
bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
return AMDGPU::getVOPe32(Opcode) != -1;
}
bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
// The src0_modifier operand is present on all instructions
// that have modifiers.
return AMDGPU::getNamedOperandIdx(Opcode,
AMDGPU::OpName::src0_modifiers) != -1;
}
bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
StringRef &ErrInfo) const {
uint16_t Opcode = MI->getOpcode();
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
// Make sure the number of operands is correct.
const MCInstrDesc &Desc = get(Opcode);
if (!Desc.isVariadic() &&
Desc.getNumOperands() != MI->getNumExplicitOperands()) {
ErrInfo = "Instruction has wrong number of operands.";
return false;
}
// Make sure the register classes are correct
for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
switch (Desc.OpInfo[i].OperandType) {
case MCOI::OPERAND_REGISTER: {
int RegClass = Desc.OpInfo[i].RegClass;
if (!RI.regClassCanUseImmediate(RegClass) &&
(MI->getOperand(i).isImm() || MI->getOperand(i).isFPImm())) {
// Handle some special cases:
// Src0 can of VOP1, VOP2, VOPC can be an immediate no matter what
// the register class.
if (i != Src0Idx || (!isVOP1(Opcode) && !isVOP2(Opcode) &&
!isVOPC(Opcode))) {
ErrInfo = "Expected register, but got immediate";
return false;
}
}
}
break;
case MCOI::OPERAND_IMMEDIATE:
// Check if this operand is an immediate.
// FrameIndex operands will be replaced by immediates, so they are
// allowed.
if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFPImm() &&
!MI->getOperand(i).isFI()) {
ErrInfo = "Expected immediate, but got non-immediate";
return false;
}
// Fall-through
default:
continue;
}
if (!MI->getOperand(i).isReg())
continue;
int RegClass = Desc.OpInfo[i].RegClass;
if (RegClass != -1) {
unsigned Reg = MI->getOperand(i).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
continue;
const TargetRegisterClass *RC = RI.getRegClass(RegClass);
if (!RC->contains(Reg)) {
ErrInfo = "Operand has incorrect register class.";
return false;
}
}
}
// Verify VOP*
if (isVOP1(Opcode) || isVOP2(Opcode) || isVOP3(Opcode) || isVOPC(Opcode)) {
unsigned ConstantBusCount = 0;
unsigned SGPRUsed = AMDGPU::NoRegister;
for (int i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() &&
!TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
// EXEC register uses the constant bus.
if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
++ConstantBusCount;
// SGPRs use the constant bus
if (MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC ||
(!MO.isImplicit() &&
(AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
AMDGPU::SGPR_64RegClass.contains(MO.getReg())))) {
if (SGPRUsed != MO.getReg()) {
++ConstantBusCount;
SGPRUsed = MO.getReg();
}
}
}
// Literal constants use the constant bus.
if (isLiteralConstant(MO))
++ConstantBusCount;
}
if (ConstantBusCount > 1) {
ErrInfo = "VOP* instruction uses the constant bus more than once";
return false;
}
}
// Verify SRC1 for VOP2 and VOPC
if (Src1Idx != -1 && (isVOP2(Opcode) || isVOPC(Opcode))) {
const MachineOperand &Src1 = MI->getOperand(Src1Idx);
if (Src1.isImm() || Src1.isFPImm()) {
ErrInfo = "VOP[2C] src1 cannot be an immediate.";
return false;
}
}
// Verify VOP3
if (isVOP3(Opcode)) {
if (Src0Idx != -1 && isLiteralConstant(MI->getOperand(Src0Idx))) {
ErrInfo = "VOP3 src0 cannot be a literal constant.";
return false;
}
if (Src1Idx != -1 && isLiteralConstant(MI->getOperand(Src1Idx))) {
ErrInfo = "VOP3 src1 cannot be a literal constant.";
return false;
}
if (Src2Idx != -1 && isLiteralConstant(MI->getOperand(Src2Idx))) {
ErrInfo = "VOP3 src2 cannot be a literal constant.";
return false;
}
}
// Verify misc. restrictions on specific instructions.
if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
MI->dump();
const MachineOperand &Src0 = MI->getOperand(2);
const MachineOperand &Src1 = MI->getOperand(3);
const MachineOperand &Src2 = MI->getOperand(4);
if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
if (!compareMachineOp(Src0, Src1) &&
!compareMachineOp(Src0, Src2)) {
ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
return false;
}
}
}
return true;
}
unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return AMDGPU::INSTRUCTION_LIST_END;
case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
case AMDGPU::COPY: return AMDGPU::COPY;
case AMDGPU::PHI: return AMDGPU::PHI;
case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
case AMDGPU::S_MOV_B32:
return MI.getOperand(1).isReg() ?
AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
case AMDGPU::S_ADD_I32: return AMDGPU::V_ADD_I32_e32;
case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
case AMDGPU::S_SUB_I32: return AMDGPU::V_SUB_I32_e32;
case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32;
case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32;
case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32;
case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32;
case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
case AMDGPU::S_LOAD_DWORD_IMM:
case AMDGPU::S_LOAD_DWORD_SGPR: return AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
case AMDGPU::S_LOAD_DWORDX2_IMM:
case AMDGPU::S_LOAD_DWORDX2_SGPR: return AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
case AMDGPU::S_LOAD_DWORDX4_IMM:
case AMDGPU::S_LOAD_DWORDX4_SGPR: return AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e32;
case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
}
}
bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
}
const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
unsigned OpNo) const {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
const MCInstrDesc &Desc = get(MI.getOpcode());
if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
Desc.OpInfo[OpNo].RegClass == -1)
return MRI.getRegClass(MI.getOperand(OpNo).getReg());
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
return RI.getRegClass(RCID);
}
bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
switch (MI.getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::REG_SEQUENCE:
case AMDGPU::PHI:
case AMDGPU::INSERT_SUBREG:
return RI.hasVGPRs(getOpRegClass(MI, 0));
default:
return RI.hasVGPRs(getOpRegClass(MI, OpNo));
}
}
void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const {
MachineBasicBlock::iterator I = MI;
MachineOperand &MO = MI->getOperand(OpIdx);
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass;
const TargetRegisterClass *RC = RI.getRegClass(RCID);
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
if (MO.isReg()) {
Opcode = AMDGPU::COPY;
} else if (RI.isSGPRClass(RC)) {
Opcode = AMDGPU::S_MOV_B32;
}
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
unsigned Reg = MRI.createVirtualRegister(VRC);
BuildMI(*MI->getParent(), I, MI->getParent()->findDebugLoc(I), get(Opcode),
Reg).addOperand(MO);
MO.ChangeToRegister(Reg, false);
}
unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
MachineRegisterInfo &MRI,
MachineOperand &SuperReg,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC)
const {
assert(SuperReg.isReg());
unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
unsigned SubReg = MRI.createVirtualRegister(SubRC);
// Just in case the super register is itself a sub-register, copy it to a new
// value so we don't need to worry about merging its subreg index with the
// SubIdx passed to this function. The register coalescer should be able to
// eliminate this extra copy.
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(TargetOpcode::COPY),
NewSuperReg)
.addOperand(SuperReg);
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(TargetOpcode::COPY),
SubReg)
.addReg(NewSuperReg, 0, SubIdx);
return SubReg;
}
MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
MachineBasicBlock::iterator MII,
MachineRegisterInfo &MRI,
MachineOperand &Op,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC) const {
if (Op.isImm()) {
// XXX - Is there a better way to do this?
if (SubIdx == AMDGPU::sub0)
return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF);
if (SubIdx == AMDGPU::sub1)
return MachineOperand::CreateImm(Op.getImm() >> 32);
llvm_unreachable("Unhandled register index for immediate");
}
unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
SubIdx, SubRC);
return MachineOperand::CreateReg(SubReg, false);
}
unsigned SIInstrInfo::split64BitImm(SmallVectorImpl<MachineInstr *> &Worklist,
MachineBasicBlock::iterator MI,
MachineRegisterInfo &MRI,
const TargetRegisterClass *RC,
const MachineOperand &Op) const {
MachineBasicBlock *MBB = MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned LoDst = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned HiDst = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned Dst = MRI.createVirtualRegister(RC);
MachineInstr *Lo = BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32),
LoDst)
.addImm(Op.getImm() & 0xFFFFFFFF);
MachineInstr *Hi = BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32),
HiDst)
.addImm(Op.getImm() >> 32);
BuildMI(*MBB, MI, DL, get(TargetOpcode::REG_SEQUENCE), Dst)
.addReg(LoDst)
.addImm(AMDGPU::sub0)
.addReg(HiDst)
.addImm(AMDGPU::sub1);
Worklist.push_back(Lo);
Worklist.push_back(Hi);
return Dst;
}
bool SIInstrInfo::isOperandLegal(const MachineInstr *MI, unsigned OpIdx,
const MachineOperand *MO) const {
const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
const MCInstrDesc &InstDesc = get(MI->getOpcode());
const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
const TargetRegisterClass *DefinedRC =
OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
if (!MO)
MO = &MI->getOperand(OpIdx);
if (MO->isReg()) {
assert(DefinedRC);
const TargetRegisterClass *RC = MRI.getRegClass(MO->getReg());
return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass));
}
// Handle non-register types that are treated like immediates.
assert(MO->isImm() || MO->isFPImm() || MO->isTargetIndex() || MO->isFI());
if (!DefinedRC)
// This opperand expects an immediate
return true;
return RI.regClassCanUseImmediate(DefinedRC);
}
void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src0);
int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src1);
int Src2Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src2);
// Legalize VOP2
if (isVOP2(MI->getOpcode()) && Src1Idx != -1) {
// Legalize src0
if (!isOperandLegal(MI, Src0Idx))
legalizeOpWithMove(MI, Src0Idx);
// Legalize src1
if (isOperandLegal(MI, Src1Idx))
return;
// Usually src0 of VOP2 instructions allow more types of inputs
// than src1, so try to commute the instruction to decrease our
// chances of having to insert a MOV instruction to legalize src1.
if (MI->isCommutable()) {
if (commuteInstruction(MI))
// If we are successful in commuting, then we know MI is legal, so
// we are done.
return;
}
legalizeOpWithMove(MI, Src1Idx);
return;
}
// XXX - Do any VOP3 instructions read VCC?
// Legalize VOP3
if (isVOP3(MI->getOpcode())) {
int VOP3Idx[3] = {Src0Idx, Src1Idx, Src2Idx};
unsigned SGPRReg = AMDGPU::NoRegister;
for (unsigned i = 0; i < 3; ++i) {
int Idx = VOP3Idx[i];
if (Idx == -1)
continue;
MachineOperand &MO = MI->getOperand(Idx);
if (MO.isReg()) {
if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
continue; // VGPRs are legal
assert(MO.getReg() != AMDGPU::SCC && "SCC operand to VOP3 instruction");
if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
SGPRReg = MO.getReg();
// We can use one SGPR in each VOP3 instruction.
continue;
}
} else if (!isLiteralConstant(MO)) {
// If it is not a register and not a literal constant, then it must be
// an inline constant which is always legal.
continue;
}
// If we make it this far, then the operand is not legal and we must
// legalize it.
legalizeOpWithMove(MI, Idx);
}
}
// Legalize REG_SEQUENCE and PHI
// The register class of the operands much be the same type as the register
// class of the output.
if (MI->getOpcode() == AMDGPU::REG_SEQUENCE ||
MI->getOpcode() == AMDGPU::PHI) {
const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
if (!MI->getOperand(i).isReg() ||
!TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
continue;
const TargetRegisterClass *OpRC =
MRI.getRegClass(MI->getOperand(i).getReg());
if (RI.hasVGPRs(OpRC)) {
VRC = OpRC;
} else {
SRC = OpRC;
}
}
// If any of the operands are VGPR registers, then they all most be
// otherwise we will create illegal VGPR->SGPR copies when legalizing
// them.
if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) {
if (!VRC) {
assert(SRC);
VRC = RI.getEquivalentVGPRClass(SRC);
}
RC = VRC;
} else {
RC = SRC;
}
// Update all the operands so they have the same type.
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
if (!MI->getOperand(i).isReg() ||
!TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
continue;
unsigned DstReg = MRI.createVirtualRegister(RC);
MachineBasicBlock *InsertBB;
MachineBasicBlock::iterator Insert;
if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) {
InsertBB = MI->getParent();
Insert = MI;
} else {
// MI is a PHI instruction.
InsertBB = MI->getOperand(i + 1).getMBB();
Insert = InsertBB->getFirstTerminator();
}
BuildMI(*InsertBB, Insert, MI->getDebugLoc(),
get(AMDGPU::COPY), DstReg)
.addOperand(MI->getOperand(i));
MI->getOperand(i).setReg(DstReg);
}
}
// Legalize INSERT_SUBREG
// src0 must have the same register class as dst
if (MI->getOpcode() == AMDGPU::INSERT_SUBREG) {
unsigned Dst = MI->getOperand(0).getReg();
unsigned Src0 = MI->getOperand(1).getReg();
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
if (DstRC != Src0RC) {
MachineBasicBlock &MBB = *MI->getParent();
unsigned NewSrc0 = MRI.createVirtualRegister(DstRC);
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), NewSrc0)
.addReg(Src0);
MI->getOperand(1).setReg(NewSrc0);
}
return;
}
// Legalize MUBUF* instructions
// FIXME: If we start using the non-addr64 instructions for compute, we
// may need to legalize them here.
int SRsrcIdx =
AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc);
if (SRsrcIdx != -1) {
// We have an MUBUF instruction
MachineOperand *SRsrc = &MI->getOperand(SRsrcIdx);
unsigned SRsrcRC = get(MI->getOpcode()).OpInfo[SRsrcIdx].RegClass;
if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()),
RI.getRegClass(SRsrcRC))) {
// The operands are legal.
// FIXME: We may need to legalize operands besided srsrc.
return;
}
MachineBasicBlock &MBB = *MI->getParent();
// Extract the the ptr from the resource descriptor.
// SRsrcPtrLo = srsrc:sub0
unsigned SRsrcPtrLo = buildExtractSubReg(MI, MRI, *SRsrc,
&AMDGPU::VReg_128RegClass, AMDGPU::sub0, &AMDGPU::VReg_32RegClass);
// SRsrcPtrHi = srsrc:sub1
unsigned SRsrcPtrHi = buildExtractSubReg(MI, MRI, *SRsrc,
&AMDGPU::VReg_128RegClass, AMDGPU::sub1, &AMDGPU::VReg_32RegClass);
// Create an empty resource descriptor
unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
// Zero64 = 0
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64),
Zero64)
.addImm(0);
// SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
SRsrcFormatLo)
.addImm(AMDGPU::RSRC_DATA_FORMAT & 0xFFFFFFFF);
// SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
SRsrcFormatHi)
.addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
// NewSRsrc = {Zero64, SRsrcFormat}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
NewSRsrc)
.addReg(Zero64)
.addImm(AMDGPU::sub0_sub1)
.addReg(SRsrcFormatLo)
.addImm(AMDGPU::sub2)
.addReg(SRsrcFormatHi)
.addImm(AMDGPU::sub3);
MachineOperand *VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
unsigned NewVAddrLo;
unsigned NewVAddrHi;
if (VAddr) {
// This is already an ADDR64 instruction so we need to add the pointer
// extracted from the resource descriptor to the current value of VAddr.
NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
// NewVaddrLo = SRsrcPtrLo + VAddr:sub0
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADD_I32_e32),
NewVAddrLo)
.addReg(SRsrcPtrLo)
.addReg(VAddr->getReg(), 0, AMDGPU::sub0)
.addReg(AMDGPU::VCC, RegState::ImplicitDefine);
// NewVaddrHi = SRsrcPtrHi + VAddr:sub1
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADDC_U32_e32),
NewVAddrHi)
.addReg(SRsrcPtrHi)
.addReg(VAddr->getReg(), 0, AMDGPU::sub1)
.addReg(AMDGPU::VCC, RegState::ImplicitDefine)
.addReg(AMDGPU::VCC, RegState::Implicit);
} else {
// This instructions is the _OFFSET variant, so we need to convert it to
// ADDR64.
MachineOperand *VData = getNamedOperand(*MI, AMDGPU::OpName::vdata);
MachineOperand *Offset = getNamedOperand(*MI, AMDGPU::OpName::offset);
MachineOperand *SOffset = getNamedOperand(*MI, AMDGPU::OpName::soffset);
assert(SOffset->isImm() && SOffset->getImm() == 0 && "Legalizing MUBUF "
"with non-zero soffset is not implemented");
(void)SOffset;
// Create the new instruction.
unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI->getOpcode());
MachineInstr *Addr64 =
BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode))
.addOperand(*VData)
.addOperand(*SRsrc)
.addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
// This will be replaced later
// with the new value of vaddr.
.addOperand(*Offset);
MI->removeFromParent();
MI = Addr64;
NewVAddrLo = SRsrcPtrLo;
NewVAddrHi = SRsrcPtrHi;
VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc);
}
// NewVaddr = {NewVaddrHi, NewVaddrLo}
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
NewVAddr)
.addReg(NewVAddrLo)
.addImm(AMDGPU::sub0)
.addReg(NewVAddrHi)
.addImm(AMDGPU::sub1);
// Update the instruction to use NewVaddr
VAddr->setReg(NewVAddr);
// Update the instruction to use NewSRsrc
SRsrc->setReg(NewSRsrc);
}
}
void SIInstrInfo::splitSMRD(MachineInstr *MI,
const TargetRegisterClass *HalfRC,
unsigned HalfImmOp, unsigned HalfSGPROp,
MachineInstr *&Lo, MachineInstr *&Hi) const {
DebugLoc DL = MI->getDebugLoc();
MachineBasicBlock *MBB = MI->getParent();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
unsigned RegLo = MRI.createVirtualRegister(HalfRC);
unsigned RegHi = MRI.createVirtualRegister(HalfRC);
unsigned HalfSize = HalfRC->getSize();
const MachineOperand *OffOp =
getNamedOperand(*MI, AMDGPU::OpName::offset);
const MachineOperand *SBase = getNamedOperand(*MI, AMDGPU::OpName::sbase);
if (OffOp) {
// Handle the _IMM variant
unsigned LoOffset = OffOp->getImm();
unsigned HiOffset = LoOffset + (HalfSize / 4);
Lo = BuildMI(*MBB, MI, DL, get(HalfImmOp), RegLo)
.addOperand(*SBase)
.addImm(LoOffset);
if (!isUInt<8>(HiOffset)) {
unsigned OffsetSGPR =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32), OffsetSGPR)
.addImm(HiOffset << 2); // The immediate offset is in dwords,
// but offset in register is in bytes.
Hi = BuildMI(*MBB, MI, DL, get(HalfSGPROp), RegHi)
.addOperand(*SBase)
.addReg(OffsetSGPR);
} else {
Hi = BuildMI(*MBB, MI, DL, get(HalfImmOp), RegHi)
.addOperand(*SBase)
.addImm(HiOffset);
}
} else {
// Handle the _SGPR variant
MachineOperand *SOff = getNamedOperand(*MI, AMDGPU::OpName::soff);
Lo = BuildMI(*MBB, MI, DL, get(HalfSGPROp), RegLo)
.addOperand(*SBase)
.addOperand(*SOff);
unsigned OffsetSGPR = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*MBB, MI, DL, get(AMDGPU::S_ADD_I32), OffsetSGPR)
.addOperand(*SOff)
.addImm(HalfSize);
Hi = BuildMI(*MBB, MI, DL, get(HalfSGPROp))
.addOperand(*SBase)
.addReg(OffsetSGPR);
}
unsigned SubLo, SubHi;
switch (HalfSize) {
case 4:
SubLo = AMDGPU::sub0;
SubHi = AMDGPU::sub1;
break;
case 8:
SubLo = AMDGPU::sub0_sub1;
SubHi = AMDGPU::sub2_sub3;
break;
case 16:
SubLo = AMDGPU::sub0_sub1_sub2_sub3;
SubHi = AMDGPU::sub4_sub5_sub6_sub7;
break;
case 32:
SubLo = AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7;
SubHi = AMDGPU::sub8_sub9_sub10_sub11_sub12_sub13_sub14_sub15;
break;
default:
llvm_unreachable("Unhandled HalfSize");
}
BuildMI(*MBB, MI, DL, get(AMDGPU::REG_SEQUENCE))
.addOperand(MI->getOperand(0))
.addReg(RegLo)
.addImm(SubLo)
.addReg(RegHi)
.addImm(SubHi);
}
void SIInstrInfo::moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) const {
MachineBasicBlock *MBB = MI->getParent();
switch (MI->getOpcode()) {
case AMDGPU::S_LOAD_DWORD_IMM:
case AMDGPU::S_LOAD_DWORD_SGPR:
case AMDGPU::S_LOAD_DWORDX2_IMM:
case AMDGPU::S_LOAD_DWORDX2_SGPR:
case AMDGPU::S_LOAD_DWORDX4_IMM:
case AMDGPU::S_LOAD_DWORDX4_SGPR: {
unsigned NewOpcode = getVALUOp(*MI);
unsigned RegOffset;
unsigned ImmOffset;
if (MI->getOperand(2).isReg()) {
RegOffset = MI->getOperand(2).getReg();
ImmOffset = 0;
} else {
assert(MI->getOperand(2).isImm());
// SMRD instructions take a dword offsets and MUBUF instructions
// take a byte offset.
ImmOffset = MI->getOperand(2).getImm() << 2;
RegOffset = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
if (isUInt<12>(ImmOffset)) {
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
RegOffset)
.addImm(0);
} else {
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
RegOffset)
.addImm(ImmOffset);
ImmOffset = 0;
}
}
unsigned SRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
unsigned DWord0 = RegOffset;
unsigned DWord1 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned DWord2 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned DWord3 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord1)
.addImm(0);
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord2)
.addImm(AMDGPU::RSRC_DATA_FORMAT & 0xFFFFFFFF);
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord3)
.addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), SRsrc)
.addReg(DWord0)
.addImm(AMDGPU::sub0)
.addReg(DWord1)
.addImm(AMDGPU::sub1)
.addReg(DWord2)
.addImm(AMDGPU::sub2)
.addReg(DWord3)
.addImm(AMDGPU::sub3);
MI->setDesc(get(NewOpcode));
if (MI->getOperand(2).isReg()) {
MI->getOperand(2).setReg(MI->getOperand(1).getReg());
} else {
MI->getOperand(2).ChangeToRegister(MI->getOperand(1).getReg(), false);
}
MI->getOperand(1).setReg(SRsrc);
MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(ImmOffset));
const TargetRegisterClass *NewDstRC =
RI.getRegClass(get(NewOpcode).OpInfo[0].RegClass);
unsigned DstReg = MI->getOperand(0).getReg();
unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC);
MRI.replaceRegWith(DstReg, NewDstReg);
break;
}
case AMDGPU::S_LOAD_DWORDX8_IMM:
case AMDGPU::S_LOAD_DWORDX8_SGPR: {
MachineInstr *Lo, *Hi;
splitSMRD(MI, &AMDGPU::SReg_128RegClass, AMDGPU::S_LOAD_DWORDX4_IMM,
AMDGPU::S_LOAD_DWORDX4_SGPR, Lo, Hi);
MI->eraseFromParent();
moveSMRDToVALU(Lo, MRI);
moveSMRDToVALU(Hi, MRI);
break;
}
case AMDGPU::S_LOAD_DWORDX16_IMM:
case AMDGPU::S_LOAD_DWORDX16_SGPR: {
MachineInstr *Lo, *Hi;
splitSMRD(MI, &AMDGPU::SReg_256RegClass, AMDGPU::S_LOAD_DWORDX8_IMM,
AMDGPU::S_LOAD_DWORDX8_SGPR, Lo, Hi);
MI->eraseFromParent();
moveSMRDToVALU(Lo, MRI);
moveSMRDToVALU(Hi, MRI);
break;
}
}
}
void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
SmallVector<MachineInstr *, 128> Worklist;
Worklist.push_back(&TopInst);
while (!Worklist.empty()) {
MachineInstr *Inst = Worklist.pop_back_val();
MachineBasicBlock *MBB = Inst->getParent();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
unsigned Opcode = Inst->getOpcode();
unsigned NewOpcode = getVALUOp(*Inst);
// Handle some special cases
switch (Opcode) {
default:
if (isSMRD(Inst->getOpcode())) {
moveSMRDToVALU(Inst, MRI);
}
break;
case AMDGPU::S_MOV_B64: {
DebugLoc DL = Inst->getDebugLoc();
// If the source operand is a register we can replace this with a
// copy.
if (Inst->getOperand(1).isReg()) {
MachineInstr *Copy = BuildMI(*MBB, Inst, DL, get(TargetOpcode::COPY))
.addOperand(Inst->getOperand(0))
.addOperand(Inst->getOperand(1));
Worklist.push_back(Copy);
} else {
// Otherwise, we need to split this into two movs, because there is
// no 64-bit VALU move instruction.
unsigned Reg = Inst->getOperand(0).getReg();
unsigned Dst = split64BitImm(Worklist,
Inst,
MRI,
MRI.getRegClass(Reg),
Inst->getOperand(1));
MRI.replaceRegWith(Reg, Dst);
}
Inst->eraseFromParent();
continue;
}
case AMDGPU::S_AND_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32);
Inst->eraseFromParent();
continue;
case AMDGPU::S_OR_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32);
Inst->eraseFromParent();
continue;
case AMDGPU::S_XOR_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32);
Inst->eraseFromParent();
continue;
case AMDGPU::S_NOT_B64:
splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32);
Inst->eraseFromParent();
continue;
case AMDGPU::S_BCNT1_I32_B64:
splitScalar64BitBCNT(Worklist, Inst);
Inst->eraseFromParent();
continue;
case AMDGPU::S_BFE_U64:
case AMDGPU::S_BFE_I64:
case AMDGPU::S_BFM_B64:
llvm_unreachable("Moving this op to VALU not implemented");
}
if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
// We cannot move this instruction to the VALU, so we should try to
// legalize its operands instead.
legalizeOperands(Inst);
continue;
}
// Use the new VALU Opcode.
const MCInstrDesc &NewDesc = get(NewOpcode);
Inst->setDesc(NewDesc);
// Remove any references to SCC. Vector instructions can't read from it, and
// We're just about to add the implicit use / defs of VCC, and we don't want
// both.
for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) {
MachineOperand &Op = Inst->getOperand(i);
if (Op.isReg() && Op.getReg() == AMDGPU::SCC)
Inst->RemoveOperand(i);
}
if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
// We are converting these to a BFE, so we need to add the missing
// operands for the size and offset.
unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
Inst->addOperand(MachineOperand::CreateImm(0));
Inst->addOperand(MachineOperand::CreateImm(Size));
} else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
// The VALU version adds the second operand to the result, so insert an
// extra 0 operand.
Inst->addOperand(MachineOperand::CreateImm(0));
}
addDescImplicitUseDef(NewDesc, Inst);
if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
const MachineOperand &OffsetWidthOp = Inst->getOperand(2);
// If we need to move this to VGPRs, we need to unpack the second operand
// back into the 2 separate ones for bit offset and width.
assert(OffsetWidthOp.isImm() &&
"Scalar BFE is only implemented for constant width and offset");
uint32_t Imm = OffsetWidthOp.getImm();
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
Inst->RemoveOperand(2); // Remove old immediate.
Inst->addOperand(MachineOperand::CreateImm(Offset));
Inst->addOperand(MachineOperand::CreateImm(BitWidth));
}
// Update the destination register class.
const TargetRegisterClass *NewDstRC = getOpRegClass(*Inst, 0);
switch (Opcode) {
// For target instructions, getOpRegClass just returns the virtual
// register class associated with the operand, so we need to find an
// equivalent VGPR register class in order to move the instruction to the
// VALU.
case AMDGPU::COPY:
case AMDGPU::PHI:
case AMDGPU::REG_SEQUENCE:
case AMDGPU::INSERT_SUBREG:
if (RI.hasVGPRs(NewDstRC))
continue;
NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
if (!NewDstRC)
continue;
break;
default:
break;
}
unsigned DstReg = Inst->getOperand(0).getReg();
unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC);
MRI.replaceRegWith(DstReg, NewDstReg);
// Legalize the operands
legalizeOperands(Inst);
for (MachineRegisterInfo::use_iterator I = MRI.use_begin(NewDstReg),
E = MRI.use_end(); I != E; ++I) {
MachineInstr &UseMI = *I->getParent();
if (!canReadVGPR(UseMI, I.getOperandNo())) {
Worklist.push_back(&UseMI);
}
}
}
}
//===----------------------------------------------------------------------===//
// Indirect addressing callbacks
//===----------------------------------------------------------------------===//
unsigned SIInstrInfo::calculateIndirectAddress(unsigned RegIndex,
unsigned Channel) const {
assert(Channel == 0);
return RegIndex;
}
const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const {
return &AMDGPU::VReg_32RegClass;
}
void SIInstrInfo::splitScalar64BitUnaryOp(
SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst,
unsigned Opcode) const {
MachineBasicBlock &MBB = *Inst->getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineOperand &Dest = Inst->getOperand(0);
MachineOperand &Src0 = Inst->getOperand(1);
DebugLoc DL = Inst->getDebugLoc();
MachineBasicBlock::iterator MII = Inst;
const MCInstrDesc &InstDesc = get(Opcode);
const TargetRegisterClass *Src0RC = Src0.isReg() ?
MRI.getRegClass(Src0.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub0, Src0SubRC);
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
const TargetRegisterClass *DestSubRC = RI.getSubRegClass(DestRC, AMDGPU::sub0);
unsigned DestSub0 = MRI.createVirtualRegister(DestRC);
MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0)
.addOperand(SrcReg0Sub0);
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub1, Src0SubRC);
unsigned DestSub1 = MRI.createVirtualRegister(DestSubRC);
MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1)
.addOperand(SrcReg0Sub1);
unsigned FullDestReg = MRI.createVirtualRegister(DestRC);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
// Try to legalize the operands in case we need to swap the order to keep it
// valid.
Worklist.push_back(LoHalf);
Worklist.push_back(HiHalf);
}
void SIInstrInfo::splitScalar64BitBinaryOp(
SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst,
unsigned Opcode) const {
MachineBasicBlock &MBB = *Inst->getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineOperand &Dest = Inst->getOperand(0);
MachineOperand &Src0 = Inst->getOperand(1);
MachineOperand &Src1 = Inst->getOperand(2);
DebugLoc DL = Inst->getDebugLoc();
MachineBasicBlock::iterator MII = Inst;
const MCInstrDesc &InstDesc = get(Opcode);
const TargetRegisterClass *Src0RC = Src0.isReg() ?
MRI.getRegClass(Src0.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
const TargetRegisterClass *Src1RC = Src1.isReg() ?
MRI.getRegClass(Src1.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub0, Src0SubRC);
MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
AMDGPU::sub0, Src1SubRC);
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
const TargetRegisterClass *DestSubRC = RI.getSubRegClass(DestRC, AMDGPU::sub0);
unsigned DestSub0 = MRI.createVirtualRegister(DestRC);
MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0)
.addOperand(SrcReg0Sub0)
.addOperand(SrcReg1Sub0);
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub1, Src0SubRC);
MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
AMDGPU::sub1, Src1SubRC);
unsigned DestSub1 = MRI.createVirtualRegister(DestSubRC);
MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1)
.addOperand(SrcReg0Sub1)
.addOperand(SrcReg1Sub1);
unsigned FullDestReg = MRI.createVirtualRegister(DestRC);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
// Try to legalize the operands in case we need to swap the order to keep it
// valid.
Worklist.push_back(LoHalf);
Worklist.push_back(HiHalf);
}
void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst) const {
MachineBasicBlock &MBB = *Inst->getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
DebugLoc DL = Inst->getDebugLoc();
MachineOperand &Dest = Inst->getOperand(0);
MachineOperand &Src = Inst->getOperand(1);
const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e32);
const TargetRegisterClass *SrcRC = Src.isReg() ?
MRI.getRegClass(Src.getReg()) :
&AMDGPU::SGPR_32RegClass;
unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
AMDGPU::sub0, SrcSubRC);
MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
AMDGPU::sub1, SrcSubRC);
MachineInstr *First = BuildMI(MBB, MII, DL, InstDesc, MidReg)
.addOperand(SrcRegSub0)
.addImm(0);
MachineInstr *Second = BuildMI(MBB, MII, DL, InstDesc, ResultReg)
.addOperand(SrcRegSub1)
.addReg(MidReg);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
Worklist.push_back(First);
Worklist.push_back(Second);
}
void SIInstrInfo::addDescImplicitUseDef(const MCInstrDesc &NewDesc,
MachineInstr *Inst) const {
// Add the implict and explicit register definitions.
if (NewDesc.ImplicitUses) {
for (unsigned i = 0; NewDesc.ImplicitUses[i]; ++i) {
unsigned Reg = NewDesc.ImplicitUses[i];
Inst->addOperand(MachineOperand::CreateReg(Reg, false, true));
}
}
if (NewDesc.ImplicitDefs) {
for (unsigned i = 0; NewDesc.ImplicitDefs[i]; ++i) {
unsigned Reg = NewDesc.ImplicitDefs[i];
Inst->addOperand(MachineOperand::CreateReg(Reg, true, true));
}
}
}
MachineInstrBuilder SIInstrInfo::buildIndirectWrite(
MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg,
unsigned Address, unsigned OffsetReg) const {
const DebugLoc &DL = MBB->findDebugLoc(I);
unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister(
getIndirectIndexBegin(*MBB->getParent()));
return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_DST_V1))
.addReg(IndirectBaseReg, RegState::Define)
.addOperand(I->getOperand(0))
.addReg(IndirectBaseReg)
.addReg(OffsetReg)
.addImm(0)
.addReg(ValueReg);
}
MachineInstrBuilder SIInstrInfo::buildIndirectRead(
MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg,
unsigned Address, unsigned OffsetReg) const {
const DebugLoc &DL = MBB->findDebugLoc(I);
unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister(
getIndirectIndexBegin(*MBB->getParent()));
return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_SRC))
.addOperand(I->getOperand(0))
.addOperand(I->getOperand(1))
.addReg(IndirectBaseReg)
.addReg(OffsetReg)
.addImm(0);
}
void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved,
const MachineFunction &MF) const {
int End = getIndirectIndexEnd(MF);
int Begin = getIndirectIndexBegin(MF);
if (End == -1)
return;
for (int Index = Begin; Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_32RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 1); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 2); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 3); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 7); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 15); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index));
}
MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
unsigned OperandName) const {
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
if (Idx == -1)
return nullptr;
return &MI.getOperand(Idx);
}