llvm-project/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp

368 lines
14 KiB
C++

//===- Bufferize.cpp - Bufferization of linalg ops ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/StandardOps/Transforms/Passes.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
using namespace ::mlir;
using namespace ::mlir::linalg;
static Value cloneMemref(Location loc, Value memref, OpBuilder &b) {
auto memrefType = memref.getType().cast<MemRefType>();
auto alloc = b.create<memref::AllocOp>(loc, memrefType,
getDynOperands(loc, memref, b));
b.create<linalg::CopyOp>(loc, memref, alloc);
return alloc;
}
static LogicalResult
allocateBuffersForResults(Location loc, LinalgOp linalgOp, ValueRange outputs,
SmallVectorImpl<Value> &resultBuffers, OpBuilder &b) {
// Lazily compute loopRanges.
SmallVector<Range, 4> loopRanges;
// Allocate a buffer for every tensor result.
assert(linalgOp.getNumOutputs() == linalgOp->getNumResults());
for (auto en : llvm::enumerate(linalgOp->getResultTypes())) {
size_t resultIndex = en.index();
Type resultType = en.value();
auto tensorType = resultType.dyn_cast<RankedTensorType>();
if (tensorType == nullptr) {
linalgOp.emitOpError()
<< "tensor to buffer conversion expects ranked tensor results";
return failure();
}
auto tensorShape = tensorType.getShape();
auto memrefType = MemRefType::get(tensorShape, tensorType.getElementType());
Value resultTensor = outputs[resultIndex];
// Clone output buffers whose value is actually used.
OpOperand *tiedOpOperand = linalgOp.getOutputOperand(resultIndex);
if (linalgOp.payloadUsesValueFromOperand(tiedOpOperand)) {
resultBuffers.push_back(cloneMemref(loc, resultTensor, b));
continue;
}
// Allocate buffers for statically-shaped results.
if (memrefType.hasStaticShape()) {
resultBuffers.push_back(b.create<memref::AllocOp>(loc, memrefType));
continue;
}
resultBuffers.push_back(b.create<memref::AllocOp>(
loc, memrefType, getDynOperands(loc, resultTensor, b)));
}
return success();
}
/// Create linalg op on buffers given the original tensor-based operation and
/// the buffers for the outputs.
LinalgOp
mlir::linalg::createLinalgOpOnBuffers(ConversionPatternRewriter &rewriter,
LinalgOp linalgOp, ValueRange inputs,
ValueRange outputs) {
SmallVector<Value, 8> newOperands = inputs;
newOperands.append(outputs.begin(), outputs.end());
auto *newOp = linalgOp.cloneWithoutRegions(rewriter, linalgOp.getLoc(),
/*resultTypes=*/ArrayRef<Type>{},
newOperands);
for (auto regions : llvm::zip(linalgOp->getRegions(), newOp->getRegions())) {
auto &oldRegion = std::get<0>(regions);
auto &newRegion = std::get<1>(regions);
rewriter.inlineRegionBefore(oldRegion, newRegion, newRegion.begin());
}
return newOp;
}
//===----------------------------------------------------------------------===//
// Bufferization patterns.
//===----------------------------------------------------------------------===//
namespace {
/// Conversion pattern that replaces `linalg.init_tensor` with allocation.
class BufferizeInitTensorOp : public OpConversionPattern<InitTensorOp> {
public:
using OpConversionPattern<InitTensorOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(InitTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<memref::AllocOp>(
op, getTypeConverter()->convertType(op.getType()).cast<MemRefType>(),
adaptor.sizes());
return success();
}
};
/// Conversion pattern that replaces `linalg.tensor_reshape` with
/// `linalg.reshape`.
template <typename TensorReshapeOp,
typename Adaptor = typename TensorReshapeOp::Adaptor>
class BufferizeTensorReshapeOp : public OpConversionPattern<TensorReshapeOp> {
public:
using OpConversionPattern<TensorReshapeOp>::OpConversionPattern;
using ReshapeOp = typename std::conditional_t<
std::is_same<TensorReshapeOp, tensor::ExpandShapeOp>::value,
memref::ExpandShapeOp, memref::CollapseShapeOp>;
LogicalResult
matchAndRewrite(TensorReshapeOp op, Adaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<ReshapeOp>(op,
this->getTypeConverter()
->convertType(op.getType())
.template cast<MemRefType>(),
adaptor.src(),
adaptor.reassociation());
return success();
}
};
/// Conversion pattern that bufferizes `linalg.fill` operation.
class BufferizeFillOp : public OpConversionPattern<FillOp> {
public:
using OpConversionPattern<FillOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(FillOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
if (!op.output().getType().isa<TensorType>())
return rewriter.notifyMatchFailure(op,
"operand must be of a tensor type");
rewriter.create<FillOp>(op.getLoc(), adaptor.value(), adaptor.output());
rewriter.replaceOp(op, adaptor.output());
return success();
}
};
/// Generic conversion pattern that matches any LinalgOp. This avoids template
/// instantiating one pattern for each LinalgOp.
class BufferizeAnyLinalgOp : public OpInterfaceConversionPattern<LinalgOp> {
public:
using OpInterfaceConversionPattern<LinalgOp>::OpInterfaceConversionPattern;
LogicalResult
matchAndRewrite(LinalgOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// GenericOpAdaptor below expects an `operand_segment_sizes` attribute.
if (!op->hasAttr("operand_segment_sizes"))
return failure();
// We abuse the GenericOpAdaptor here.
// TODO: Manually create an Adaptor that captures inputs and outputs for all
// linalg::LinalgOp interface ops.
linalg::GenericOpAdaptor adaptor(operands, op->getAttrDictionary());
Location loc = op.getLoc();
SmallVector<Value, 2> newOutputBuffers;
if (failed(allocateBuffersForResults(loc, op, adaptor.outputs(),
newOutputBuffers, rewriter))) {
return op.emitOpError()
<< "Failed to allocate buffers for tensor results.";
}
createLinalgOpOnBuffers(rewriter, op, adaptor.inputs(), newOutputBuffers);
// Replace the results of the old op with the new output buffers.
rewriter.replaceOp(op, newOutputBuffers);
return success();
}
};
/// Convert `extract_slice %t [offsets][sizes][strides] -> %st` to an
/// alloc + copy pattern.
/// ```
/// %a = alloc(sizes)
/// %sv = subview %source [offsets][sizes][strides]
/// linalg_copy(%sv, %a)
/// ```
///
/// This pattern is arguable a std pattern once linalg::CopyOp becomes
/// std::CopyOp.
class ExtractSliceOpConverter
: public OpConversionPattern<tensor::ExtractSliceOp> {
public:
using OpConversionPattern<tensor::ExtractSliceOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::ExtractSliceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Value sourceMemref = adaptor.source();
assert(sourceMemref.getType().isa<MemRefType>());
MemRefType subviewMemRefType =
getTypeConverter()->convertType(op.getType()).cast<MemRefType>();
// op.sizes() capture exactly the dynamic alloc operands matching the
// subviewMemRefType thanks to subview/slice canonicalization and
// verification.
Value alloc = rewriter.create<memref::AllocOp>(
op.getLoc(), subviewMemRefType, op.sizes());
Value subView = rewriter.create<memref::SubViewOp>(
op.getLoc(), sourceMemref, op.getMixedOffsets(), op.getMixedSizes(),
op.getMixedStrides());
rewriter.create<linalg::CopyOp>(op.getLoc(), subView, alloc);
rewriter.replaceOp(op, alloc);
return success();
}
};
/// Convert `insert_slice %source into %dest [offsets][sizes][strides] ->
/// %t` to an buffer_cast + subview + copy + tensor_load pattern.
/// buffer_cast and tensor_load are inserted automatically by the
/// conversion infra:
/// ```
/// %sv = subview %dest [offsets][sizes][strides]
/// linalg_copy(%source, %sv)
/// // replace with %dest
/// ```
///
/// This pattern is arguable a std pattern once linalg::CopyOp becomes
/// std::CopyOp.
class InsertSliceOpConverter
: public OpConversionPattern<tensor::InsertSliceOp> {
public:
using OpConversionPattern<tensor::InsertSliceOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::InsertSliceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Value sourceMemRef = adaptor.source();
assert(sourceMemRef.getType().isa<MemRefType>());
// For now, be conservative and copy the converted input memref.
// In general, the converted input memref here could be aliased or could
// point into constant memory, so mutating it would lead to miscompilations.
Value destMemRef = cloneMemref(op.getLoc(), adaptor.dest(), rewriter);
assert(destMemRef.getType().isa<MemRefType>());
// Take a subview to copy the small memref.
Value subview = rewriter.create<memref::SubViewOp>(
op.getLoc(), destMemRef, op.getMixedOffsets(), op.getMixedSizes(),
op.getMixedStrides());
// Copy the small memref.
rewriter.create<linalg::CopyOp>(op.getLoc(), sourceMemRef, subview);
rewriter.replaceOp(op, destMemRef);
return success();
}
};
class VectorTransferReadOpConverter
: public OpConversionPattern<vector::TransferReadOp> {
public:
using OpConversionPattern<vector::TransferReadOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::TransferReadOp readOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
if (readOp.getShapedType().isa<MemRefType>())
return failure();
rewriter.replaceOpWithNewOp<vector::TransferReadOp>(
readOp, readOp.getType(), adaptor.source(), adaptor.indices(),
adaptor.permutation_map(), adaptor.padding(), adaptor.mask(),
adaptor.in_bounds());
return success();
}
};
class VectorTransferWriteOpConverter
: public OpConversionPattern<vector::TransferWriteOp> {
public:
using OpConversionPattern<vector::TransferWriteOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::TransferWriteOp writeOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
if (writeOp.getShapedType().isa<MemRefType>())
return failure();
rewriter.create<vector::TransferWriteOp>(
writeOp.getLoc(), adaptor.vector(), adaptor.source(), adaptor.indices(),
adaptor.permutation_map(),
adaptor.in_bounds() ? adaptor.in_bounds() : ArrayAttr());
rewriter.replaceOp(writeOp, adaptor.source());
return success();
}
};
} // namespace
namespace {
/// Converts Linalg operations that work on tensor-type operands or results to
/// work on buffers.
struct LinalgBufferizePass : public LinalgBufferizeBase<LinalgBufferizePass> {
void runOnOperation() override {
MLIRContext &context = getContext();
ConversionTarget target(context);
bufferization::BufferizeTypeConverter typeConverter;
// Mark all Standard operations legal.
target.addLegalDialect<arith::ArithmeticDialect, AffineDialect,
memref::MemRefDialect, StandardOpsDialect,
tensor::TensorDialect>();
target.addIllegalOp<InitTensorOp, PadTensorOp, tensor::CollapseShapeOp,
tensor::ExpandShapeOp, tensor::ExtractSliceOp,
tensor::InsertSliceOp>();
// Mark all Linalg operations illegal as long as they work on tensors.
auto isLegalOperation = [&](Operation *op) {
return typeConverter.isLegal(op);
};
target.addDynamicallyLegalDialect<linalg::LinalgDialect>(isLegalOperation);
target
.addDynamicallyLegalOp<vector::TransferReadOp, vector::TransferWriteOp>(
isLegalOperation);
RewritePatternSet patterns(&context);
populateLinalgBufferizePatterns(typeConverter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgBufferizePass() {
return std::make_unique<LinalgBufferizePass>();
}
void mlir::linalg::populateLinalgBufferizePatterns(
bufferization::BufferizeTypeConverter &typeConverter,
RewritePatternSet &patterns) {
// TODO: Drop this once tensor constants work in standard.
// clang-format off
patterns.add<
BufferizeAnyLinalgOp,
BufferizeFillOp,
BufferizeInitTensorOp,
BufferizeTensorReshapeOp<tensor::ExpandShapeOp>,
BufferizeTensorReshapeOp<tensor::CollapseShapeOp>,
ExtractSliceOpConverter,
InsertSliceOpConverter,
VectorTransferReadOpConverter,
VectorTransferWriteOpConverter
>(typeConverter, patterns.getContext());
// clang-format on
patterns.add<GeneralizePadTensorOpPattern>(patterns.getContext());
}