llvm-project/lld/MachO/Arch/X86_64.cpp

176 lines
5.8 KiB
C++

//===- X86_64.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Endian.h"
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
namespace {
struct X86_64 : TargetInfo {
X86_64();
uint64_t getImplicitAddend(const uint8_t *loc, uint8_t type) const override;
void relocateOne(uint8_t *loc, uint8_t type, uint64_t val) const override;
void writeStub(uint8_t *buf, const DylibSymbol &) const override;
void writeStubHelperHeader(uint8_t *buf) const override;
void writeStubHelperEntry(uint8_t *buf, const DylibSymbol &,
uint64_t entryAddr) const override;
void prepareDylibSymbolRelocation(DylibSymbol &, uint8_t type) override;
uint64_t getDylibSymbolVA(const DylibSymbol &, uint8_t type) const override;
};
} // namespace
uint64_t X86_64::getImplicitAddend(const uint8_t *loc, uint8_t type) const {
switch (type) {
case X86_64_RELOC_BRANCH:
case X86_64_RELOC_SIGNED:
case X86_64_RELOC_SIGNED_1:
case X86_64_RELOC_SIGNED_2:
case X86_64_RELOC_SIGNED_4:
case X86_64_RELOC_GOT_LOAD:
return read32le(loc);
case X86_64_RELOC_UNSIGNED:
return read64le(loc);
default:
error("TODO: Unhandled relocation type " + std::to_string(type));
return 0;
}
}
void X86_64::relocateOne(uint8_t *loc, uint8_t type, uint64_t val) const {
switch (type) {
case X86_64_RELOC_BRANCH:
case X86_64_RELOC_SIGNED:
case X86_64_RELOC_SIGNED_1:
case X86_64_RELOC_SIGNED_2:
case X86_64_RELOC_SIGNED_4:
case X86_64_RELOC_GOT_LOAD:
// These types are only used for pc-relative relocations, so offset by 4
// since the RIP has advanced by 4 at this point.
write32le(loc, val - 4);
break;
case X86_64_RELOC_UNSIGNED:
write64le(loc, val);
break;
default:
llvm_unreachable(
"getImplicitAddend should have flagged all unhandled relocation types");
}
}
// The following methods emit a number of assembly sequences with RIP-relative
// addressing. Note that RIP-relative addressing on X86-64 has the RIP pointing
// to the next instruction, not the current instruction, so we always have to
// account for the current instruction's size when calculating offsets.
// writeRipRelative helps with that.
//
// bufAddr: The virtual address corresponding to buf[0].
// bufOff: The offset within buf of the next instruction.
// destAddr: The destination address that the current instruction references.
static void writeRipRelative(uint8_t *buf, uint64_t bufAddr, uint64_t bufOff,
uint64_t destAddr) {
uint64_t rip = bufAddr + bufOff;
// For the instructions we care about, the RIP-relative address is always
// stored in the last 4 bytes of the instruction.
write32le(buf + bufOff - 4, destAddr - rip);
}
static constexpr uint8_t stub[] = {
0xff, 0x25, 0, 0, 0, 0, // jmpq *__la_symbol_ptr(%rip)
};
void X86_64::writeStub(uint8_t *buf, const DylibSymbol &sym) const {
memcpy(buf, stub, 2); // just copy the two nonzero bytes
uint64_t stubAddr = in.stubs->addr + sym.stubsIndex * sizeof(stub);
writeRipRelative(buf, stubAddr, sizeof(stub),
in.lazyPointers->addr + sym.stubsIndex * WordSize);
}
static constexpr uint8_t stubHelperHeader[] = {
0x4c, 0x8d, 0x1d, 0, 0, 0, 0, // 0x0: leaq ImageLoaderCache(%rip), %r11
0x41, 0x53, // 0x7: pushq %r11
0xff, 0x25, 0, 0, 0, 0, // 0x9: jmpq *dyld_stub_binder@GOT(%rip)
0x90, // 0xf: nop
};
static constexpr uint8_t stubHelperEntry[] = {
0x68, 0, 0, 0, 0, // 0x0: pushq <bind offset>
0xe9, 0, 0, 0, 0, // 0x5: jmp <__stub_helper>
};
void X86_64::writeStubHelperHeader(uint8_t *buf) const {
memcpy(buf, stubHelperHeader, sizeof(stubHelperHeader));
writeRipRelative(buf, in.stubHelper->addr, 7, in.imageLoaderCache->getVA());
writeRipRelative(buf, in.stubHelper->addr, 0xf,
in.got->addr +
in.stubHelper->stubBinder->gotIndex * WordSize);
}
void X86_64::writeStubHelperEntry(uint8_t *buf, const DylibSymbol &sym,
uint64_t entryAddr) const {
memcpy(buf, stubHelperEntry, sizeof(stubHelperEntry));
write32le(buf + 1, sym.lazyBindOffset);
writeRipRelative(buf, entryAddr, sizeof(stubHelperEntry),
in.stubHelper->addr);
}
void X86_64::prepareDylibSymbolRelocation(DylibSymbol &sym, uint8_t type) {
switch (type) {
case X86_64_RELOC_GOT_LOAD:
in.got->addEntry(sym);
break;
case X86_64_RELOC_BRANCH:
in.stubs->addEntry(sym);
break;
case X86_64_RELOC_GOT:
fatal("TODO: Unhandled dylib symbol relocation X86_64_RELOC_GOT");
default:
llvm_unreachable("Unexpected dylib relocation type");
}
}
uint64_t X86_64::getDylibSymbolVA(const DylibSymbol &sym, uint8_t type) const {
switch (type) {
case X86_64_RELOC_GOT_LOAD:
return in.got->addr + sym.gotIndex * WordSize;
case X86_64_RELOC_BRANCH:
return in.stubs->addr + sym.stubsIndex * sizeof(stub);
case X86_64_RELOC_GOT:
fatal("TODO: Unhandled dylib symbol relocation X86_64_RELOC_GOT");
default:
llvm_unreachable("Unexpected dylib relocation type");
}
}
X86_64::X86_64() {
cpuType = CPU_TYPE_X86_64;
cpuSubtype = CPU_SUBTYPE_X86_64_ALL;
stubSize = sizeof(stub);
stubHelperHeaderSize = sizeof(stubHelperHeader);
stubHelperEntrySize = sizeof(stubHelperEntry);
}
TargetInfo *macho::createX86_64TargetInfo() {
static X86_64 t;
return &t;
}