forked from OSchip/llvm-project
1569 lines
53 KiB
C++
1569 lines
53 KiB
C++
//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file This register allocator allocates registers to a basic block at a
|
|
/// time, attempting to keep values in registers and reusing registers as
|
|
/// appropriate.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/IndexedMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/SparseSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegAllocCommon.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
|
|
STATISTIC(NumStores, "Number of stores added");
|
|
STATISTIC(NumLoads , "Number of loads added");
|
|
STATISTIC(NumCoalesced, "Number of copies coalesced");
|
|
|
|
// FIXME: Remove this switch when all testcases are fixed!
|
|
static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
|
|
cl::Hidden);
|
|
|
|
static RegisterRegAlloc
|
|
fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
|
|
|
|
namespace {
|
|
|
|
class RegAllocFast : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
|
|
bool ClearVirtRegs_ = true) :
|
|
MachineFunctionPass(ID),
|
|
ShouldAllocateClass(F),
|
|
StackSlotForVirtReg(-1),
|
|
ClearVirtRegs(ClearVirtRegs_) {
|
|
}
|
|
|
|
private:
|
|
MachineFrameInfo *MFI;
|
|
MachineRegisterInfo *MRI;
|
|
const TargetRegisterInfo *TRI;
|
|
const TargetInstrInfo *TII;
|
|
RegisterClassInfo RegClassInfo;
|
|
const RegClassFilterFunc ShouldAllocateClass;
|
|
|
|
/// Basic block currently being allocated.
|
|
MachineBasicBlock *MBB;
|
|
|
|
/// Maps virtual regs to the frame index where these values are spilled.
|
|
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
|
|
|
|
bool ClearVirtRegs;
|
|
|
|
/// Everything we know about a live virtual register.
|
|
struct LiveReg {
|
|
MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
|
|
Register VirtReg; ///< Virtual register number.
|
|
MCPhysReg PhysReg = 0; ///< Currently held here.
|
|
bool LiveOut = false; ///< Register is possibly live out.
|
|
bool Reloaded = false; ///< Register was reloaded.
|
|
bool Error = false; ///< Could not allocate.
|
|
|
|
explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
|
|
|
|
unsigned getSparseSetIndex() const {
|
|
return Register::virtReg2Index(VirtReg);
|
|
}
|
|
};
|
|
|
|
using LiveRegMap = SparseSet<LiveReg>;
|
|
/// This map contains entries for each virtual register that is currently
|
|
/// available in a physical register.
|
|
LiveRegMap LiveVirtRegs;
|
|
|
|
/// Stores assigned virtual registers present in the bundle MI.
|
|
DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
|
|
|
|
DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
|
|
/// List of DBG_VALUE that we encountered without the vreg being assigned
|
|
/// because they were placed after the last use of the vreg.
|
|
DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
|
|
|
|
/// Has a bit set for every virtual register for which it was determined
|
|
/// that it is alive across blocks.
|
|
BitVector MayLiveAcrossBlocks;
|
|
|
|
/// State of a register unit.
|
|
enum RegUnitState {
|
|
/// A free register is not currently in use and can be allocated
|
|
/// immediately without checking aliases.
|
|
regFree,
|
|
|
|
/// A pre-assigned register has been assigned before register allocation
|
|
/// (e.g., setting up a call parameter).
|
|
regPreAssigned,
|
|
|
|
/// Used temporarily in reloadAtBegin() to mark register units that are
|
|
/// live-in to the basic block.
|
|
regLiveIn,
|
|
|
|
/// A register state may also be a virtual register number, indication
|
|
/// that the physical register is currently allocated to a virtual
|
|
/// register. In that case, LiveVirtRegs contains the inverse mapping.
|
|
};
|
|
|
|
/// Maps each physical register to a RegUnitState enum or virtual register.
|
|
std::vector<unsigned> RegUnitStates;
|
|
|
|
SmallVector<MachineInstr *, 32> Coalesced;
|
|
|
|
using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
|
|
/// Set of register units that are used in the current instruction, and so
|
|
/// cannot be allocated.
|
|
RegUnitSet UsedInInstr;
|
|
RegUnitSet PhysRegUses;
|
|
SmallVector<uint16_t, 8> DefOperandIndexes;
|
|
// Register masks attached to the current instruction.
|
|
SmallVector<const uint32_t *> RegMasks;
|
|
|
|
void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
|
|
bool isPhysRegFree(MCPhysReg PhysReg) const;
|
|
|
|
/// Mark a physreg as used in this instruction.
|
|
void markRegUsedInInstr(MCPhysReg PhysReg) {
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
|
|
UsedInInstr.insert(*Units);
|
|
}
|
|
|
|
// Check if physreg is clobbered by instruction's regmask(s).
|
|
bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
|
|
return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
|
|
return MachineOperand::clobbersPhysReg(Mask, PhysReg);
|
|
});
|
|
}
|
|
|
|
/// Check if a physreg or any of its aliases are used in this instruction.
|
|
bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
|
|
if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
|
|
return true;
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
|
|
if (UsedInInstr.count(*Units))
|
|
return true;
|
|
if (LookAtPhysRegUses && PhysRegUses.count(*Units))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Mark physical register as being used in a register use operand.
|
|
/// This is only used by the special livethrough handling code.
|
|
void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
|
|
PhysRegUses.insert(*Units);
|
|
}
|
|
|
|
/// Remove mark of physical register being used in the instruction.
|
|
void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
|
|
UsedInInstr.erase(*Units);
|
|
}
|
|
|
|
enum : unsigned {
|
|
spillClean = 50,
|
|
spillDirty = 100,
|
|
spillPrefBonus = 20,
|
|
spillImpossible = ~0u
|
|
};
|
|
|
|
public:
|
|
StringRef getPassName() const override { return "Fast Register Allocator"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoPHIs);
|
|
}
|
|
|
|
MachineFunctionProperties getSetProperties() const override {
|
|
if (ClearVirtRegs) {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
return MachineFunctionProperties();
|
|
}
|
|
|
|
MachineFunctionProperties getClearedProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::IsSSA);
|
|
}
|
|
|
|
private:
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void allocateBasicBlock(MachineBasicBlock &MBB);
|
|
|
|
void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
|
|
Register Reg) const;
|
|
|
|
void allocateInstruction(MachineInstr &MI);
|
|
void handleDebugValue(MachineInstr &MI);
|
|
void handleBundle(MachineInstr &MI);
|
|
|
|
bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
|
|
bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
|
|
bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
|
|
void freePhysReg(MCPhysReg PhysReg);
|
|
|
|
unsigned calcSpillCost(MCPhysReg PhysReg) const;
|
|
|
|
LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
|
|
return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
|
|
}
|
|
|
|
LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
|
|
return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
|
|
}
|
|
|
|
void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
|
|
void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
|
|
bool LookAtPhysRegUses = false);
|
|
void allocVirtRegUndef(MachineOperand &MO);
|
|
void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
|
|
MCPhysReg Reg);
|
|
void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
|
|
Register VirtReg);
|
|
void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
|
|
bool LookAtPhysRegUses = false);
|
|
void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
|
|
|
|
MachineBasicBlock::iterator
|
|
getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
|
|
SmallSet<Register, 2> &PrologLiveIns) const;
|
|
|
|
void reloadAtBegin(MachineBasicBlock &MBB);
|
|
void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
|
|
|
|
Register traceCopies(Register VirtReg) const;
|
|
Register traceCopyChain(Register Reg) const;
|
|
|
|
int getStackSpaceFor(Register VirtReg);
|
|
void spill(MachineBasicBlock::iterator Before, Register VirtReg,
|
|
MCPhysReg AssignedReg, bool Kill, bool LiveOut);
|
|
void reload(MachineBasicBlock::iterator Before, Register VirtReg,
|
|
MCPhysReg PhysReg);
|
|
|
|
bool mayLiveOut(Register VirtReg);
|
|
bool mayLiveIn(Register VirtReg);
|
|
|
|
void dumpState() const;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char RegAllocFast::ID = 0;
|
|
|
|
INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
|
|
false)
|
|
|
|
void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
|
|
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
|
|
RegUnitStates[*UI] = NewState;
|
|
}
|
|
|
|
bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
|
|
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
|
|
if (RegUnitStates[*UI] != regFree)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// This allocates space for the specified virtual register to be held on the
|
|
/// stack.
|
|
int RegAllocFast::getStackSpaceFor(Register VirtReg) {
|
|
// Find the location Reg would belong...
|
|
int SS = StackSlotForVirtReg[VirtReg];
|
|
// Already has space allocated?
|
|
if (SS != -1)
|
|
return SS;
|
|
|
|
// Allocate a new stack object for this spill location...
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
|
|
unsigned Size = TRI->getSpillSize(RC);
|
|
Align Alignment = TRI->getSpillAlign(RC);
|
|
int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
|
|
|
|
// Assign the slot.
|
|
StackSlotForVirtReg[VirtReg] = FrameIdx;
|
|
return FrameIdx;
|
|
}
|
|
|
|
static bool dominates(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::const_iterator A,
|
|
MachineBasicBlock::const_iterator B) {
|
|
auto MBBEnd = MBB.end();
|
|
if (B == MBBEnd)
|
|
return true;
|
|
|
|
MachineBasicBlock::const_iterator I = MBB.begin();
|
|
for (; &*I != A && &*I != B; ++I)
|
|
;
|
|
|
|
return &*I == A;
|
|
}
|
|
|
|
/// Returns false if \p VirtReg is known to not live out of the current block.
|
|
bool RegAllocFast::mayLiveOut(Register VirtReg) {
|
|
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
|
|
// Cannot be live-out if there are no successors.
|
|
return !MBB->succ_empty();
|
|
}
|
|
|
|
const MachineInstr *SelfLoopDef = nullptr;
|
|
|
|
// If this block loops back to itself, it is necessary to check whether the
|
|
// use comes after the def.
|
|
if (MBB->isSuccessor(MBB)) {
|
|
SelfLoopDef = MRI->getUniqueVRegDef(VirtReg);
|
|
if (!SelfLoopDef) {
|
|
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// See if the first \p Limit uses of the register are all in the current
|
|
// block.
|
|
static const unsigned Limit = 8;
|
|
unsigned C = 0;
|
|
for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
|
|
if (UseInst.getParent() != MBB || ++C >= Limit) {
|
|
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
|
|
// Cannot be live-out if there are no successors.
|
|
return !MBB->succ_empty();
|
|
}
|
|
|
|
if (SelfLoopDef) {
|
|
// Try to handle some simple cases to avoid spilling and reloading every
|
|
// value inside a self looping block.
|
|
if (SelfLoopDef == &UseInst ||
|
|
!dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
|
|
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns false if \p VirtReg is known to not be live into the current block.
|
|
bool RegAllocFast::mayLiveIn(Register VirtReg) {
|
|
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
|
|
return !MBB->pred_empty();
|
|
|
|
// See if the first \p Limit def of the register are all in the current block.
|
|
static const unsigned Limit = 8;
|
|
unsigned C = 0;
|
|
for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
|
|
if (DefInst.getParent() != MBB || ++C >= Limit) {
|
|
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
|
|
return !MBB->pred_empty();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Insert spill instruction for \p AssignedReg before \p Before. Update
|
|
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
|
|
void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
|
|
MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
|
|
LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
|
|
<< " in " << printReg(AssignedReg, TRI));
|
|
int FI = getStackSpaceFor(VirtReg);
|
|
LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
|
|
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
|
|
TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
|
|
++NumStores;
|
|
|
|
MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
|
|
|
|
// When we spill a virtual register, we will have spill instructions behind
|
|
// every definition of it, meaning we can switch all the DBG_VALUEs over
|
|
// to just reference the stack slot.
|
|
SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
|
|
SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
|
|
SpilledOperandsMap;
|
|
for (MachineOperand *MO : LRIDbgOperands)
|
|
SpilledOperandsMap[MO->getParent()].push_back(MO);
|
|
for (auto MISpilledOperands : SpilledOperandsMap) {
|
|
MachineInstr &DBG = *MISpilledOperands.first;
|
|
MachineInstr *NewDV = buildDbgValueForSpill(
|
|
*MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
|
|
assert(NewDV->getParent() == MBB && "dangling parent pointer");
|
|
(void)NewDV;
|
|
LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
|
|
|
|
if (LiveOut) {
|
|
// We need to insert a DBG_VALUE at the end of the block if the spill slot
|
|
// is live out, but there is another use of the value after the
|
|
// spill. This will allow LiveDebugValues to see the correct live out
|
|
// value to propagate to the successors.
|
|
MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
|
|
MBB->insert(FirstTerm, ClonedDV);
|
|
LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
|
|
}
|
|
|
|
// Rewrite unassigned dbg_values to use the stack slot.
|
|
// TODO We can potentially do this for list debug values as well if we know
|
|
// how the dbg_values are getting unassigned.
|
|
if (DBG.isNonListDebugValue()) {
|
|
MachineOperand &MO = DBG.getDebugOperand(0);
|
|
if (MO.isReg() && MO.getReg() == 0) {
|
|
updateDbgValueForSpill(DBG, FI, 0);
|
|
}
|
|
}
|
|
}
|
|
// Now this register is spilled there is should not be any DBG_VALUE
|
|
// pointing to this register because they are all pointing to spilled value
|
|
// now.
|
|
LRIDbgOperands.clear();
|
|
}
|
|
|
|
/// Insert reload instruction for \p PhysReg before \p Before.
|
|
void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
|
|
MCPhysReg PhysReg) {
|
|
LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
|
|
<< printReg(PhysReg, TRI) << '\n');
|
|
int FI = getStackSpaceFor(VirtReg);
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
|
|
TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
|
|
++NumLoads;
|
|
}
|
|
|
|
/// Get basic block begin insertion point.
|
|
/// This is not just MBB.begin() because surprisingly we have EH_LABEL
|
|
/// instructions marking the begin of a basic block. This means we must insert
|
|
/// new instructions after such labels...
|
|
MachineBasicBlock::iterator
|
|
RegAllocFast::getMBBBeginInsertionPoint(
|
|
MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
|
|
MachineBasicBlock::iterator I = MBB.begin();
|
|
while (I != MBB.end()) {
|
|
if (I->isLabel()) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// Most reloads should be inserted after prolog instructions.
|
|
if (!TII->isBasicBlockPrologue(*I))
|
|
break;
|
|
|
|
// However if a prolog instruction reads a register that needs to be
|
|
// reloaded, the reload should be inserted before the prolog.
|
|
for (MachineOperand &MO : I->operands()) {
|
|
if (MO.isReg())
|
|
PrologLiveIns.insert(MO.getReg());
|
|
}
|
|
|
|
++I;
|
|
}
|
|
|
|
return I;
|
|
}
|
|
|
|
/// Reload all currently assigned virtual registers.
|
|
void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
|
|
if (LiveVirtRegs.empty())
|
|
return;
|
|
|
|
for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
|
|
MCPhysReg Reg = P.PhysReg;
|
|
// Set state to live-in. This possibly overrides mappings to virtual
|
|
// registers but we don't care anymore at this point.
|
|
setPhysRegState(Reg, regLiveIn);
|
|
}
|
|
|
|
|
|
SmallSet<Register, 2> PrologLiveIns;
|
|
|
|
// The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
|
|
// of spilling here is deterministic, if arbitrary.
|
|
MachineBasicBlock::iterator InsertBefore
|
|
= getMBBBeginInsertionPoint(MBB, PrologLiveIns);
|
|
for (const LiveReg &LR : LiveVirtRegs) {
|
|
MCPhysReg PhysReg = LR.PhysReg;
|
|
if (PhysReg == 0)
|
|
continue;
|
|
|
|
MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
|
|
if (RegUnitStates[FirstUnit] == regLiveIn)
|
|
continue;
|
|
|
|
assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
|
|
"no reload in start block. Missing vreg def?");
|
|
|
|
if (PrologLiveIns.count(PhysReg)) {
|
|
// FIXME: Theoretically this should use an insert point skipping labels
|
|
// but I'm not sure how labels should interact with prolog instruction
|
|
// that need reloads.
|
|
reload(MBB.begin(), LR.VirtReg, PhysReg);
|
|
} else
|
|
reload(InsertBefore, LR.VirtReg, PhysReg);
|
|
}
|
|
LiveVirtRegs.clear();
|
|
}
|
|
|
|
/// Handle the direct use of a physical register. Check that the register is
|
|
/// not used by a virtreg. Kill the physreg, marking it free. This may add
|
|
/// implicit kills to MO->getParent() and invalidate MO.
|
|
bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
|
|
assert(Register::isPhysicalRegister(Reg) && "expected physreg");
|
|
bool displacedAny = displacePhysReg(MI, Reg);
|
|
setPhysRegState(Reg, regPreAssigned);
|
|
markRegUsedInInstr(Reg);
|
|
return displacedAny;
|
|
}
|
|
|
|
bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
|
|
bool displacedAny = displacePhysReg(MI, Reg);
|
|
setPhysRegState(Reg, regPreAssigned);
|
|
return displacedAny;
|
|
}
|
|
|
|
/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
|
|
/// similar to defineVirtReg except the physreg is reserved instead of
|
|
/// allocated.
|
|
bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
|
|
bool displacedAny = false;
|
|
|
|
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
|
|
unsigned Unit = *UI;
|
|
switch (unsigned VirtReg = RegUnitStates[Unit]) {
|
|
default: {
|
|
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
|
|
assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
|
|
MachineBasicBlock::iterator ReloadBefore =
|
|
std::next((MachineBasicBlock::iterator)MI.getIterator());
|
|
reload(ReloadBefore, VirtReg, LRI->PhysReg);
|
|
|
|
setPhysRegState(LRI->PhysReg, regFree);
|
|
LRI->PhysReg = 0;
|
|
LRI->Reloaded = true;
|
|
displacedAny = true;
|
|
break;
|
|
}
|
|
case regPreAssigned:
|
|
RegUnitStates[Unit] = regFree;
|
|
displacedAny = true;
|
|
break;
|
|
case regFree:
|
|
break;
|
|
}
|
|
}
|
|
return displacedAny;
|
|
}
|
|
|
|
void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
|
|
LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
|
|
|
|
MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
|
|
switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
|
|
case regFree:
|
|
LLVM_DEBUG(dbgs() << '\n');
|
|
return;
|
|
case regPreAssigned:
|
|
LLVM_DEBUG(dbgs() << '\n');
|
|
setPhysRegState(PhysReg, regFree);
|
|
return;
|
|
default: {
|
|
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
|
|
assert(LRI != LiveVirtRegs.end());
|
|
LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
|
|
setPhysRegState(LRI->PhysReg, regFree);
|
|
LRI->PhysReg = 0;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Return the cost of spilling clearing out PhysReg and aliases so it is free
|
|
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
|
|
/// disabled - it can be allocated directly.
|
|
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
|
|
unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
|
|
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
|
|
switch (unsigned VirtReg = RegUnitStates[*UI]) {
|
|
case regFree:
|
|
break;
|
|
case regPreAssigned:
|
|
LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
|
|
<< printReg(PhysReg, TRI) << '\n');
|
|
return spillImpossible;
|
|
default: {
|
|
bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
|
|
findLiveVirtReg(VirtReg)->LiveOut;
|
|
return SureSpill ? spillClean : spillDirty;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
|
|
Register VirtReg, MCPhysReg Reg) {
|
|
auto UDBGValIter = DanglingDbgValues.find(VirtReg);
|
|
if (UDBGValIter == DanglingDbgValues.end())
|
|
return;
|
|
|
|
SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
|
|
for (MachineInstr *DbgValue : Dangling) {
|
|
assert(DbgValue->isDebugValue());
|
|
if (!DbgValue->hasDebugOperandForReg(VirtReg))
|
|
continue;
|
|
|
|
// Test whether the physreg survives from the definition to the DBG_VALUE.
|
|
MCPhysReg SetToReg = Reg;
|
|
unsigned Limit = 20;
|
|
for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
|
|
E = DbgValue->getIterator(); I != E; ++I) {
|
|
if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
|
|
LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
|
|
<< '\n');
|
|
SetToReg = 0;
|
|
break;
|
|
}
|
|
}
|
|
for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
|
|
MO.setReg(SetToReg);
|
|
if (SetToReg != 0)
|
|
MO.setIsRenamable();
|
|
}
|
|
}
|
|
Dangling.clear();
|
|
}
|
|
|
|
/// This method updates local state so that we know that PhysReg is the
|
|
/// proper container for VirtReg now. The physical register must not be used
|
|
/// for anything else when this is called.
|
|
void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
|
|
MCPhysReg PhysReg) {
|
|
Register VirtReg = LR.VirtReg;
|
|
LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
|
|
<< printReg(PhysReg, TRI) << '\n');
|
|
assert(LR.PhysReg == 0 && "Already assigned a physreg");
|
|
assert(PhysReg != 0 && "Trying to assign no register");
|
|
LR.PhysReg = PhysReg;
|
|
setPhysRegState(PhysReg, VirtReg);
|
|
|
|
assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
|
|
}
|
|
|
|
static bool isCoalescable(const MachineInstr &MI) {
|
|
return MI.isFullCopy();
|
|
}
|
|
|
|
Register RegAllocFast::traceCopyChain(Register Reg) const {
|
|
static const unsigned ChainLengthLimit = 3;
|
|
unsigned C = 0;
|
|
do {
|
|
if (Reg.isPhysical())
|
|
return Reg;
|
|
assert(Reg.isVirtual());
|
|
|
|
MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
|
|
if (!VRegDef || !isCoalescable(*VRegDef))
|
|
return 0;
|
|
Reg = VRegDef->getOperand(1).getReg();
|
|
} while (++C <= ChainLengthLimit);
|
|
return 0;
|
|
}
|
|
|
|
/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
|
|
/// chain of copies to check whether we reach a physical register we can
|
|
/// coalesce with.
|
|
Register RegAllocFast::traceCopies(Register VirtReg) const {
|
|
static const unsigned DefLimit = 3;
|
|
unsigned C = 0;
|
|
for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
|
|
if (isCoalescable(MI)) {
|
|
Register Reg = MI.getOperand(1).getReg();
|
|
Reg = traceCopyChain(Reg);
|
|
if (Reg.isValid())
|
|
return Reg;
|
|
}
|
|
|
|
if (++C >= DefLimit)
|
|
break;
|
|
}
|
|
return Register();
|
|
}
|
|
|
|
/// Allocates a physical register for VirtReg.
|
|
void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
|
|
Register Hint0, bool LookAtPhysRegUses) {
|
|
const Register VirtReg = LR.VirtReg;
|
|
assert(LR.PhysReg == 0);
|
|
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
|
|
LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
|
|
<< " in class " << TRI->getRegClassName(&RC)
|
|
<< " with hint " << printReg(Hint0, TRI) << '\n');
|
|
|
|
// Take hint when possible.
|
|
if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
|
|
!isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
|
|
// Take hint if the register is currently free.
|
|
if (isPhysRegFree(Hint0)) {
|
|
LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
|
|
<< '\n');
|
|
assignVirtToPhysReg(MI, LR, Hint0);
|
|
return;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
|
|
<< " occupied\n");
|
|
}
|
|
} else {
|
|
Hint0 = Register();
|
|
}
|
|
|
|
|
|
// Try other hint.
|
|
Register Hint1 = traceCopies(VirtReg);
|
|
if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
|
|
!isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
|
|
// Take hint if the register is currently free.
|
|
if (isPhysRegFree(Hint1)) {
|
|
LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
|
|
<< '\n');
|
|
assignVirtToPhysReg(MI, LR, Hint1);
|
|
return;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
|
|
<< " occupied\n");
|
|
}
|
|
} else {
|
|
Hint1 = Register();
|
|
}
|
|
|
|
MCPhysReg BestReg = 0;
|
|
unsigned BestCost = spillImpossible;
|
|
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
|
|
for (MCPhysReg PhysReg : AllocationOrder) {
|
|
LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
|
|
if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
|
|
LLVM_DEBUG(dbgs() << "already used in instr.\n");
|
|
continue;
|
|
}
|
|
|
|
unsigned Cost = calcSpillCost(PhysReg);
|
|
LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
|
|
// Immediate take a register with cost 0.
|
|
if (Cost == 0) {
|
|
assignVirtToPhysReg(MI, LR, PhysReg);
|
|
return;
|
|
}
|
|
|
|
if (PhysReg == Hint0 || PhysReg == Hint1)
|
|
Cost -= spillPrefBonus;
|
|
|
|
if (Cost < BestCost) {
|
|
BestReg = PhysReg;
|
|
BestCost = Cost;
|
|
}
|
|
}
|
|
|
|
if (!BestReg) {
|
|
// Nothing we can do: Report an error and keep going with an invalid
|
|
// allocation.
|
|
if (MI.isInlineAsm())
|
|
MI.emitError("inline assembly requires more registers than available");
|
|
else
|
|
MI.emitError("ran out of registers during register allocation");
|
|
|
|
LR.Error = true;
|
|
LR.PhysReg = 0;
|
|
return;
|
|
}
|
|
|
|
displacePhysReg(MI, BestReg);
|
|
assignVirtToPhysReg(MI, LR, BestReg);
|
|
}
|
|
|
|
void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
|
|
assert(MO.isUndef() && "expected undef use");
|
|
Register VirtReg = MO.getReg();
|
|
assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
|
|
|
|
LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
|
|
MCPhysReg PhysReg;
|
|
if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
|
|
PhysReg = LRI->PhysReg;
|
|
} else {
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
|
|
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
|
|
assert(!AllocationOrder.empty() && "Allocation order must not be empty");
|
|
PhysReg = AllocationOrder[0];
|
|
}
|
|
|
|
unsigned SubRegIdx = MO.getSubReg();
|
|
if (SubRegIdx != 0) {
|
|
PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
|
|
MO.setSubReg(0);
|
|
}
|
|
MO.setReg(PhysReg);
|
|
MO.setIsRenamable(true);
|
|
}
|
|
|
|
/// Variation of defineVirtReg() with special handling for livethrough regs
|
|
/// (tied or earlyclobber) that may interfere with preassigned uses.
|
|
void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
|
|
Register VirtReg) {
|
|
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
|
|
if (LRI != LiveVirtRegs.end()) {
|
|
MCPhysReg PrevReg = LRI->PhysReg;
|
|
if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
|
|
LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
|
|
<< " (tied/earlyclobber resolution)\n");
|
|
freePhysReg(PrevReg);
|
|
LRI->PhysReg = 0;
|
|
allocVirtReg(MI, *LRI, 0, true);
|
|
MachineBasicBlock::iterator InsertBefore =
|
|
std::next((MachineBasicBlock::iterator)MI.getIterator());
|
|
LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
|
|
<< printReg(PrevReg, TRI) << '\n');
|
|
BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), PrevReg)
|
|
.addReg(LRI->PhysReg, llvm::RegState::Kill);
|
|
}
|
|
MachineOperand &MO = MI.getOperand(OpNum);
|
|
if (MO.getSubReg() && !MO.isUndef()) {
|
|
LRI->LastUse = &MI;
|
|
}
|
|
}
|
|
return defineVirtReg(MI, OpNum, VirtReg, true);
|
|
}
|
|
|
|
/// Allocates a register for VirtReg definition. Typically the register is
|
|
/// already assigned from a use of the virtreg, however we still need to
|
|
/// perform an allocation if:
|
|
/// - It is a dead definition without any uses.
|
|
/// - The value is live out and all uses are in different basic blocks.
|
|
void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
|
|
Register VirtReg, bool LookAtPhysRegUses) {
|
|
assert(VirtReg.isVirtual() && "Not a virtual register");
|
|
MachineOperand &MO = MI.getOperand(OpNum);
|
|
LiveRegMap::iterator LRI;
|
|
bool New;
|
|
std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
|
|
if (New) {
|
|
if (!MO.isDead()) {
|
|
if (mayLiveOut(VirtReg)) {
|
|
LRI->LiveOut = true;
|
|
} else {
|
|
// It is a dead def without the dead flag; add the flag now.
|
|
MO.setIsDead(true);
|
|
}
|
|
}
|
|
}
|
|
if (LRI->PhysReg == 0)
|
|
allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
|
|
else {
|
|
assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
|
|
"TODO: preassign mismatch");
|
|
LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
|
|
<< " use existing assignment to "
|
|
<< printReg(LRI->PhysReg, TRI) << '\n');
|
|
}
|
|
|
|
MCPhysReg PhysReg = LRI->PhysReg;
|
|
assert(PhysReg != 0 && "Register not assigned");
|
|
if (LRI->Reloaded || LRI->LiveOut) {
|
|
if (!MI.isImplicitDef()) {
|
|
MachineBasicBlock::iterator SpillBefore =
|
|
std::next((MachineBasicBlock::iterator)MI.getIterator());
|
|
LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
|
|
<< LRI->Reloaded << '\n');
|
|
bool Kill = LRI->LastUse == nullptr;
|
|
spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
|
|
LRI->LastUse = nullptr;
|
|
}
|
|
LRI->LiveOut = false;
|
|
LRI->Reloaded = false;
|
|
}
|
|
if (MI.getOpcode() == TargetOpcode::BUNDLE) {
|
|
BundleVirtRegsMap[VirtReg] = PhysReg;
|
|
}
|
|
markRegUsedInInstr(PhysReg);
|
|
setPhysReg(MI, MO, PhysReg);
|
|
}
|
|
|
|
/// Allocates a register for a VirtReg use.
|
|
void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
|
|
Register VirtReg) {
|
|
assert(VirtReg.isVirtual() && "Not a virtual register");
|
|
MachineOperand &MO = MI.getOperand(OpNum);
|
|
LiveRegMap::iterator LRI;
|
|
bool New;
|
|
std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
|
|
if (New) {
|
|
MachineOperand &MO = MI.getOperand(OpNum);
|
|
if (!MO.isKill()) {
|
|
if (mayLiveOut(VirtReg)) {
|
|
LRI->LiveOut = true;
|
|
} else {
|
|
// It is a last (killing) use without the kill flag; add the flag now.
|
|
MO.setIsKill(true);
|
|
}
|
|
}
|
|
} else {
|
|
assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
|
|
}
|
|
|
|
// If necessary allocate a register.
|
|
if (LRI->PhysReg == 0) {
|
|
assert(!MO.isTied() && "tied op should be allocated");
|
|
Register Hint;
|
|
if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
|
|
Hint = MI.getOperand(0).getReg();
|
|
assert(Hint.isPhysical() &&
|
|
"Copy destination should already be assigned");
|
|
}
|
|
allocVirtReg(MI, *LRI, Hint, false);
|
|
if (LRI->Error) {
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
|
|
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
|
|
setPhysReg(MI, MO, *AllocationOrder.begin());
|
|
return;
|
|
}
|
|
}
|
|
|
|
LRI->LastUse = &MI;
|
|
|
|
if (MI.getOpcode() == TargetOpcode::BUNDLE) {
|
|
BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
|
|
}
|
|
markRegUsedInInstr(LRI->PhysReg);
|
|
setPhysReg(MI, MO, LRI->PhysReg);
|
|
}
|
|
|
|
/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
|
|
/// may invalidate any operand pointers. Return true if the operand kills its
|
|
/// register.
|
|
void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
|
|
MCPhysReg PhysReg) {
|
|
if (!MO.getSubReg()) {
|
|
MO.setReg(PhysReg);
|
|
MO.setIsRenamable(true);
|
|
return;
|
|
}
|
|
|
|
// Handle subregister index.
|
|
MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
|
|
MO.setIsRenamable(true);
|
|
// Note: We leave the subreg number around a little longer in case of defs.
|
|
// This is so that the register freeing logic in allocateInstruction can still
|
|
// recognize this as subregister defs. The code there will clear the number.
|
|
if (!MO.isDef())
|
|
MO.setSubReg(0);
|
|
|
|
// A kill flag implies killing the full register. Add corresponding super
|
|
// register kill.
|
|
if (MO.isKill()) {
|
|
MI.addRegisterKilled(PhysReg, TRI, true);
|
|
return;
|
|
}
|
|
|
|
// A <def,read-undef> of a sub-register requires an implicit def of the full
|
|
// register.
|
|
if (MO.isDef() && MO.isUndef()) {
|
|
if (MO.isDead())
|
|
MI.addRegisterDead(PhysReg, TRI, true);
|
|
else
|
|
MI.addRegisterDefined(PhysReg, TRI);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
|
|
void RegAllocFast::dumpState() const {
|
|
for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
|
|
++Unit) {
|
|
switch (unsigned VirtReg = RegUnitStates[Unit]) {
|
|
case regFree:
|
|
break;
|
|
case regPreAssigned:
|
|
dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
|
|
break;
|
|
case regLiveIn:
|
|
llvm_unreachable("Should not have regLiveIn in map");
|
|
default: {
|
|
dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
|
|
LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
|
|
assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
|
|
if (I->LiveOut || I->Reloaded) {
|
|
dbgs() << '[';
|
|
if (I->LiveOut) dbgs() << 'O';
|
|
if (I->Reloaded) dbgs() << 'R';
|
|
dbgs() << ']';
|
|
}
|
|
assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
dbgs() << '\n';
|
|
// Check that LiveVirtRegs is the inverse.
|
|
for (const LiveReg &LR : LiveVirtRegs) {
|
|
Register VirtReg = LR.VirtReg;
|
|
assert(VirtReg.isVirtual() && "Bad map key");
|
|
MCPhysReg PhysReg = LR.PhysReg;
|
|
if (PhysReg != 0) {
|
|
assert(Register::isPhysicalRegister(PhysReg) &&
|
|
"mapped to physreg");
|
|
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
|
|
assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/// Count number of defs consumed from each register class by \p Reg
|
|
void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
|
|
Register Reg) const {
|
|
assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
|
|
|
|
if (Reg.isVirtual()) {
|
|
const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
|
|
for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
|
|
RCIdx != RCIdxEnd; ++RCIdx) {
|
|
const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
|
|
// FIXME: Consider aliasing sub/super registers.
|
|
if (OpRC->hasSubClassEq(IdxRC))
|
|
++RegClassDefCounts[RCIdx];
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
|
|
RCIdx != RCIdxEnd; ++RCIdx) {
|
|
const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
|
|
for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
|
|
if (IdxRC->contains(*Alias)) {
|
|
++RegClassDefCounts[RCIdx];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RegAllocFast::allocateInstruction(MachineInstr &MI) {
|
|
// The basic algorithm here is:
|
|
// 1. Mark registers of def operands as free
|
|
// 2. Allocate registers to use operands and place reload instructions for
|
|
// registers displaced by the allocation.
|
|
//
|
|
// However we need to handle some corner cases:
|
|
// - pre-assigned defs and uses need to be handled before the other def/use
|
|
// operands are processed to avoid the allocation heuristics clashing with
|
|
// the pre-assignment.
|
|
// - The "free def operands" step has to come last instead of first for tied
|
|
// operands and early-clobbers.
|
|
|
|
UsedInInstr.clear();
|
|
RegMasks.clear();
|
|
BundleVirtRegsMap.clear();
|
|
|
|
// Scan for special cases; Apply pre-assigned register defs to state.
|
|
bool HasPhysRegUse = false;
|
|
bool HasRegMask = false;
|
|
bool HasVRegDef = false;
|
|
bool HasDef = false;
|
|
bool HasEarlyClobber = false;
|
|
bool NeedToAssignLiveThroughs = false;
|
|
for (MachineOperand &MO : MI.operands()) {
|
|
if (MO.isReg()) {
|
|
Register Reg = MO.getReg();
|
|
if (Reg.isVirtual()) {
|
|
if (MO.isDef()) {
|
|
HasDef = true;
|
|
HasVRegDef = true;
|
|
if (MO.isEarlyClobber()) {
|
|
HasEarlyClobber = true;
|
|
NeedToAssignLiveThroughs = true;
|
|
}
|
|
if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef()))
|
|
NeedToAssignLiveThroughs = true;
|
|
}
|
|
} else if (Reg.isPhysical()) {
|
|
if (!MRI->isReserved(Reg)) {
|
|
if (MO.isDef()) {
|
|
HasDef = true;
|
|
bool displacedAny = definePhysReg(MI, Reg);
|
|
if (MO.isEarlyClobber())
|
|
HasEarlyClobber = true;
|
|
if (!displacedAny)
|
|
MO.setIsDead(true);
|
|
}
|
|
if (MO.readsReg())
|
|
HasPhysRegUse = true;
|
|
}
|
|
}
|
|
} else if (MO.isRegMask()) {
|
|
HasRegMask = true;
|
|
RegMasks.push_back(MO.getRegMask());
|
|
}
|
|
}
|
|
|
|
// Allocate virtreg defs.
|
|
if (HasDef) {
|
|
if (HasVRegDef) {
|
|
// Special handling for early clobbers, tied operands or subregister defs:
|
|
// Compared to "normal" defs these:
|
|
// - Must not use a register that is pre-assigned for a use operand.
|
|
// - In order to solve tricky inline assembly constraints we change the
|
|
// heuristic to figure out a good operand order before doing
|
|
// assignments.
|
|
if (NeedToAssignLiveThroughs) {
|
|
DefOperandIndexes.clear();
|
|
PhysRegUses.clear();
|
|
|
|
// Track number of defs which may consume a register from the class.
|
|
std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
|
|
assert(RegClassDefCounts[0] == 0);
|
|
|
|
LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
|
|
for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
|
|
const MachineOperand &MO = MI.getOperand(I);
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (MO.readsReg()) {
|
|
if (Reg.isPhysical()) {
|
|
LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
|
|
<< '\n');
|
|
markPhysRegUsedInInstr(Reg);
|
|
}
|
|
}
|
|
|
|
if (MO.isDef()) {
|
|
if (Reg.isVirtual())
|
|
DefOperandIndexes.push_back(I);
|
|
|
|
addRegClassDefCounts(RegClassDefCounts, Reg);
|
|
}
|
|
}
|
|
|
|
llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
|
|
const MachineOperand &MO0 = MI.getOperand(I0);
|
|
const MachineOperand &MO1 = MI.getOperand(I1);
|
|
Register Reg0 = MO0.getReg();
|
|
Register Reg1 = MO1.getReg();
|
|
const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
|
|
const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
|
|
|
|
// Identify regclass that are easy to use up completely just in this
|
|
// instruction.
|
|
unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
|
|
unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
|
|
|
|
bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
|
|
bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
|
|
if (SmallClass0 > SmallClass1)
|
|
return true;
|
|
if (SmallClass0 < SmallClass1)
|
|
return false;
|
|
|
|
// Allocate early clobbers and livethrough operands first.
|
|
bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
|
|
(MO0.getSubReg() == 0 && !MO0.isUndef());
|
|
bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
|
|
(MO1.getSubReg() == 0 && !MO1.isUndef());
|
|
if (Livethrough0 > Livethrough1)
|
|
return true;
|
|
if (Livethrough0 < Livethrough1)
|
|
return false;
|
|
|
|
// Tie-break rule: operand index.
|
|
return I0 < I1;
|
|
});
|
|
|
|
for (uint16_t OpIdx : DefOperandIndexes) {
|
|
MachineOperand &MO = MI.getOperand(OpIdx);
|
|
LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
|
|
unsigned Reg = MO.getReg();
|
|
if (MO.isEarlyClobber() || MO.isTied() ||
|
|
(MO.getSubReg() && !MO.isUndef())) {
|
|
defineLiveThroughVirtReg(MI, OpIdx, Reg);
|
|
} else {
|
|
defineVirtReg(MI, OpIdx, Reg);
|
|
}
|
|
}
|
|
} else {
|
|
// Assign virtual register defs.
|
|
for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
|
|
MachineOperand &MO = MI.getOperand(I);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (Reg.isVirtual())
|
|
defineVirtReg(MI, I, Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Free registers occupied by defs.
|
|
// Iterate operands in reverse order, so we see the implicit super register
|
|
// defs first (we added them earlier in case of <def,read-undef>).
|
|
for (MachineOperand &MO : llvm::reverse(MI.operands())) {
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
|
|
// subreg defs don't free the full register. We left the subreg number
|
|
// around as a marker in setPhysReg() to recognize this case here.
|
|
if (MO.getSubReg() != 0) {
|
|
MO.setSubReg(0);
|
|
continue;
|
|
}
|
|
|
|
assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
|
|
"tied def assigned to clobbered register");
|
|
|
|
// Do not free tied operands and early clobbers.
|
|
if (MO.isTied() || MO.isEarlyClobber())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
assert(Reg.isPhysical());
|
|
if (MRI->isReserved(Reg))
|
|
continue;
|
|
freePhysReg(Reg);
|
|
unmarkRegUsedInInstr(Reg);
|
|
}
|
|
}
|
|
|
|
// Displace clobbered registers.
|
|
if (HasRegMask) {
|
|
assert(!RegMasks.empty() && "expected RegMask");
|
|
// MRI bookkeeping.
|
|
for (const auto *RM : RegMasks)
|
|
MRI->addPhysRegsUsedFromRegMask(RM);
|
|
|
|
// Displace clobbered registers.
|
|
for (const LiveReg &LR : LiveVirtRegs) {
|
|
MCPhysReg PhysReg = LR.PhysReg;
|
|
if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
|
|
displacePhysReg(MI, PhysReg);
|
|
}
|
|
}
|
|
|
|
// Apply pre-assigned register uses to state.
|
|
if (HasPhysRegUse) {
|
|
for (MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg() || !MO.readsReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg.isPhysical())
|
|
continue;
|
|
if (MRI->isReserved(Reg))
|
|
continue;
|
|
bool displacedAny = usePhysReg(MI, Reg);
|
|
if (!displacedAny && !MRI->isReserved(Reg))
|
|
MO.setIsKill(true);
|
|
}
|
|
}
|
|
|
|
// Allocate virtreg uses and insert reloads as necessary.
|
|
bool HasUndefUse = false;
|
|
for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
|
|
MachineOperand &MO = MI.getOperand(I);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg.isVirtual())
|
|
continue;
|
|
|
|
if (MO.isUndef()) {
|
|
HasUndefUse = true;
|
|
continue;
|
|
}
|
|
|
|
|
|
// Populate MayLiveAcrossBlocks in case the use block is allocated before
|
|
// the def block (removing the vreg uses).
|
|
mayLiveIn(Reg);
|
|
|
|
|
|
assert(!MO.isInternalRead() && "Bundles not supported");
|
|
assert(MO.readsReg() && "reading use");
|
|
useVirtReg(MI, I, Reg);
|
|
}
|
|
|
|
// Allocate undef operands. This is a separate step because in a situation
|
|
// like ` = OP undef %X, %X` both operands need the same register assign
|
|
// so we should perform the normal assignment first.
|
|
if (HasUndefUse) {
|
|
for (MachineOperand &MO : MI.uses()) {
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg.isVirtual())
|
|
continue;
|
|
|
|
assert(MO.isUndef() && "Should only have undef virtreg uses left");
|
|
allocVirtRegUndef(MO);
|
|
}
|
|
}
|
|
|
|
// Free early clobbers.
|
|
if (HasEarlyClobber) {
|
|
for (MachineOperand &MO : llvm::reverse(MI.operands())) {
|
|
if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
|
|
continue;
|
|
// subreg defs don't free the full register. We left the subreg number
|
|
// around as a marker in setPhysReg() to recognize this case here.
|
|
if (MO.getSubReg() != 0) {
|
|
MO.setSubReg(0);
|
|
continue;
|
|
}
|
|
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
assert(Reg.isPhysical() && "should have register assigned");
|
|
|
|
// We sometimes get odd situations like:
|
|
// early-clobber %x0 = INSTRUCTION %x0
|
|
// which is semantically questionable as the early-clobber should
|
|
// apply before the use. But in practice we consider the use to
|
|
// happen before the early clobber now. Don't free the early clobber
|
|
// register in this case.
|
|
if (MI.readsRegister(Reg, TRI))
|
|
continue;
|
|
|
|
freePhysReg(Reg);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "<< " << MI);
|
|
if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
|
|
MI.getNumOperands() == 2) {
|
|
LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
|
|
Coalesced.push_back(&MI);
|
|
}
|
|
}
|
|
|
|
void RegAllocFast::handleDebugValue(MachineInstr &MI) {
|
|
// Ignore DBG_VALUEs that aren't based on virtual registers. These are
|
|
// mostly constants and frame indices.
|
|
for (Register Reg : MI.getUsedDebugRegs()) {
|
|
if (!Register::isVirtualRegister(Reg))
|
|
continue;
|
|
|
|
// Already spilled to a stackslot?
|
|
int SS = StackSlotForVirtReg[Reg];
|
|
if (SS != -1) {
|
|
// Modify DBG_VALUE now that the value is in a spill slot.
|
|
updateDbgValueForSpill(MI, SS, Reg);
|
|
LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
|
|
continue;
|
|
}
|
|
|
|
// See if this virtual register has already been allocated to a physical
|
|
// register or spilled to a stack slot.
|
|
LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
|
|
SmallVector<MachineOperand *> DbgOps;
|
|
for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
|
|
DbgOps.push_back(&Op);
|
|
|
|
if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
|
|
// Update every use of Reg within MI.
|
|
for (auto &RegMO : DbgOps)
|
|
setPhysReg(MI, *RegMO, LRI->PhysReg);
|
|
} else {
|
|
DanglingDbgValues[Reg].push_back(&MI);
|
|
}
|
|
|
|
// If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
|
|
// that future spills of Reg will have DBG_VALUEs.
|
|
LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
|
|
}
|
|
}
|
|
|
|
void RegAllocFast::handleBundle(MachineInstr &MI) {
|
|
MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
|
|
++BundledMI;
|
|
while (BundledMI->isBundledWithPred()) {
|
|
for (MachineOperand &MO : BundledMI->operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
Register Reg = MO.getReg();
|
|
if (!Reg.isVirtual())
|
|
continue;
|
|
|
|
DenseMap<Register, MCPhysReg>::iterator DI;
|
|
DI = BundleVirtRegsMap.find(Reg);
|
|
assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
|
|
|
|
setPhysReg(MI, MO, DI->second);
|
|
}
|
|
|
|
++BundledMI;
|
|
}
|
|
}
|
|
|
|
void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
|
|
this->MBB = &MBB;
|
|
LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
|
|
|
|
RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
|
|
assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
|
|
|
|
for (auto &LiveReg : MBB.liveouts())
|
|
setPhysRegState(LiveReg.PhysReg, regPreAssigned);
|
|
|
|
Coalesced.clear();
|
|
|
|
// Traverse block in reverse order allocating instructions one by one.
|
|
for (MachineInstr &MI : reverse(MBB)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "\n>> " << MI << "Regs:";
|
|
dumpState()
|
|
);
|
|
|
|
// Special handling for debug values. Note that they are not allowed to
|
|
// affect codegen of the other instructions in any way.
|
|
if (MI.isDebugValue()) {
|
|
handleDebugValue(MI);
|
|
continue;
|
|
}
|
|
|
|
allocateInstruction(MI);
|
|
|
|
// Once BUNDLE header is assigned registers, same assignments need to be
|
|
// done for bundled MIs.
|
|
if (MI.getOpcode() == TargetOpcode::BUNDLE) {
|
|
handleBundle(MI);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Begin Regs:";
|
|
dumpState()
|
|
);
|
|
|
|
// Spill all physical registers holding virtual registers now.
|
|
LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
|
|
reloadAtBegin(MBB);
|
|
|
|
// Erase all the coalesced copies. We are delaying it until now because
|
|
// LiveVirtRegs might refer to the instrs.
|
|
for (MachineInstr *MI : Coalesced)
|
|
MBB.erase(MI);
|
|
NumCoalesced += Coalesced.size();
|
|
|
|
for (auto &UDBGPair : DanglingDbgValues) {
|
|
for (MachineInstr *DbgValue : UDBGPair.second) {
|
|
assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
|
|
// Nothing to do if the vreg was spilled in the meantime.
|
|
if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
|
|
<< '\n');
|
|
DbgValue->setDebugValueUndef();
|
|
}
|
|
}
|
|
DanglingDbgValues.clear();
|
|
|
|
LLVM_DEBUG(MBB.dump());
|
|
}
|
|
|
|
bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
|
|
LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
|
|
<< "********** Function: " << MF.getName() << '\n');
|
|
MRI = &MF.getRegInfo();
|
|
const TargetSubtargetInfo &STI = MF.getSubtarget();
|
|
TRI = STI.getRegisterInfo();
|
|
TII = STI.getInstrInfo();
|
|
MFI = &MF.getFrameInfo();
|
|
MRI->freezeReservedRegs(MF);
|
|
RegClassInfo.runOnMachineFunction(MF);
|
|
unsigned NumRegUnits = TRI->getNumRegUnits();
|
|
UsedInInstr.clear();
|
|
UsedInInstr.setUniverse(NumRegUnits);
|
|
PhysRegUses.clear();
|
|
PhysRegUses.setUniverse(NumRegUnits);
|
|
|
|
// initialize the virtual->physical register map to have a 'null'
|
|
// mapping for all virtual registers
|
|
unsigned NumVirtRegs = MRI->getNumVirtRegs();
|
|
StackSlotForVirtReg.resize(NumVirtRegs);
|
|
LiveVirtRegs.setUniverse(NumVirtRegs);
|
|
MayLiveAcrossBlocks.clear();
|
|
MayLiveAcrossBlocks.resize(NumVirtRegs);
|
|
|
|
// Loop over all of the basic blocks, eliminating virtual register references
|
|
for (MachineBasicBlock &MBB : MF)
|
|
allocateBasicBlock(MBB);
|
|
|
|
if (ClearVirtRegs) {
|
|
// All machine operands and other references to virtual registers have been
|
|
// replaced. Remove the virtual registers.
|
|
MRI->clearVirtRegs();
|
|
}
|
|
|
|
StackSlotForVirtReg.clear();
|
|
LiveDbgValueMap.clear();
|
|
return true;
|
|
}
|
|
|
|
FunctionPass *llvm::createFastRegisterAllocator() {
|
|
return new RegAllocFast();
|
|
}
|
|
|
|
FunctionPass *llvm::createFastRegisterAllocator(
|
|
std::function<bool(const TargetRegisterInfo &TRI,
|
|
const TargetRegisterClass &RC)> Ftor, bool ClearVirtRegs) {
|
|
return new RegAllocFast(Ftor, ClearVirtRegs);
|
|
}
|