llvm-project/mlir/lib/Dialect/Linalg/Transforms/ElementwiseToLinalg.cpp

149 lines
5.8 KiB
C++

//===- ElementwiseToLinalg.cpp - conversion of elementwise to linalg ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
static bool isElementwiseMappableOpOnRankedTensors(Operation *op) {
if (!OpTrait::hasElementwiseMappableTraits(op))
return false;
// TODO: The conversion pattern can be made to work for `any_of` here, but
// it's more complex as it requires tracking which operands are scalars.
return llvm::all_of(op->getOperandTypes(),
[](Type type) { return type.isa<RankedTensorType>(); });
}
/// Given `op` assumed `isElementwiseMappableOpOnRankedTensors`, iterate over
/// the result types and return a list of values such that, for each result type
/// `t` and value `v` at the same index `idx`:
/// 1. `v.getType() == t`
/// 2. If an operand of `op` has type `t`, let `operand_first` be the first
/// such operand. Then`v == operand_first`.
/// 3. Otherwise, v is a newly created `linalg::InitTensorOp` with:
/// a. Static and dynamic dims extracted from the first operand of `op`.
/// b. Elemental type equal to the elemental type of `t`.
///
/// This is sufficient because ElementwiseMappable guarantees that "The static
/// types of all vector (resp. tensor) operands and results must have the same
/// shape".
static SmallVector<Value, 4>
getOrCreateOperandsMatchingResultTypes(OpBuilder &b, Operation *op) {
assert(isElementwiseMappableOpOnRankedTensors(op));
Location loc = op->getLoc();
ValueRange operands = op->getOperands();
TypeRange rankedTensorTypes = op->getResultTypes();
SmallVector<Value, 4> res;
res.reserve(rankedTensorTypes.size());
for (Type t : rankedTensorTypes) {
// Try to find an operand with type matching the result tensor.
bool found = false;
for (Value v : operands) {
if (v.getType() == t) {
found = true;
res.push_back(v);
break;
}
}
if (found)
continue;
// Extract static / dynamic shape mix from the first operand.
Value firstOperand = operands.front();
auto rankedTensorType = t.cast<RankedTensorType>();
auto staticShape = llvm::to_vector<4>(rankedTensorType.getShape());
auto dynamicShape = linalg::getDynOperands(loc, firstOperand, b);
res.push_back(b.create<linalg::InitTensorOp>(
loc, dynamicShape, staticShape, rankedTensorType.getElementType()));
}
return res;
}
namespace {
struct ConvertAnyElementwiseMappableOpOnRankedTensors : public RewritePattern {
ConvertAnyElementwiseMappableOpOnRankedTensors(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
if (!isElementwiseMappableOpOnRankedTensors(op))
return rewriter.notifyMatchFailure(
op, "requires elementwise op on ranked tensors");
auto rank = op->getResult(0).getType().cast<RankedTensorType>().getRank();
SmallVector<AffineMap, 3> indexingMaps(
op->getNumResults() + op->getNumOperands(),
rewriter.getMultiDimIdentityMap(rank));
SmallVector<StringRef, 6> iteratorTypes(rank,
getParallelIteratorTypeName());
auto outputs = getOrCreateOperandsMatchingResultTypes(rewriter, op);
rewriter.replaceOpWithNewOp<linalg::GenericOp>(
op, /*resultTensorTypes=*/op->getResultTypes(),
/*inputs=*/op->getOperands(),
/*outputs=*/outputs,
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/iteratorTypes,
/*bodyBuilder=*/
[&](OpBuilder &builder, Location loc, ValueRange regionArgs) {
OperationState state(loc, op->getName());
state.addAttributes(op->getAttrs());
// Only take the input operands in the cloned elementwise op.
state.addOperands(regionArgs.take_front(op->getNumOperands()));
auto resultTypes = llvm::to_vector<6>(
llvm::map_range(op->getResultTypes(), [](Type type) {
return type.cast<TensorType>().getElementType();
}));
state.addTypes(resultTypes);
auto *scalarOp = builder.createOperation(state);
builder.create<linalg::YieldOp>(loc, scalarOp->getResults());
});
return success();
}
};
} // namespace
void mlir::linalg::populateElementwiseToLinalgConversionPatterns(
RewritePatternSet &patterns) {
patterns.add<ConvertAnyElementwiseMappableOpOnRankedTensors>(
patterns.getContext());
}
namespace {
class ConvertElementwiseToLinalgPass
: public ConvertElementwiseToLinalgBase<ConvertElementwiseToLinalgPass> {
void runOnOperation() final {
auto func = getOperation();
auto *context = &getContext();
ConversionTarget target(*context);
RewritePatternSet patterns(context);
mlir::linalg::populateElementwiseToLinalgConversionPatterns(patterns);
target.markUnknownOpDynamicallyLegal([](Operation *op) {
return !isElementwiseMappableOpOnRankedTensors(op);
});
if (failed(applyPartialConversion(func, target, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<Pass> mlir::createConvertElementwiseToLinalgPass() {
return std::make_unique<ConvertElementwiseToLinalgPass>();
}