llvm-project/mlir/lib/Dialect/Linalg/Transforms/Detensorize.cpp

614 lines
24 KiB
C++

//===- Detensorize.cpp - Linalg transformations as patterns ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <iterator>
#include <memory>
using namespace mlir;
using namespace mlir::linalg;
static Value sourceMaterializationCallback(OpBuilder &builder, Type type,
ValueRange inputs, Location loc) {
assert(inputs.size() == 1);
if (inputs[0].getType().isa<TensorType>())
return nullptr;
// A detensored value is converted back by creating a new tensor from its
// element(s).
auto createNewTensorOp =
builder.create<tensor::FromElementsOp>(loc, inputs[0]);
// FromElementsOp results in a tensor<1xdtype>, we need to reshape that to
// a tensor<dtype> instead.
return builder.create<tensor::CollapseShapeOp>(
loc, type, createNewTensorOp, ArrayRef<ReassociationExprs>{});
}
namespace {
/// Defines the criteria a TensorType must follow in order to be considered
/// "detensorable".
///
/// NOTE: For now, only 0-D tensors are supported.
///
/// Returns true if tensorType can be detensored.
bool canBeDetensored(TensorType tensorType) {
return tensorType.hasRank() && tensorType.getRank() == 0;
}
bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) {
GenericOp genericOp = dyn_cast_or_null<GenericOp>(op);
return genericOp &&
llvm::all_of(
genericOp.getInputAndOutputOperands(), [&](OpOperand *opOperand) {
return !typeConverter.isLegal(opOperand->get().getType());
});
}
/// A conversion patttern for detensoring `linalg.generic` ops.
class DetensorizeGenericOp : public OpConversionPattern<GenericOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(GenericOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Block *originalBlock = op->getBlock();
// Gather some information about the op before inling its region.
Block *opEntryBlock = &*op.region().begin();
YieldOp yieldOp = dyn_cast<YieldOp>(op.region().back().getTerminator());
// Split the op's region before the op. This way, we have a clear insertion
// point in which the op can be inlined.
Block *newBlock = rewriter.splitBlock(originalBlock, Block::iterator(op));
rewriter.inlineRegionBefore(op.region(), newBlock);
// Now that op's region is inlined, the operands of its YieldOp are mapped
// to the materialized target values. Therefore, we can replace the op's
// uses with those of its YielOp's operands.
rewriter.replaceOp(op, yieldOp->getOperands());
// No need for these intermediate blocks, merge them into 1.
rewriter.mergeBlocks(opEntryBlock, originalBlock, adaptor.getOperands());
rewriter.mergeBlocks(newBlock, originalBlock, {});
rewriter.eraseOp(&*Block::iterator(yieldOp));
return success();
}
};
/// A conversion pattern for detensoring internal (non-entry) blocks within a
/// function.
struct FunctionNonEntryBlockConversion : public ConversionPattern {
FunctionNonEntryBlockConversion(MLIRContext *ctx, TypeConverter &converter,
DenseSet<BlockArgument> blockArgsToDetensor)
: ConversionPattern(converter, MatchTraitOpTypeTag(),
TypeID::get<OpTrait::FunctionLike>(), /*benefit=*/1,
ctx),
blockArgsToDetensor(blockArgsToDetensor) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.startRootUpdate(op);
Region &region = function_like_impl::getFunctionBody(op);
SmallVector<TypeConverter::SignatureConversion, 2> conversions;
for (Block &block : llvm::drop_begin(region, 1)) {
conversions.emplace_back(block.getNumArguments());
TypeConverter::SignatureConversion &back = conversions.back();
for (BlockArgument blockArgument : block.getArguments()) {
int idx = blockArgument.getArgNumber();
if (blockArgsToDetensor.count(blockArgument))
back.addInputs(idx, {getTypeConverter()->convertType(
block.getArgumentTypes()[idx])});
else
back.addInputs(idx, {block.getArgumentTypes()[idx]});
}
}
if (failed(rewriter.convertNonEntryRegionTypes(&region, *typeConverter,
conversions))) {
rewriter.cancelRootUpdate(op);
return failure();
}
rewriter.finalizeRootUpdate(op);
return success();
}
private:
const DenseSet<BlockArgument> blockArgsToDetensor;
};
class DetensorizeTypeConverter : public TypeConverter {
public:
DetensorizeTypeConverter() {
addConversion([](Type type) { return type; });
// A TensorType that can be detensored, is converted to the underlying
// element type.
addConversion([](TensorType tensorType) -> Type {
if (canBeDetensored(tensorType))
return tensorType.getElementType();
return tensorType;
});
// A tensor value is detensoried by extracting its element(s).
addTargetMaterialization([](OpBuilder &builder, Type type,
ValueRange inputs, Location loc) -> Value {
return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{});
});
addSourceMaterialization(sourceMaterializationCallback);
addArgumentMaterialization(sourceMaterializationCallback);
}
};
/// Canonicalizes the pattern of the form
///
/// %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32>
/// %reshaped_tensor = tensor.collapse_shape %tensor []
/// : tensor<1xi32> into tensor<i32>
/// %extracted_element = tensor.extract %reshaped_tensor[] : tensor<i32>
///
/// to just %element.
struct ExtractFromReshapeFromElements
: public OpRewritePattern<tensor::ExtractOp> {
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
PatternRewriter &rewriter) const final {
if (!extract.indices().empty())
return failure();
auto tensorReshape =
extract.tensor().getDefiningOp<tensor::CollapseShapeOp>();
if (tensorReshape == nullptr)
return failure();
auto tensorFromElements =
tensorReshape.getOperand()
.getDefiningOp<mlir::tensor::FromElementsOp>();
if (tensorFromElements == nullptr)
return failure();
rewriter.replaceOp(extract, tensorFromElements.getOperand(0));
return success();
}
};
/// @see LinalgDetensorize in Linalg/Passes.td for more details.
struct LinalgDetensorize : public LinalgDetensorizeBase<LinalgDetensorize> {
LinalgDetensorize() = default;
LinalgDetensorize(const LinalgDetensorize &pass)
: LinalgDetensorizeBase<LinalgDetensorize>() {}
class CostModel {
public:
virtual ~CostModel() = default;
/// A cost model algorithm computes the following outputs:
///
/// - opsToDetensor: the list of linalg ops that should be
/// detensored.
///
/// - blockArgsToDetensor: since the operands and results of detensored
/// linalg ops can cross the BB boundary (e.g. a linalg op's input can come
/// from a BB argument and a linalg op's output can be passed to successor
/// BBs), we need to maintain the sub-set of arguments that should be
/// detensored (i.e. converted by typeConverter) for each affected BB.
///
/// Example:
///
/// For the following snippet:
/// ...
/// ^bb1(%6: tensor<i32>, %9: tensor<i32>):
/// %7 = linalg.init_tensor [] : tensor<i32>
/// %8 = linalg.generic #attrs
/// ins(%6, %6 : tensor<i32>, tensor<i32>)
/// outs(%7 : tensor<i32>) {
/// ^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
/// %9 = arith.addi %arg0, %arg1 : i32
/// linalg.yield %9 : i32
/// } -> tensor<i32>
/// %10 = "some.op"(%9)
/// br ^bb2(%8 : tensor<i32>)
/// ...
///
/// if the cost model decides that the linalg.generic op should be
/// detensored, then:
/// - opsToDetensor should be = {linalg.generic{add}}.
/// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}.
virtual void compute(Operation *func,
DetensorizeTypeConverter typeConverter,
DenseSet<Operation *> &opsToDetensor,
DenseSet<BlockArgument> &blockArgsToDetensor) = 0;
/// From the blockArgsToDetensor set computed by a CostModel
/// implementation, this method computes the corresponding branch op
/// detensoring. The result is a map from a branch op to a subset of indices
/// of its operands. The indices specify which of the branch op's operands
/// should be detensored.
///
/// For the previous example, this method would compute: {bb2 -> {0}}.
static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring(
const DenseSet<BlockArgument> &blockArgsToDetensor) {
DenseMap<Operation *, DenseSet<int>> detensorableBranchOps;
for (auto blockArgumentElem : blockArgsToDetensor) {
Block *block = blockArgumentElem.getOwner();
for (PredecessorIterator pred = block->pred_begin();
pred != block->pred_end(); ++pred) {
BranchOpInterface terminator =
dyn_cast<BranchOpInterface>((*pred)->getTerminator());
auto blockOperands =
terminator.getSuccessorOperands(pred.getSuccessorIndex());
if (!blockOperands || blockOperands->empty())
continue;
detensorableBranchOps[terminator].insert(
blockOperands->getBeginOperandIndex() +
blockArgumentElem.getArgNumber());
}
}
return detensorableBranchOps;
}
};
/// Detensorize linalg ops involved in control-flow within a function.
///
/// This model starts from BranchOps and CondBranchOps within a function. For
/// each such branch, the model then walks the use-def chain for the branch's
/// condition backwards in order to understand where the condition's value
/// comes from. If the condition value is (indirectly) computed by a linalg op
/// that can be detensored, the model then continues walking the use-def chain
/// in order to understand where the linalg op's operands come from. This
/// leads to discovering a "detensoring component". A detensoring component is
/// the set of operations + block arguments that are involved in control-flow
/// AND can be detensored.
class ControlFlowDetectionModel : public CostModel {
public:
void compute(Operation *func, DetensorizeTypeConverter typeConverter,
DenseSet<Operation *> &opsToDetensor,
DenseSet<BlockArgument> &blockArgsToDetensor) override {
SmallVector<Value> workList;
func->walk([&](CondBranchOp condBr) {
for (auto operand : condBr.getOperands()) {
workList.push_back(operand);
}
});
func->walk([&](BranchOp br) {
for (auto operand : br.getOperands()) {
workList.push_back(operand);
}
});
DenseSet<Value> visitedValues;
DenseSet<Operation *> visitedOps;
// For a (to-be-detesored) value, check if it "escapes" the block by being
// passed to terminator. If it does, then workList is updated with the
// corresponding argument to the successor block.
auto updateWorkListWithSuccessorArguments =
[&](Value value, BranchOpInterface terminator) {
if (!terminator)
return;
for (auto operandIdx :
llvm::seq<unsigned>(0, terminator->getOperands().size())) {
Value operand = terminator->getOperand(operandIdx);
if (operand == value) {
auto succBlockArg =
terminator.getSuccessorBlockArgument(operandIdx);
if (succBlockArg && !blockArgsToDetensor.count(*succBlockArg))
workList.push_back(*succBlockArg);
}
}
};
while (!workList.empty()) {
Value currentItem = workList.pop_back_val();
if (!visitedValues.insert(currentItem).second)
continue;
// 1 - Look forward:
// 1.1 - If currentItem escapes to one or more successors, add
// the corresponding successor arguments to workList.
updateWorkListWithSuccessorArguments(
currentItem, dyn_cast<BranchOpInterface>(
currentItem.getParentBlock()->getTerminator()));
// 1.2 - For each user of currentItem, add the defined values to
// workList. This way, the user ops can be inspected later if they are
// detensorable and if so, their operands will be added to workList to
// potentially discover other parts of the detensorable component.
for (auto *user : currentItem.getUsers())
for (Value result : user->getResults())
workList.push_back(result);
// 2 - Look backward:
// 2.1 - The current item is defined by a block argument. If the owner
// block is a non-entry one, then:
// * Add the argument to blockArgsToDetensor.
// * Walk the use-def chain backwards to add each predecessor's
// terminator-operands corresponding to currentItem to workList.
if (currentItem.dyn_cast<BlockArgument>()) {
BlockArgument currentItemBlockArgument =
currentItem.cast<BlockArgument>();
Block *ownerBlock = currentItemBlockArgument.getOwner();
// Function arguments are not detensored/converted.
if (&*ownerBlock->getParent()->begin() == ownerBlock)
continue;
// This inner-block argument is involved in control-flow, it should be
// detensored.
blockArgsToDetensor.insert(currentItemBlockArgument);
for (PredecessorIterator pred = ownerBlock->pred_begin();
pred != ownerBlock->pred_end(); ++pred) {
BranchOpInterface predTerminator =
dyn_cast<BranchOpInterface>((*pred)->getTerminator());
// TODO: For now, we give up if any of the control-flow components
// in a function is not detensorable. Fix that.
if (!predTerminator) {
opsToDetensor.clear();
blockArgsToDetensor.clear();
return;
}
auto ownerBlockOperands =
predTerminator.getSuccessorOperands(pred.getSuccessorIndex());
if (!ownerBlockOperands || ownerBlockOperands->empty())
continue;
// For each predecessor, add the value it passes to that argument to
// workList to find out how it's computed.
workList.push_back(
ownerBlockOperands
.getValue()[currentItemBlockArgument.getArgNumber()]);
}
continue;
}
Operation *currentItemDefiningOp = currentItem.getDefiningOp();
if (!visitedOps.insert(currentItemDefiningOp).second)
continue;
// 2.2 - The current item is computed by a GenericOp. If the op should
// be detensored, then:
// * Add it to opsToDetensor.
// * Add its operands to workList to discover other parts of the
// potentially detensorable component.
if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) {
// The op was encountered already, no need to inspect it again.
if (opsToDetensor.count(genericOp))
continue;
// The op should not be detensored, give up on it but continue with
// discovering the rest of the control-flow component.
if (!shouldBeDetensored(genericOp, typeConverter)) {
continue;
}
opsToDetensor.insert(genericOp);
for (Value genericOpOperand : genericOp.inputs())
workList.push_back(genericOpOperand);
continue;
}
// 2.3 - The current item is the result of a FromElementsOp, it will be
// trivially detensored later as part of canonicalization patterns
// applied at the end of detensoring.
//
// Note: No need to check whether the result type of this op is
// detensorable since if it wasn't we wouldn't reach that point in the
// work list.
if (dyn_cast<tensor::FromElementsOp>(currentItemDefiningOp))
continue;
// 2.4 - The current item is the result of a scalar op, add all its
// operands to the work list.
if (llvm::all_of(
currentItemDefiningOp->getResultTypes(),
[&](Type resultType) { return resultType.isIntOrFloat(); }))
for (Value scalarOpOperand : currentItemDefiningOp->getOperands())
workList.push_back(scalarOpOperand);
}
// Since the cost model gives up on some ops (see the details of step 2.2
// above), block arguments that correspond to the values produced by those
// ops should not be detensored as well.
DenseSet<BlockArgument> blockArgsToRemove;
for (auto &blockArg : blockArgsToDetensor) {
Block *block = blockArg.getParentBlock();
// For the potentially detensorable block argument, find the
// correpsonding operands in predecessor blocks.
for (PredecessorIterator pred = block->pred_begin();
pred != block->pred_end(); ++pred) {
BranchOpInterface terminator =
dyn_cast<BranchOpInterface>((*pred)->getTerminator());
auto blockOperands =
terminator.getSuccessorOperands(pred.getSuccessorIndex());
if (!blockOperands || blockOperands->empty())
continue;
Operation *definingOp =
terminator
->getOperand(blockOperands->getBeginOperandIndex() +
blockArg.getArgNumber())
.getDefiningOp();
// If the operand is defined by a GenericOp that will not be
// detensored, then do not detensor the corresponding block argument.
if (dyn_cast_or_null<GenericOp>(definingOp) &&
opsToDetensor.count(definingOp) == 0) {
blockArgsToRemove.insert(blockArg);
break;
}
}
}
for (auto &blockArg : blockArgsToRemove) {
blockArgsToDetensor.erase(blockArg);
}
}
};
/// Detensorize everything that can detensored.
class AggressiveDetensoringModel : public CostModel {
public:
void compute(Operation *func, DetensorizeTypeConverter typeConverter,
DenseSet<Operation *> &opsToDetensor,
DenseSet<BlockArgument> &blockArgsToDetensor) override {
func->walk([&](GenericOp genericOp) {
if (shouldBeDetensored(genericOp, typeConverter))
opsToDetensor.insert(genericOp);
});
for (Block &block :
llvm::drop_begin(function_like_impl::getFunctionBody(func), 1))
for (BlockArgument blockArgument : block.getArguments())
blockArgsToDetensor.insert(blockArgument);
}
};
void runOnOperation() override {
assert(getOperation()->hasTrait<OpTrait::FunctionLike>() &&
"DetensorizePass can only be run on FunctionLike operations");
MLIRContext *context = &getContext();
DetensorizeTypeConverter typeConverter;
RewritePatternSet patterns(context);
ConversionTarget target(*context);
DenseSet<Operation *> opsToDetensor;
DenseMap<Operation *, DenseSet<int>> detensorableBranchOps;
DenseSet<BlockArgument> blockArgsToDetensor;
if (aggressiveMode.getValue()) {
AggressiveDetensoringModel costModel;
costModel.compute(getOperation(), typeConverter, opsToDetensor,
blockArgsToDetensor);
} else {
ControlFlowDetectionModel costModel;
costModel.compute(getOperation(), typeConverter, opsToDetensor,
blockArgsToDetensor);
}
detensorableBranchOps =
CostModel::computeBranchOpDetensoring(blockArgsToDetensor);
target.addDynamicallyLegalOp<GenericOp>(
[&](GenericOp op) { return !opsToDetensor.count(op); });
target.markUnknownOpDynamicallyLegal([&](Operation *op) {
// A function is legal if all of its non-entry blocks are legal. We
// don't legalize the entry block (i.e. the function's signature)
// since detensoring can't happen along external calling convention
// boundaries, which we conservatively approximate as all function
// signatures.
if (op->hasTrait<OpTrait::FunctionLike>()) {
auto &body = function_like_impl::getFunctionBody(op);
return llvm::all_of(llvm::drop_begin(body, 1), [&](Block &block) {
if (llvm::any_of(
blockArgsToDetensor, [&](BlockArgument blockArgument) {
return blockArgument.getOwner() == &block &&
!typeConverter.isLegal(blockArgument.getType());
})) {
return false;
}
return true;
});
}
if (isNotBranchOpInterfaceOrReturnLikeOp(op) ||
isLegalForReturnOpTypeConversionPattern(op, typeConverter,
/*returnOpAlwaysLegal*/ true))
return true;
if (auto branchOp = dyn_cast<BranchOpInterface>(op)) {
if (!detensorableBranchOps.count(branchOp))
return true;
for (auto operandIdx : detensorableBranchOps[branchOp])
if (!typeConverter.isLegal(
branchOp->getOperand(operandIdx).getType()))
return false;
return true;
}
return false;
});
patterns.insert<DetensorizeGenericOp>(typeConverter, context);
patterns.insert<FunctionNonEntryBlockConversion>(context, typeConverter,
blockArgsToDetensor);
// Since non-entry block arguments get detensorized, we also need to
// update the control flow inside the function to reflect the correct
// types.
auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp,
int operandIdx) -> bool {
return detensorableBranchOps.count(branchOp) &&
detensorableBranchOps[branchOp].count(operandIdx);
};
populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter,
shouldConvertBranchOperand);
if (failed(
applyFullConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
RewritePatternSet canonPatterns(context);
canonPatterns.add<ExtractFromReshapeFromElements>(context);
if (failed(applyPatternsAndFoldGreedily(getOperation(),
std::move(canonPatterns))))
signalPassFailure();
}
Option<bool> aggressiveMode{
*this, "aggressive-mode",
llvm::cl::desc("Detensorize all ops that qualify for detensoring along "
"with branch operands and basic-block arguments.")};
};
} // namespace
std::unique_ptr<Pass> mlir::createLinalgDetensorizePass() {
return std::make_unique<LinalgDetensorize>();
}