llvm-project/clang/lib/Sema/SemaDeclAttr.cpp

1475 lines
49 KiB
C++

//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/DeclSpec.h"
#include <llvm/ADT/StringExtras.h>
using namespace clang;
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
static const FunctionType *getFunctionType(Decl *d) {
QualType Ty;
if (ValueDecl *decl = dyn_cast<ValueDecl>(d))
Ty = decl->getType();
else if (FieldDecl *decl = dyn_cast<FieldDecl>(d))
Ty = decl->getType();
else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
Ty = decl->getUnderlyingType();
else
return 0;
if (Ty->isFunctionPointerType())
Ty = Ty->getAsPointerType()->getPointeeType();
return Ty->getAsFunctionType();
}
// FIXME: We should provide an abstraction around a method or function
// to provide the following bits of information.
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method.
static bool isFunctionOrMethod(Decl *d) {
return getFunctionType(d) || isa<ObjCMethodDecl>(d);
}
/// hasFunctionProto - Return true if the given decl has a argument
/// information. This decl should have already passed
/// isFunctionOrMethod.
static bool hasFunctionProto(Decl *d) {
if (const FunctionType *FnTy = getFunctionType(d)) {
return isa<FunctionTypeProto>(FnTy);
} else {
assert(isa<ObjCMethodDecl>(d));
return true;
}
}
/// getFunctionOrMethodNumArgs - Return number of function or method
/// arguments. It is an error to call this on a K&R function (use
/// hasFunctionProto first).
static unsigned getFunctionOrMethodNumArgs(Decl *d) {
if (const FunctionType *FnTy = getFunctionType(d)) {
const FunctionTypeProto *proto = cast<FunctionTypeProto>(FnTy);
return proto->getNumArgs();
} else {
return cast<ObjCMethodDecl>(d)->getNumParams();
}
}
static QualType getFunctionOrMethodArgType(Decl *d, unsigned Idx) {
if (const FunctionType *FnTy = getFunctionType(d)) {
const FunctionTypeProto *proto = cast<FunctionTypeProto>(FnTy);
return proto->getArgType(Idx);
} else {
return cast<ObjCMethodDecl>(d)->getParamDecl(Idx)->getType();
}
}
static bool isFunctionOrMethodVariadic(Decl *d) {
if (const FunctionType *FnTy = getFunctionType(d)) {
const FunctionTypeProto *proto = cast<FunctionTypeProto>(FnTy);
return proto->isVariadic();
} else {
return cast<ObjCMethodDecl>(d)->isVariadic();
}
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
const PointerType *PT = T->getAsPointerType();
if (!PT)
return false;
const ObjCInterfaceType *ClsT =PT->getPointeeType()->getAsObjCInterfaceType();
if (!ClsT)
return false;
IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
const PointerType *PT = T->getAsPointerType();
if (!PT)
return false;
const RecordType *RT = PT->getPointeeType()->getAsRecordType();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->getTagKind() != TagDecl::TK_struct)
return false;
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
}
//===----------------------------------------------------------------------===//
// Attribute Implementations
//===----------------------------------------------------------------------===//
// FIXME: All this manual attribute parsing code is gross. At the
// least add some helper functions to check most argument patterns (#
// and types of args).
static void HandleExtVectorTypeAttr(Decl *d, const AttributeList &Attr,
Sema &S) {
TypedefDecl *tDecl = dyn_cast<TypedefDecl>(d);
if (tDecl == 0) {
S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
return;
}
QualType curType = tDecl->getUnderlyingType();
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt vecSize(32);
if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "ext_vector_type" << sizeExpr->getSourceRange();
return;
}
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
// in conjunction with complex types (pointers, arrays, functions, etc.).
if (!curType->isIntegerType() && !curType->isRealFloatingType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << curType;
return;
}
// unlike gcc's vector_size attribute, the size is specified as the
// number of elements, not the number of bytes.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
if (vectorSize == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
<< sizeExpr->getSourceRange();
return;
}
// Instantiate/Install the vector type, the number of elements is > 0.
tDecl->setUnderlyingType(S.Context.getExtVectorType(curType, vectorSize));
// Remember this typedef decl, we will need it later for diagnostics.
S.ExtVectorDecls.push_back(tDecl);
}
/// HandleVectorSizeAttribute - this attribute is only applicable to
/// integral and float scalars, although arrays, pointers, and function
/// return values are allowed in conjunction with this construct. Aggregates
/// with this attribute are invalid, even if they are of the same size as a
/// corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size
/// for the variable, measured in bytes. If curType and rawAttr are well
/// formed, this routine will return a new vector type.
static void HandleVectorSizeAttr(Decl *D, const AttributeList &Attr, Sema &S) {
QualType CurType;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
CurType = VD->getType();
else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D))
CurType = TD->getUnderlyingType();
else {
S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
<< "vector_size" << SourceRange(Attr.getLoc(), Attr.getLoc());
return;
}
// Check the attribute arugments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt vecSize(32);
if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "vector_size" << sizeExpr->getSourceRange();
return;
}
// navigate to the base type - we need to provide for vector pointers,
// vector arrays, and functions returning vectors.
if (CurType->isPointerType() || CurType->isArrayType() ||
CurType->isFunctionType()) {
assert(0 && "HandleVector(): Complex type construction unimplemented");
/* FIXME: rebuild the type from the inside out, vectorizing the inner type.
do {
if (PointerType *PT = dyn_cast<PointerType>(canonType))
canonType = PT->getPointeeType().getTypePtr();
else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
canonType = AT->getElementType().getTypePtr();
else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
canonType = FT->getResultType().getTypePtr();
} while (canonType->isPointerType() || canonType->isArrayType() ||
canonType->isFunctionType());
*/
}
// the base type must be integer or float.
if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
return;
}
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
// vecSize is specified in bytes - convert to bits.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
// the vector size needs to be an integral multiple of the type size.
if (vectorSize % typeSize) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
<< sizeExpr->getSourceRange();
return;
}
if (vectorSize == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
<< sizeExpr->getSourceRange();
return;
}
// Success! Instantiate the vector type, the number of elements is > 0, and
// not required to be a power of 2, unlike GCC.
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize);
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
VD->setType(CurType);
else
cast<TypedefDecl>(D)->setUnderlyingType(CurType);
}
static void HandlePackedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (TagDecl *TD = dyn_cast<TagDecl>(d))
TD->addAttr(new PackedAttr(1));
else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
// If the alignment is less than or equal to 8 bits, the packed attribute
// has no effect.
if (!FD->getType()->isIncompleteType() &&
S.Context.getTypeAlign(FD->getType()) <= 8)
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
<< Attr.getName() << FD->getType();
else
FD->addAttr(new PackedAttr(1));
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static void HandleIBOutletAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// The IBOutlet attribute only applies to instance variables of Objective-C
// classes.
if (ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(d))
ID->addAttr(new IBOutletAttr());
else
S.Diag(Attr.getLoc(), diag::err_attribute_iboutlet_non_ivar);
}
static void HandleNonNullAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// GCC ignores the nonnull attribute on K&R style function
// prototypes, so we ignore it as well
if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "nonnull" << 0 /*function*/;
return;
}
unsigned NumArgs = getFunctionOrMethodNumArgs(d);
// The nonnull attribute only applies to pointers.
llvm::SmallVector<unsigned, 10> NonNullArgs;
for (AttributeList::arg_iterator I=Attr.arg_begin(),
E=Attr.arg_end(); I!=E; ++I) {
// The argument must be an integer constant expression.
Expr *Ex = static_cast<Expr *>(*I);
llvm::APSInt ArgNum(32);
if (!Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "nonnull" << Ex->getSourceRange();
return;
}
unsigned x = (unsigned) ArgNum.getZExtValue();
if (x < 1 || x > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "nonnull" << I.getArgNum() << Ex->getSourceRange();
return;
}
--x;
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodArgType(d, x);
if (!T->isPointerType() && !T->isBlockPointerType()) {
// FIXME: Should also highlight argument in decl.
S.Diag(Attr.getLoc(), diag::err_nonnull_pointers_only)
<< "nonnull" << Ex->getSourceRange();
continue;
}
NonNullArgs.push_back(x);
}
// If no arguments were specified to __attribute__((nonnull)) then all
// pointer arguments have a nonnull attribute.
if (NonNullArgs.empty()) {
for (unsigned I = 0, E = getFunctionOrMethodNumArgs(d); I != E; ++I) {
QualType T = getFunctionOrMethodArgType(d, I);
if (T->isPointerType() || T->isBlockPointerType())
NonNullArgs.push_back(I);
}
if (NonNullArgs.empty()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
return;
}
}
unsigned* start = &NonNullArgs[0];
unsigned size = NonNullArgs.size();
std::sort(start, start + size);
d->addAttr(new NonNullAttr(start, size));
}
static void HandleAliasAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *Arg = static_cast<Expr*>(Attr.getArg(0));
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (Str == 0 || Str->isWide()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "alias" << 1;
return;
}
const char *Alias = Str->getStrData();
unsigned AliasLen = Str->getByteLength();
// FIXME: check if target symbol exists in current file
d->addAttr(new AliasAttr(std::string(Alias, AliasLen)));
}
static void HandleAlwaysInlineAttr(Decl *d, const AttributeList &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(new AlwaysInlineAttr());
}
static void HandleNoReturnAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isFunctionOrMethod(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "noreturn" << 0 /*function*/;
return;
}
d->addAttr(new NoReturnAttr());
}
static void HandleUnusedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<VarDecl>(d) && !isFunctionOrMethod(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "unused" << 2 /*variable and function*/;
return;
}
d->addAttr(new UnusedAttr());
}
static void HandleUsedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (const VarDecl *VD = dyn_cast<VarDecl>(d)) {
if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
return;
}
} else if (!isFunctionOrMethod(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "used" << 2 /*variable and function*/;
return;
}
d->addAttr(new UsedAttr());
}
static void HandleConstructorAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< "0 or 1";
return;
}
int priority = 65535; // FIXME: Do not hardcode such constants.
if (Attr.getNumArgs() > 0) {
Expr *E = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "constructor" << 1 << E->getSourceRange();
return;
}
priority = Idx.getZExtValue();
}
FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
if (!Fn) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "constructor" << 0 /*function*/;
return;
}
d->addAttr(new ConstructorAttr(priority));
}
static void HandleDestructorAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< "0 or 1";
return;
}
int priority = 65535; // FIXME: Do not hardcode such constants.
if (Attr.getNumArgs() > 0) {
Expr *E = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "destructor" << 1 << E->getSourceRange();
return;
}
priority = Idx.getZExtValue();
}
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "destructor" << 0 /*function*/;
return;
}
d->addAttr(new DestructorAttr(priority));
}
static void HandleDeprecatedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(new DeprecatedAttr());
}
static void HandleUnavailableAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(new UnavailableAttr());
}
static void HandleVisibilityAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *Arg = static_cast<Expr*>(Attr.getArg(0));
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (Str == 0 || Str->isWide()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "visibility" << 1;
return;
}
const char *TypeStr = Str->getStrData();
unsigned TypeLen = Str->getByteLength();
VisibilityAttr::VisibilityTypes type;
if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
type = VisibilityAttr::DefaultVisibility;
else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
type = VisibilityAttr::HiddenVisibility;
else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
type = VisibilityAttr::HiddenVisibility; // FIXME
else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
type = VisibilityAttr::ProtectedVisibility;
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
return;
}
d->addAttr(new VisibilityAttr(type));
}
static void HandleObjCGCAttr(Decl *D, const AttributeList &Attr, Sema &S) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "objc_gc" << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
ObjCGCAttr::GCAttrTypes type;
if (Attr.getParameterName()->isStr("weak")) {
if (isa<FieldDecl>(D) && !isa<ObjCIvarDecl>(D))
S.Diag(Attr.getLoc(), diag::warn_attribute_weak_on_field);
type = ObjCGCAttr::Weak;
}
else if (Attr.getParameterName()->isStr("strong"))
type = ObjCGCAttr::Strong;
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "objc_gc" << Attr.getParameterName();
return;
}
D->addAttr(new ObjCGCAttr(type));
}
static void HandleObjCExceptionAttr(Decl *D, const AttributeList &Attr,
Sema &S) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
if (OCI == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
return;
}
D->addAttr(new ObjCExceptionAttr());
}
static void HandleObjCNSObject(Decl *D, const AttributeList &Attr, Sema &S) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isPointerType() ||
!T->getAsPointerType()->getPointeeType()->isRecordType()) {
S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
D->addAttr(new ObjCNSObjectAttr);
}
static void
HandleOverloadableAttr(Decl *D, const AttributeList &Attr, Sema &S) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
return;
}
D->addAttr(new OverloadableAttr);
}
static void HandleBlocksAttr(Decl *d, const AttributeList &Attr, Sema &S) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "blocks" << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
BlocksAttr::BlocksAttrTypes type;
if (Attr.getParameterName()->isStr("byref"))
type = BlocksAttr::ByRef;
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "blocks" << Attr.getParameterName();
return;
}
d->addAttr(new BlocksAttr(type));
}
static void HandleSentinelAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< "0, 1 or 2";
return;
}
int sentinel = 0;
if (Attr.getNumArgs() > 0) {
Expr *E = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "sentinel" << 1 << E->getSourceRange();
return;
}
sentinel = Idx.getZExtValue();
if (sentinel < 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
<< E->getSourceRange();
return;
}
}
int nullPos = 0;
if (Attr.getNumArgs() > 1) {
Expr *E = static_cast<Expr *>(Attr.getArg(1));
llvm::APSInt Idx(32);
if (!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "sentinel" << 2 << E->getSourceRange();
return;
}
nullPos = Idx.getZExtValue();
if (nullPos > 1 || nullPos < 0) {
// FIXME: This error message could be improved, it would be nice
// to say what the bounds actually are.
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
<< E->getSourceRange();
return;
}
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(d)) {
QualType FT = FD->getType();
if (!FT->getAsFunctionTypeProto()->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic);
return;
}
} else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(d)) {
if (!MD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic);
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "sentinel" << 3 /*function or method*/;
return;
}
// FIXME: Actually create the attribute.
}
static void HandleWarnUnusedResult(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// TODO: could also be applied to methods?
FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
if (!Fn) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "warn_unused_result" << 0 /*function*/;
return;
}
Fn->addAttr(new WarnUnusedResultAttr());
}
static void HandleWeakAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
D->addAttr(new WeakAttr());
}
static void HandleDLLImportAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// Attribute can be applied only to functions or variables.
if (isa<VarDecl>(D)) {
D->addAttr(new DLLImportAttr());
return;
}
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (!FD) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "dllimport" << 2 /*variable and function*/;
return;
}
// Currently, the dllimport attribute is ignored for inlined functions.
// Warning is emitted.
if (FD->isInline()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport";
return;
}
// The attribute is also overridden by a subsequent declaration as dllexport.
// Warning is emitted.
for (AttributeList *nextAttr = Attr.getNext(); nextAttr;
nextAttr = nextAttr->getNext()) {
if (nextAttr->getKind() == AttributeList::AT_dllexport) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport";
return;
}
}
if (D->getAttr<DLLExportAttr>()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport";
return;
}
D->addAttr(new DLLImportAttr());
}
static void HandleDLLExportAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// Attribute can be applied only to functions or variables.
if (isa<VarDecl>(D)) {
D->addAttr(new DLLExportAttr());
return;
}
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (!FD) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "dllexport" << 2 /*variable and function*/;
return;
}
// Currently, the dllexport attribute is ignored for inlined functions,
// unless the -fkeep-inline-functions flag has been used. Warning is emitted;
if (FD->isInline()) {
// FIXME: ... unless the -fkeep-inline-functions flag has been used.
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllexport";
return;
}
D->addAttr(new DLLExportAttr());
}
static void HandleSectionAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// Attribute has no arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
// Make sure that there is a string literal as the sections's single
// argument.
StringLiteral *SE =
dyn_cast<StringLiteral>(static_cast<Expr *>(Attr.getArg(0)));
if (!SE) {
// FIXME
S.Diag(Attr.getLoc(), diag::err_attribute_annotate_no_string);
return;
}
D->addAttr(new SectionAttr(std::string(SE->getStrData(),
SE->getByteLength())));
}
static void HandleStdCallAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// Attribute has no arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// Attribute can be applied only to functions.
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "stdcall" << 0 /*function*/;
return;
}
// stdcall and fastcall attributes are mutually incompatible.
if (d->getAttr<FastCallAttr>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "stdcall" << "fastcall";
return;
}
d->addAttr(new StdCallAttr());
}
static void HandleFastCallAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// Attribute has no arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "fastcall" << 0 /*function*/;
return;
}
// stdcall and fastcall attributes are mutually incompatible.
if (d->getAttr<StdCallAttr>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "fastcall" << "stdcall";
return;
}
d->addAttr(new FastCallAttr());
}
static void HandleNothrowAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(new NoThrowAttr());
}
static void HandleConstAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(new ConstAttr());
}
static void HandlePureAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(new PureAttr());
}
static void HandleCleanupAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// Match gcc which ignores cleanup attrs when compiling C++.
if (S.getLangOptions().CPlusPlus)
return;
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
VarDecl *VD = dyn_cast<VarDecl>(d);
if (!VD || !VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
return;
}
// Look up the function
NamedDecl *CleanupDecl = S.LookupName(S.TUScope, Attr.getParameterName(),
Sema::LookupOrdinaryName);
if (!CleanupDecl) {
S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_not_found) <<
Attr.getParameterName();
return;
}
FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
if (!FD) {
S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_not_function) <<
Attr.getParameterName();
return;
}
if (FD->getNumParams() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_func_must_take_one_arg) <<
Attr.getParameterName();
return;
}
// We're currently more strict than GCC about what function types we accept.
// If this ever proves to be a problem it should be easy to fix.
QualType Ty = S.Context.getPointerType(VD->getType());
QualType ParamTy = FD->getParamDecl(0)->getType();
if (Ty != ParamTy) {
S.Diag(Attr.getLoc(),
diag::err_attribute_cleanup_func_arg_incompatible_type) <<
Attr.getParameterName() << ParamTy << Ty;
return;
}
d->addAttr(new CleanupAttr(FD));
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes
/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void HandleFormatAttr(Decl *d, const AttributeList &Attr, Sema &S) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "format" << 1;
return;
}
if (Attr.getNumArgs() != 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
return;
}
if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "format" << 0 /*function*/;
return;
}
// FIXME: in C++ the implicit 'this' function parameter also counts.
// this is needed in order to be compatible with GCC
// the index must start in 1 and the limit is numargs+1
unsigned NumArgs = getFunctionOrMethodNumArgs(d);
unsigned FirstIdx = 1;
const char *Format = Attr.getParameterName()->getName();
unsigned FormatLen = Attr.getParameterName()->getLength();
// Normalize the argument, __foo__ becomes foo.
if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
Format += 2;
FormatLen -= 4;
}
bool Supported = false;
bool is_NSString = false;
bool is_strftime = false;
bool is_CFString = false;
switch (FormatLen) {
default: break;
case 5: Supported = !memcmp(Format, "scanf", 5); break;
case 6: Supported = !memcmp(Format, "printf", 6); break;
case 7: Supported = !memcmp(Format, "strfmon", 7); break;
case 8:
Supported = (is_strftime = !memcmp(Format, "strftime", 8)) ||
(is_NSString = !memcmp(Format, "NSString", 8)) ||
(is_CFString = !memcmp(Format, "CFString", 8));
break;
}
if (!Supported) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "format" << Attr.getParameterName()->getName();
return;
}
// checks for the 2nd argument
Expr *IdxExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx.getZExtValue() - 1;
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodArgType(d, ArgIdx);
if (is_CFString) {
if (!isCFStringType(Ty, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a CFString" << IdxExpr->getSourceRange();
return;
}
} else if (is_NSString) {
// FIXME: do we need to check if the type is NSString*? What are
// the semantics?
if (!isNSStringType(Ty, S.Context)) {
// FIXME: Should highlight the actual expression that has the
// wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "an NSString" << IdxExpr->getSourceRange();
return;
}
} else if (!Ty->isPointerType() ||
!Ty->getAsPointerType()->getPointeeType()->isCharType()) {
// FIXME: Should highlight the actual expression that has the
// wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange();
return;
}
// check the 3rd argument
Expr *FirstArgExpr = static_cast<Expr *>(Attr.getArg(1));
llvm::APSInt FirstArg(32);
if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 3 << FirstArgExpr->getSourceRange();
return;
}
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (isFunctionOrMethodVariadic(d)) {
++NumArgs; // +1 for ...
} else {
S.Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any
// variable the input is just the current time + the format string.
if (is_strftime) {
if (FirstArg != 0) {
S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
<< FirstArgExpr->getSourceRange();
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 3 << FirstArgExpr->getSourceRange();
return;
}
d->addAttr(new FormatAttr(std::string(Format, FormatLen),
Idx.getZExtValue(), FirstArg.getZExtValue()));
}
static void HandleTransparentUnionAttr(Decl *d, const AttributeList &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// FIXME: This shouldn't be restricted to typedefs
TypedefDecl *TD = dyn_cast<TypedefDecl>(d);
if (!TD || !TD->getUnderlyingType()->isUnionType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "transparent_union" << 1 /*union*/;
return;
}
RecordDecl* RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
// FIXME: Should we do a check for RD->isDefinition()?
// FIXME: This isn't supposed to be restricted to pointers, but otherwise
// we might silently generate incorrect code; see following code
for (RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (!Field->getType()->isPointerType()) {
S.Diag(Attr.getLoc(), diag::warn_transparent_union_nonpointer);
return;
}
}
// FIXME: This is a complete hack; we should be properly propagating
// transparent_union through Sema. That said, this is close enough to
// correctly compile all the common cases of transparent_union without
// errors or warnings
QualType NewTy = S.Context.VoidPtrTy;
NewTy.addConst();
TD->setUnderlyingType(NewTy);
}
static void HandleAnnotateAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *argExpr = static_cast<Expr *>(Attr.getArg(0));
StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
// Make sure that there is a string literal as the annotation's single
// argument.
if (!SE) {
S.Diag(Attr.getLoc(), diag::err_attribute_annotate_no_string);
return;
}
d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
SE->getByteLength())));
}
static void HandleAlignedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
unsigned Align = 0;
if (Attr.getNumArgs() == 0) {
// FIXME: This should be the target specific maximum alignment.
// (For now we just use 128 bits which is the maximum on X86.
Align = 128;
return;
}
Expr *alignmentExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Alignment(32);
if (!alignmentExpr->isIntegerConstantExpr(Alignment, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "aligned" << alignmentExpr->getSourceRange();
return;
}
d->addAttr(new AlignedAttr(Alignment.getZExtValue() * 8));
}
/// HandleModeAttr - This attribute modifies the width of a decl with
/// primitive type.
///
/// Despite what would be logical, the mode attribute is a decl attribute,
/// not a type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make
/// 'G' be HImode, not an intermediate pointer.
///
static void HandleModeAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// This attribute isn't documented, but glibc uses it. It changes
// the width of an int or unsigned int to the specified size.
// Check that there aren't any arguments
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
IdentifierInfo *Name = Attr.getParameterName();
if (!Name) {
S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
return;
}
const char *Str = Name->getName();
unsigned Len = Name->getLength();
// Normalize the attribute name, __foo__ becomes foo.
if (Len > 4 && Str[0] == '_' && Str[1] == '_' &&
Str[Len - 2] == '_' && Str[Len - 1] == '_') {
Str += 2;
Len -= 4;
}
unsigned DestWidth = 0;
bool IntegerMode = true;
switch (Len) {
case 2:
if (!memcmp(Str, "QI", 2)) { DestWidth = 8; break; }
if (!memcmp(Str, "HI", 2)) { DestWidth = 16; break; }
if (!memcmp(Str, "SI", 2)) { DestWidth = 32; break; }
if (!memcmp(Str, "DI", 2)) { DestWidth = 64; break; }
if (!memcmp(Str, "TI", 2)) { DestWidth = 128; break; }
if (!memcmp(Str, "SF", 2)) { DestWidth = 32; IntegerMode = false; break; }
if (!memcmp(Str, "DF", 2)) { DestWidth = 64; IntegerMode = false; break; }
if (!memcmp(Str, "XF", 2)) { DestWidth = 96; IntegerMode = false; break; }
if (!memcmp(Str, "TF", 2)) { DestWidth = 128; IntegerMode = false; break; }
break;
case 4:
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
// pointer on PIC16 and other embedded platforms.
if (!memcmp(Str, "word", 4))
DestWidth = S.Context.Target.getPointerWidth(0);
if (!memcmp(Str, "byte", 4))
DestWidth = S.Context.Target.getCharWidth();
break;
case 7:
if (!memcmp(Str, "pointer", 7))
DestWidth = S.Context.Target.getPointerWidth(0);
break;
}
QualType OldTy;
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D))
OldTy = TD->getUnderlyingType();
else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
OldTy = VD->getType();
else {
S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
<< "mode" << SourceRange(Attr.getLoc(), Attr.getLoc());
return;
}
// FIXME: Sync this with InitializePredefinedMacros; we need to match
// int8_t and friends, at least with glibc.
// FIXME: Make sure 32/64-bit integers don't get defined to types of
// the wrong width on unusual platforms.
// FIXME: Make sure floating-point mappings are accurate
// FIXME: Support XF and TF types
QualType NewTy;
switch (DestWidth) {
case 0:
S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
return;
default:
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
case 8:
assert(IntegerMode);
if (OldTy->isSignedIntegerType())
NewTy = S.Context.SignedCharTy;
else
NewTy = S.Context.UnsignedCharTy;
break;
case 16:
assert(IntegerMode);
if (OldTy->isSignedIntegerType())
NewTy = S.Context.ShortTy;
else
NewTy = S.Context.UnsignedShortTy;
break;
case 32:
if (!IntegerMode)
NewTy = S.Context.FloatTy;
else if (OldTy->isSignedIntegerType())
NewTy = S.Context.IntTy;
else
NewTy = S.Context.UnsignedIntTy;
break;
case 64:
if (!IntegerMode)
NewTy = S.Context.DoubleTy;
else if (OldTy->isSignedIntegerType())
NewTy = S.Context.LongLongTy;
else
NewTy = S.Context.UnsignedLongLongTy;
break;
case 128:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
NewTy = S.Context.getFixedWidthIntType(128, OldTy->isSignedIntegerType());
}
if (!OldTy->getAsBuiltinType())
S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
else if (!(IntegerMode && OldTy->isIntegerType()) &&
!(!IntegerMode && OldTy->isFloatingType())) {
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
}
// Install the new type.
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D))
TD->setUnderlyingType(NewTy);
else
cast<ValueDecl>(D)->setType(NewTy);
}
static void HandleNodebugAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< "nodebug" << 0 /*function*/;
return;
}
d->addAttr(new NodebugAttr());
}
//===----------------------------------------------------------------------===//
// Top Level Sema Entry Points
//===----------------------------------------------------------------------===//
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
/// the attribute applies to decls. If the attribute is a type attribute, just
/// silently ignore it.
static void ProcessDeclAttribute(Decl *D, const AttributeList &Attr, Sema &S) {
switch (Attr.getKind()) {
case AttributeList::AT_IBOutlet: HandleIBOutletAttr (D, Attr, S); break;
case AttributeList::AT_address_space:
// Ignore this, this is a type attribute, handled by ProcessTypeAttributes.
break;
case AttributeList::AT_alias: HandleAliasAttr (D, Attr, S); break;
case AttributeList::AT_aligned: HandleAlignedAttr (D, Attr, S); break;
case AttributeList::AT_always_inline:
HandleAlwaysInlineAttr (D, Attr, S); break;
case AttributeList::AT_annotate: HandleAnnotateAttr (D, Attr, S); break;
case AttributeList::AT_constructor: HandleConstructorAttr(D, Attr, S); break;
case AttributeList::AT_deprecated: HandleDeprecatedAttr(D, Attr, S); break;
case AttributeList::AT_destructor: HandleDestructorAttr(D, Attr, S); break;
case AttributeList::AT_dllexport: HandleDLLExportAttr (D, Attr, S); break;
case AttributeList::AT_dllimport: HandleDLLImportAttr (D, Attr, S); break;
case AttributeList::AT_ext_vector_type:
HandleExtVectorTypeAttr(D, Attr, S);
break;
case AttributeList::AT_fastcall: HandleFastCallAttr (D, Attr, S); break;
case AttributeList::AT_format: HandleFormatAttr (D, Attr, S); break;
case AttributeList::AT_mode: HandleModeAttr (D, Attr, S); break;
case AttributeList::AT_nonnull: HandleNonNullAttr (D, Attr, S); break;
case AttributeList::AT_noreturn: HandleNoReturnAttr (D, Attr, S); break;
case AttributeList::AT_nothrow: HandleNothrowAttr (D, Attr, S); break;
case AttributeList::AT_packed: HandlePackedAttr (D, Attr, S); break;
case AttributeList::AT_section: HandleSectionAttr (D, Attr, S); break;
case AttributeList::AT_stdcall: HandleStdCallAttr (D, Attr, S); break;
case AttributeList::AT_unavailable: HandleUnavailableAttr(D, Attr, S); break;
case AttributeList::AT_unused: HandleUnusedAttr (D, Attr, S); break;
case AttributeList::AT_used: HandleUsedAttr (D, Attr, S); break;
case AttributeList::AT_vector_size: HandleVectorSizeAttr(D, Attr, S); break;
case AttributeList::AT_visibility: HandleVisibilityAttr(D, Attr, S); break;
case AttributeList::AT_warn_unused_result: HandleWarnUnusedResult(D,Attr,S);
break;
case AttributeList::AT_weak: HandleWeakAttr (D, Attr, S); break;
case AttributeList::AT_transparent_union:
HandleTransparentUnionAttr(D, Attr, S);
break;
case AttributeList::AT_objc_gc: HandleObjCGCAttr (D, Attr, S); break;
case AttributeList::AT_objc_exception:
HandleObjCExceptionAttr(D, Attr, S);
break;
case AttributeList::AT_overloadable:HandleOverloadableAttr(D, Attr, S); break;
case AttributeList::AT_nsobject: HandleObjCNSObject (D, Attr, S); break;
case AttributeList::AT_blocks: HandleBlocksAttr (D, Attr, S); break;
case AttributeList::AT_sentinel: HandleSentinelAttr (D, Attr, S); break;
case AttributeList::AT_const: HandleConstAttr (D, Attr, S); break;
case AttributeList::AT_pure: HandlePureAttr (D, Attr, S); break;
case AttributeList::AT_cleanup: HandleCleanupAttr (D, Attr, S); break;
case AttributeList::AT_nodebug: HandleNodebugAttr (D, Attr, S); break;
case AttributeList::IgnoredAttribute:
// Just ignore
break;
default:
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
break;
}
}
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
/// attribute list to the specified decl, ignoring any type attributes.
void Sema::ProcessDeclAttributeList(Decl *D, const AttributeList *AttrList) {
while (AttrList) {
ProcessDeclAttribute(D, *AttrList, *this);
AttrList = AttrList->getNext();
}
}
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
/// it, apply them to D. This is a bit tricky because PD can have attributes
/// specified in many different places, and we need to find and apply them all.
void Sema::ProcessDeclAttributes(Decl *D, const Declarator &PD) {
// Apply decl attributes from the DeclSpec if present.
if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes())
ProcessDeclAttributeList(D, Attrs);
// Walk the declarator structure, applying decl attributes that were in a type
// position to the decl itself. This handles cases like:
// int *__attr__(x)** D;
// when X is a decl attribute.
for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
ProcessDeclAttributeList(D, Attrs);
// Finally, apply any attributes on the decl itself.
if (const AttributeList *Attrs = PD.getAttributes())
ProcessDeclAttributeList(D, Attrs);
}