forked from OSchip/llvm-project
1636 lines
60 KiB
C++
1636 lines
60 KiB
C++
//===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
|
|
/// analysis.
|
|
///
|
|
/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
|
|
/// class of bugs on its own. Instead, it provides a generic dynamic data flow
|
|
/// analysis framework to be used by clients to help detect application-specific
|
|
/// issues within their own code.
|
|
///
|
|
/// The analysis is based on automatic propagation of data flow labels (also
|
|
/// known as taint labels) through a program as it performs computation. Each
|
|
/// byte of application memory is backed by two bytes of shadow memory which
|
|
/// hold the label. On Linux/x86_64, memory is laid out as follows:
|
|
///
|
|
/// +--------------------+ 0x800000000000 (top of memory)
|
|
/// | application memory |
|
|
/// +--------------------+ 0x700000008000 (kAppAddr)
|
|
/// | |
|
|
/// | unused |
|
|
/// | |
|
|
/// +--------------------+ 0x200200000000 (kUnusedAddr)
|
|
/// | union table |
|
|
/// +--------------------+ 0x200000000000 (kUnionTableAddr)
|
|
/// | shadow memory |
|
|
/// +--------------------+ 0x000000010000 (kShadowAddr)
|
|
/// | reserved by kernel |
|
|
/// +--------------------+ 0x000000000000
|
|
///
|
|
/// To derive a shadow memory address from an application memory address,
|
|
/// bits 44-46 are cleared to bring the address into the range
|
|
/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
|
|
/// account for the double byte representation of shadow labels and move the
|
|
/// address into the shadow memory range. See the function
|
|
/// DataFlowSanitizer::getShadowAddress below.
|
|
///
|
|
/// For more information, please refer to the design document:
|
|
/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
|
|
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/SpecialCaseList.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <set>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
// External symbol to be used when generating the shadow address for
|
|
// architectures with multiple VMAs. Instead of using a constant integer
|
|
// the runtime will set the external mask based on the VMA range.
|
|
static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
|
|
|
|
// The -dfsan-preserve-alignment flag controls whether this pass assumes that
|
|
// alignment requirements provided by the input IR are correct. For example,
|
|
// if the input IR contains a load with alignment 8, this flag will cause
|
|
// the shadow load to have alignment 16. This flag is disabled by default as
|
|
// we have unfortunately encountered too much code (including Clang itself;
|
|
// see PR14291) which performs misaligned access.
|
|
static cl::opt<bool> ClPreserveAlignment(
|
|
"dfsan-preserve-alignment",
|
|
cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// The ABI list files control how shadow parameters are passed. The pass treats
|
|
// every function labelled "uninstrumented" in the ABI list file as conforming
|
|
// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
|
|
// additional annotations for those functions, a call to one of those functions
|
|
// will produce a warning message, as the labelling behaviour of the function is
|
|
// unknown. The other supported annotations are "functional" and "discard",
|
|
// which are described below under DataFlowSanitizer::WrapperKind.
|
|
static cl::list<std::string> ClABIListFiles(
|
|
"dfsan-abilist",
|
|
cl::desc("File listing native ABI functions and how the pass treats them"),
|
|
cl::Hidden);
|
|
|
|
// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
|
|
// functions (see DataFlowSanitizer::InstrumentedABI below).
|
|
static cl::opt<bool> ClArgsABI(
|
|
"dfsan-args-abi",
|
|
cl::desc("Use the argument ABI rather than the TLS ABI"),
|
|
cl::Hidden);
|
|
|
|
// Controls whether the pass includes or ignores the labels of pointers in load
|
|
// instructions.
|
|
static cl::opt<bool> ClCombinePointerLabelsOnLoad(
|
|
"dfsan-combine-pointer-labels-on-load",
|
|
cl::desc("Combine the label of the pointer with the label of the data when "
|
|
"loading from memory."),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
// Controls whether the pass includes or ignores the labels of pointers in
|
|
// stores instructions.
|
|
static cl::opt<bool> ClCombinePointerLabelsOnStore(
|
|
"dfsan-combine-pointer-labels-on-store",
|
|
cl::desc("Combine the label of the pointer with the label of the data when "
|
|
"storing in memory."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> ClDebugNonzeroLabels(
|
|
"dfsan-debug-nonzero-labels",
|
|
cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
|
|
"load or return with a nonzero label"),
|
|
cl::Hidden);
|
|
|
|
|
|
namespace {
|
|
|
|
StringRef GetGlobalTypeString(const GlobalValue &G) {
|
|
// Types of GlobalVariables are always pointer types.
|
|
Type *GType = G.getValueType();
|
|
// For now we support blacklisting struct types only.
|
|
if (StructType *SGType = dyn_cast<StructType>(GType)) {
|
|
if (!SGType->isLiteral())
|
|
return SGType->getName();
|
|
}
|
|
return "<unknown type>";
|
|
}
|
|
|
|
class DFSanABIList {
|
|
std::unique_ptr<SpecialCaseList> SCL;
|
|
|
|
public:
|
|
DFSanABIList() {}
|
|
|
|
void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
|
|
|
|
/// Returns whether either this function or its source file are listed in the
|
|
/// given category.
|
|
bool isIn(const Function &F, StringRef Category) const {
|
|
return isIn(*F.getParent(), Category) ||
|
|
SCL->inSection("fun", F.getName(), Category);
|
|
}
|
|
|
|
/// Returns whether this global alias is listed in the given category.
|
|
///
|
|
/// If GA aliases a function, the alias's name is matched as a function name
|
|
/// would be. Similarly, aliases of globals are matched like globals.
|
|
bool isIn(const GlobalAlias &GA, StringRef Category) const {
|
|
if (isIn(*GA.getParent(), Category))
|
|
return true;
|
|
|
|
if (isa<FunctionType>(GA.getValueType()))
|
|
return SCL->inSection("fun", GA.getName(), Category);
|
|
|
|
return SCL->inSection("global", GA.getName(), Category) ||
|
|
SCL->inSection("type", GetGlobalTypeString(GA), Category);
|
|
}
|
|
|
|
/// Returns whether this module is listed in the given category.
|
|
bool isIn(const Module &M, StringRef Category) const {
|
|
return SCL->inSection("src", M.getModuleIdentifier(), Category);
|
|
}
|
|
};
|
|
|
|
class DataFlowSanitizer : public ModulePass {
|
|
friend struct DFSanFunction;
|
|
friend class DFSanVisitor;
|
|
|
|
enum {
|
|
ShadowWidth = 16
|
|
};
|
|
|
|
/// Which ABI should be used for instrumented functions?
|
|
enum InstrumentedABI {
|
|
/// Argument and return value labels are passed through additional
|
|
/// arguments and by modifying the return type.
|
|
IA_Args,
|
|
|
|
/// Argument and return value labels are passed through TLS variables
|
|
/// __dfsan_arg_tls and __dfsan_retval_tls.
|
|
IA_TLS
|
|
};
|
|
|
|
/// How should calls to uninstrumented functions be handled?
|
|
enum WrapperKind {
|
|
/// This function is present in an uninstrumented form but we don't know
|
|
/// how it should be handled. Print a warning and call the function anyway.
|
|
/// Don't label the return value.
|
|
WK_Warning,
|
|
|
|
/// This function does not write to (user-accessible) memory, and its return
|
|
/// value is unlabelled.
|
|
WK_Discard,
|
|
|
|
/// This function does not write to (user-accessible) memory, and the label
|
|
/// of its return value is the union of the label of its arguments.
|
|
WK_Functional,
|
|
|
|
/// Instead of calling the function, a custom wrapper __dfsw_F is called,
|
|
/// where F is the name of the function. This function may wrap the
|
|
/// original function or provide its own implementation. This is similar to
|
|
/// the IA_Args ABI, except that IA_Args uses a struct return type to
|
|
/// pass the return value shadow in a register, while WK_Custom uses an
|
|
/// extra pointer argument to return the shadow. This allows the wrapped
|
|
/// form of the function type to be expressed in C.
|
|
WK_Custom
|
|
};
|
|
|
|
Module *Mod;
|
|
LLVMContext *Ctx;
|
|
IntegerType *ShadowTy;
|
|
PointerType *ShadowPtrTy;
|
|
IntegerType *IntptrTy;
|
|
ConstantInt *ZeroShadow;
|
|
ConstantInt *ShadowPtrMask;
|
|
ConstantInt *ShadowPtrMul;
|
|
Constant *ArgTLS;
|
|
Constant *RetvalTLS;
|
|
void *(*GetArgTLSPtr)();
|
|
void *(*GetRetvalTLSPtr)();
|
|
Constant *GetArgTLS;
|
|
Constant *GetRetvalTLS;
|
|
Constant *ExternalShadowMask;
|
|
FunctionType *DFSanUnionFnTy;
|
|
FunctionType *DFSanUnionLoadFnTy;
|
|
FunctionType *DFSanUnimplementedFnTy;
|
|
FunctionType *DFSanSetLabelFnTy;
|
|
FunctionType *DFSanNonzeroLabelFnTy;
|
|
FunctionType *DFSanVarargWrapperFnTy;
|
|
Constant *DFSanUnionFn;
|
|
Constant *DFSanCheckedUnionFn;
|
|
Constant *DFSanUnionLoadFn;
|
|
Constant *DFSanUnimplementedFn;
|
|
Constant *DFSanSetLabelFn;
|
|
Constant *DFSanNonzeroLabelFn;
|
|
Constant *DFSanVarargWrapperFn;
|
|
MDNode *ColdCallWeights;
|
|
DFSanABIList ABIList;
|
|
DenseMap<Value *, Function *> UnwrappedFnMap;
|
|
AttributeSet ReadOnlyNoneAttrs;
|
|
bool DFSanRuntimeShadowMask;
|
|
|
|
Value *getShadowAddress(Value *Addr, Instruction *Pos);
|
|
bool isInstrumented(const Function *F);
|
|
bool isInstrumented(const GlobalAlias *GA);
|
|
FunctionType *getArgsFunctionType(FunctionType *T);
|
|
FunctionType *getTrampolineFunctionType(FunctionType *T);
|
|
FunctionType *getCustomFunctionType(FunctionType *T);
|
|
InstrumentedABI getInstrumentedABI();
|
|
WrapperKind getWrapperKind(Function *F);
|
|
void addGlobalNamePrefix(GlobalValue *GV);
|
|
Function *buildWrapperFunction(Function *F, StringRef NewFName,
|
|
GlobalValue::LinkageTypes NewFLink,
|
|
FunctionType *NewFT);
|
|
Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
|
|
|
|
public:
|
|
DataFlowSanitizer(
|
|
const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
|
|
void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
|
|
static char ID;
|
|
bool doInitialization(Module &M) override;
|
|
bool runOnModule(Module &M) override;
|
|
};
|
|
|
|
struct DFSanFunction {
|
|
DataFlowSanitizer &DFS;
|
|
Function *F;
|
|
DominatorTree DT;
|
|
DataFlowSanitizer::InstrumentedABI IA;
|
|
bool IsNativeABI;
|
|
Value *ArgTLSPtr;
|
|
Value *RetvalTLSPtr;
|
|
AllocaInst *LabelReturnAlloca;
|
|
DenseMap<Value *, Value *> ValShadowMap;
|
|
DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
|
|
std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
|
|
DenseSet<Instruction *> SkipInsts;
|
|
std::vector<Value *> NonZeroChecks;
|
|
bool AvoidNewBlocks;
|
|
|
|
struct CachedCombinedShadow {
|
|
BasicBlock *Block;
|
|
Value *Shadow;
|
|
};
|
|
DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
|
|
CachedCombinedShadows;
|
|
DenseMap<Value *, std::set<Value *>> ShadowElements;
|
|
|
|
DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
|
|
: DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
|
|
IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr),
|
|
LabelReturnAlloca(nullptr) {
|
|
DT.recalculate(*F);
|
|
// FIXME: Need to track down the register allocator issue which causes poor
|
|
// performance in pathological cases with large numbers of basic blocks.
|
|
AvoidNewBlocks = F->size() > 1000;
|
|
}
|
|
Value *getArgTLSPtr();
|
|
Value *getArgTLS(unsigned Index, Instruction *Pos);
|
|
Value *getRetvalTLS();
|
|
Value *getShadow(Value *V);
|
|
void setShadow(Instruction *I, Value *Shadow);
|
|
Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
|
|
Value *combineOperandShadows(Instruction *Inst);
|
|
Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
|
|
Instruction *Pos);
|
|
void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
|
|
Instruction *Pos);
|
|
};
|
|
|
|
class DFSanVisitor : public InstVisitor<DFSanVisitor> {
|
|
public:
|
|
DFSanFunction &DFSF;
|
|
DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
|
|
|
|
void visitOperandShadowInst(Instruction &I);
|
|
|
|
void visitBinaryOperator(BinaryOperator &BO);
|
|
void visitCastInst(CastInst &CI);
|
|
void visitCmpInst(CmpInst &CI);
|
|
void visitGetElementPtrInst(GetElementPtrInst &GEPI);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitCallSite(CallSite CS);
|
|
void visitPHINode(PHINode &PN);
|
|
void visitExtractElementInst(ExtractElementInst &I);
|
|
void visitInsertElementInst(InsertElementInst &I);
|
|
void visitShuffleVectorInst(ShuffleVectorInst &I);
|
|
void visitExtractValueInst(ExtractValueInst &I);
|
|
void visitInsertValueInst(InsertValueInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitSelectInst(SelectInst &I);
|
|
void visitMemSetInst(MemSetInst &I);
|
|
void visitMemTransferInst(MemTransferInst &I);
|
|
};
|
|
|
|
}
|
|
|
|
char DataFlowSanitizer::ID;
|
|
INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
|
|
"DataFlowSanitizer: dynamic data flow analysis.", false, false)
|
|
|
|
ModulePass *
|
|
llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
|
|
void *(*getArgTLS)(),
|
|
void *(*getRetValTLS)()) {
|
|
return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
|
|
}
|
|
|
|
DataFlowSanitizer::DataFlowSanitizer(
|
|
const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
|
|
void *(*getRetValTLS)())
|
|
: ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS),
|
|
DFSanRuntimeShadowMask(false) {
|
|
std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
|
|
AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
|
|
ClABIListFiles.end());
|
|
ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
|
|
}
|
|
|
|
FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
|
|
llvm::SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
|
|
ArgTypes.append(T->getNumParams(), ShadowTy);
|
|
if (T->isVarArg())
|
|
ArgTypes.push_back(ShadowPtrTy);
|
|
Type *RetType = T->getReturnType();
|
|
if (!RetType->isVoidTy())
|
|
RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr);
|
|
return FunctionType::get(RetType, ArgTypes, T->isVarArg());
|
|
}
|
|
|
|
FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
|
|
assert(!T->isVarArg());
|
|
llvm::SmallVector<Type *, 4> ArgTypes;
|
|
ArgTypes.push_back(T->getPointerTo());
|
|
ArgTypes.append(T->param_begin(), T->param_end());
|
|
ArgTypes.append(T->getNumParams(), ShadowTy);
|
|
Type *RetType = T->getReturnType();
|
|
if (!RetType->isVoidTy())
|
|
ArgTypes.push_back(ShadowPtrTy);
|
|
return FunctionType::get(T->getReturnType(), ArgTypes, false);
|
|
}
|
|
|
|
FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
|
|
llvm::SmallVector<Type *, 4> ArgTypes;
|
|
for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
|
|
i != e; ++i) {
|
|
FunctionType *FT;
|
|
if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>(
|
|
*i)->getElementType()))) {
|
|
ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
|
|
ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
|
|
} else {
|
|
ArgTypes.push_back(*i);
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
|
|
ArgTypes.push_back(ShadowTy);
|
|
if (T->isVarArg())
|
|
ArgTypes.push_back(ShadowPtrTy);
|
|
Type *RetType = T->getReturnType();
|
|
if (!RetType->isVoidTy())
|
|
ArgTypes.push_back(ShadowPtrTy);
|
|
return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg());
|
|
}
|
|
|
|
bool DataFlowSanitizer::doInitialization(Module &M) {
|
|
llvm::Triple TargetTriple(M.getTargetTriple());
|
|
bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
|
|
bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
|
|
TargetTriple.getArch() == llvm::Triple::mips64el;
|
|
bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64 ||
|
|
TargetTriple.getArch() == llvm::Triple::aarch64_be;
|
|
|
|
const DataLayout &DL = M.getDataLayout();
|
|
|
|
Mod = &M;
|
|
Ctx = &M.getContext();
|
|
ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
|
|
ShadowPtrTy = PointerType::getUnqual(ShadowTy);
|
|
IntptrTy = DL.getIntPtrType(*Ctx);
|
|
ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
|
|
ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
|
|
if (IsX86_64)
|
|
ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
|
|
else if (IsMIPS64)
|
|
ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
|
|
// AArch64 supports multiple VMAs and the shadow mask is set at runtime.
|
|
else if (IsAArch64)
|
|
DFSanRuntimeShadowMask = true;
|
|
else
|
|
report_fatal_error("unsupported triple");
|
|
|
|
Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
|
|
DFSanUnionFnTy =
|
|
FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
|
|
Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
|
|
DFSanUnionLoadFnTy =
|
|
FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
|
|
DFSanUnimplementedFnTy = FunctionType::get(
|
|
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
|
|
Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
|
|
DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
|
|
DFSanSetLabelArgs, /*isVarArg=*/false);
|
|
DFSanNonzeroLabelFnTy = FunctionType::get(
|
|
Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
|
|
DFSanVarargWrapperFnTy = FunctionType::get(
|
|
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
|
|
|
|
if (GetArgTLSPtr) {
|
|
Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
|
|
ArgTLS = nullptr;
|
|
GetArgTLS = ConstantExpr::getIntToPtr(
|
|
ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
|
|
PointerType::getUnqual(
|
|
FunctionType::get(PointerType::getUnqual(ArgTLSTy),
|
|
(Type *)nullptr)));
|
|
}
|
|
if (GetRetvalTLSPtr) {
|
|
RetvalTLS = nullptr;
|
|
GetRetvalTLS = ConstantExpr::getIntToPtr(
|
|
ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
|
|
PointerType::getUnqual(
|
|
FunctionType::get(PointerType::getUnqual(ShadowTy),
|
|
(Type *)nullptr)));
|
|
}
|
|
|
|
ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
|
|
return true;
|
|
}
|
|
|
|
bool DataFlowSanitizer::isInstrumented(const Function *F) {
|
|
return !ABIList.isIn(*F, "uninstrumented");
|
|
}
|
|
|
|
bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
|
|
return !ABIList.isIn(*GA, "uninstrumented");
|
|
}
|
|
|
|
DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
|
|
return ClArgsABI ? IA_Args : IA_TLS;
|
|
}
|
|
|
|
DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
|
|
if (ABIList.isIn(*F, "functional"))
|
|
return WK_Functional;
|
|
if (ABIList.isIn(*F, "discard"))
|
|
return WK_Discard;
|
|
if (ABIList.isIn(*F, "custom"))
|
|
return WK_Custom;
|
|
|
|
return WK_Warning;
|
|
}
|
|
|
|
void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
|
|
std::string GVName = GV->getName(), Prefix = "dfs$";
|
|
GV->setName(Prefix + GVName);
|
|
|
|
// Try to change the name of the function in module inline asm. We only do
|
|
// this for specific asm directives, currently only ".symver", to try to avoid
|
|
// corrupting asm which happens to contain the symbol name as a substring.
|
|
// Note that the substitution for .symver assumes that the versioned symbol
|
|
// also has an instrumented name.
|
|
std::string Asm = GV->getParent()->getModuleInlineAsm();
|
|
std::string SearchStr = ".symver " + GVName + ",";
|
|
size_t Pos = Asm.find(SearchStr);
|
|
if (Pos != std::string::npos) {
|
|
Asm.replace(Pos, SearchStr.size(),
|
|
".symver " + Prefix + GVName + "," + Prefix);
|
|
GV->getParent()->setModuleInlineAsm(Asm);
|
|
}
|
|
}
|
|
|
|
Function *
|
|
DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
|
|
GlobalValue::LinkageTypes NewFLink,
|
|
FunctionType *NewFT) {
|
|
FunctionType *FT = F->getFunctionType();
|
|
Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
|
|
F->getParent());
|
|
NewF->copyAttributesFrom(F);
|
|
NewF->removeAttributes(
|
|
AttributeSet::ReturnIndex,
|
|
AttributeSet::get(F->getContext(), AttributeSet::ReturnIndex,
|
|
AttributeFuncs::typeIncompatible(NewFT->getReturnType())));
|
|
|
|
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
|
|
if (F->isVarArg()) {
|
|
NewF->removeAttributes(
|
|
AttributeSet::FunctionIndex,
|
|
AttributeSet().addAttribute(*Ctx, AttributeSet::FunctionIndex,
|
|
"split-stack"));
|
|
CallInst::Create(DFSanVarargWrapperFn,
|
|
IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
|
|
BB);
|
|
new UnreachableInst(*Ctx, BB);
|
|
} else {
|
|
std::vector<Value *> Args;
|
|
unsigned n = FT->getNumParams();
|
|
for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
|
|
Args.push_back(&*ai);
|
|
CallInst *CI = CallInst::Create(F, Args, "", BB);
|
|
if (FT->getReturnType()->isVoidTy())
|
|
ReturnInst::Create(*Ctx, BB);
|
|
else
|
|
ReturnInst::Create(*Ctx, CI, BB);
|
|
}
|
|
|
|
return NewF;
|
|
}
|
|
|
|
Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
|
|
StringRef FName) {
|
|
FunctionType *FTT = getTrampolineFunctionType(FT);
|
|
Constant *C = Mod->getOrInsertFunction(FName, FTT);
|
|
Function *F = dyn_cast<Function>(C);
|
|
if (F && F->isDeclaration()) {
|
|
F->setLinkage(GlobalValue::LinkOnceODRLinkage);
|
|
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
|
|
std::vector<Value *> Args;
|
|
Function::arg_iterator AI = F->arg_begin(); ++AI;
|
|
for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
|
|
Args.push_back(&*AI);
|
|
CallInst *CI =
|
|
CallInst::Create(&F->getArgumentList().front(), Args, "", BB);
|
|
ReturnInst *RI;
|
|
if (FT->getReturnType()->isVoidTy())
|
|
RI = ReturnInst::Create(*Ctx, BB);
|
|
else
|
|
RI = ReturnInst::Create(*Ctx, CI, BB);
|
|
|
|
DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
|
|
Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
|
|
for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
|
|
DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
|
|
DFSanVisitor(DFSF).visitCallInst(*CI);
|
|
if (!FT->getReturnType()->isVoidTy())
|
|
new StoreInst(DFSF.getShadow(RI->getReturnValue()),
|
|
&F->getArgumentList().back(), RI);
|
|
}
|
|
|
|
return C;
|
|
}
|
|
|
|
bool DataFlowSanitizer::runOnModule(Module &M) {
|
|
if (ABIList.isIn(M, "skip"))
|
|
return false;
|
|
|
|
if (!GetArgTLSPtr) {
|
|
Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
|
|
ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
|
|
if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
|
|
G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
|
|
}
|
|
if (!GetRetvalTLSPtr) {
|
|
RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
|
|
if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
|
|
G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
|
|
}
|
|
|
|
ExternalShadowMask =
|
|
Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
|
|
|
|
DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
|
|
if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
|
|
F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
|
|
F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
|
|
F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
|
|
F->addAttribute(1, Attribute::ZExt);
|
|
F->addAttribute(2, Attribute::ZExt);
|
|
}
|
|
DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
|
|
if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
|
|
F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
|
|
F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
|
|
F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
|
|
F->addAttribute(1, Attribute::ZExt);
|
|
F->addAttribute(2, Attribute::ZExt);
|
|
}
|
|
DFSanUnionLoadFn =
|
|
Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
|
|
if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
|
|
F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
|
|
F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
|
|
F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
|
|
}
|
|
DFSanUnimplementedFn =
|
|
Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
|
|
DFSanSetLabelFn =
|
|
Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
|
|
if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
|
|
F->addAttribute(1, Attribute::ZExt);
|
|
}
|
|
DFSanNonzeroLabelFn =
|
|
Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
|
|
DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
|
|
DFSanVarargWrapperFnTy);
|
|
|
|
std::vector<Function *> FnsToInstrument;
|
|
llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
|
|
for (Function &i : M) {
|
|
if (!i.isIntrinsic() &&
|
|
&i != DFSanUnionFn &&
|
|
&i != DFSanCheckedUnionFn &&
|
|
&i != DFSanUnionLoadFn &&
|
|
&i != DFSanUnimplementedFn &&
|
|
&i != DFSanSetLabelFn &&
|
|
&i != DFSanNonzeroLabelFn &&
|
|
&i != DFSanVarargWrapperFn)
|
|
FnsToInstrument.push_back(&i);
|
|
}
|
|
|
|
// Give function aliases prefixes when necessary, and build wrappers where the
|
|
// instrumentedness is inconsistent.
|
|
for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
|
|
GlobalAlias *GA = &*i;
|
|
++i;
|
|
// Don't stop on weak. We assume people aren't playing games with the
|
|
// instrumentedness of overridden weak aliases.
|
|
if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
|
|
bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
|
|
if (GAInst && FInst) {
|
|
addGlobalNamePrefix(GA);
|
|
} else if (GAInst != FInst) {
|
|
// Non-instrumented alias of an instrumented function, or vice versa.
|
|
// Replace the alias with a native-ABI wrapper of the aliasee. The pass
|
|
// below will take care of instrumenting it.
|
|
Function *NewF =
|
|
buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
|
|
GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
|
|
NewF->takeName(GA);
|
|
GA->eraseFromParent();
|
|
FnsToInstrument.push_back(NewF);
|
|
}
|
|
}
|
|
}
|
|
|
|
AttrBuilder B;
|
|
B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
|
|
ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
|
|
|
|
// First, change the ABI of every function in the module. ABI-listed
|
|
// functions keep their original ABI and get a wrapper function.
|
|
for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
|
|
e = FnsToInstrument.end();
|
|
i != e; ++i) {
|
|
Function &F = **i;
|
|
FunctionType *FT = F.getFunctionType();
|
|
|
|
bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
|
|
FT->getReturnType()->isVoidTy());
|
|
|
|
if (isInstrumented(&F)) {
|
|
// Instrumented functions get a 'dfs$' prefix. This allows us to more
|
|
// easily identify cases of mismatching ABIs.
|
|
if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
|
|
FunctionType *NewFT = getArgsFunctionType(FT);
|
|
Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
|
|
NewF->copyAttributesFrom(&F);
|
|
NewF->removeAttributes(
|
|
AttributeSet::ReturnIndex,
|
|
AttributeSet::get(NewF->getContext(), AttributeSet::ReturnIndex,
|
|
AttributeFuncs::typeIncompatible(NewFT->getReturnType())));
|
|
for (Function::arg_iterator FArg = F.arg_begin(),
|
|
NewFArg = NewF->arg_begin(),
|
|
FArgEnd = F.arg_end();
|
|
FArg != FArgEnd; ++FArg, ++NewFArg) {
|
|
FArg->replaceAllUsesWith(&*NewFArg);
|
|
}
|
|
NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
|
|
|
|
for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
|
|
UI != UE;) {
|
|
BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
|
|
++UI;
|
|
if (BA) {
|
|
BA->replaceAllUsesWith(
|
|
BlockAddress::get(NewF, BA->getBasicBlock()));
|
|
delete BA;
|
|
}
|
|
}
|
|
F.replaceAllUsesWith(
|
|
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
|
|
NewF->takeName(&F);
|
|
F.eraseFromParent();
|
|
*i = NewF;
|
|
addGlobalNamePrefix(NewF);
|
|
} else {
|
|
addGlobalNamePrefix(&F);
|
|
}
|
|
} else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
|
|
// Build a wrapper function for F. The wrapper simply calls F, and is
|
|
// added to FnsToInstrument so that any instrumentation according to its
|
|
// WrapperKind is done in the second pass below.
|
|
FunctionType *NewFT = getInstrumentedABI() == IA_Args
|
|
? getArgsFunctionType(FT)
|
|
: FT;
|
|
Function *NewF = buildWrapperFunction(
|
|
&F, std::string("dfsw$") + std::string(F.getName()),
|
|
GlobalValue::LinkOnceODRLinkage, NewFT);
|
|
if (getInstrumentedABI() == IA_TLS)
|
|
NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs);
|
|
|
|
Value *WrappedFnCst =
|
|
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
|
|
F.replaceAllUsesWith(WrappedFnCst);
|
|
|
|
UnwrappedFnMap[WrappedFnCst] = &F;
|
|
*i = NewF;
|
|
|
|
if (!F.isDeclaration()) {
|
|
// This function is probably defining an interposition of an
|
|
// uninstrumented function and hence needs to keep the original ABI.
|
|
// But any functions it may call need to use the instrumented ABI, so
|
|
// we instrument it in a mode which preserves the original ABI.
|
|
FnsWithNativeABI.insert(&F);
|
|
|
|
// This code needs to rebuild the iterators, as they may be invalidated
|
|
// by the push_back, taking care that the new range does not include
|
|
// any functions added by this code.
|
|
size_t N = i - FnsToInstrument.begin(),
|
|
Count = e - FnsToInstrument.begin();
|
|
FnsToInstrument.push_back(&F);
|
|
i = FnsToInstrument.begin() + N;
|
|
e = FnsToInstrument.begin() + Count;
|
|
}
|
|
// Hopefully, nobody will try to indirectly call a vararg
|
|
// function... yet.
|
|
} else if (FT->isVarArg()) {
|
|
UnwrappedFnMap[&F] = &F;
|
|
*i = nullptr;
|
|
}
|
|
}
|
|
|
|
for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
|
|
e = FnsToInstrument.end();
|
|
i != e; ++i) {
|
|
if (!*i || (*i)->isDeclaration())
|
|
continue;
|
|
|
|
removeUnreachableBlocks(**i);
|
|
|
|
DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
|
|
|
|
// DFSanVisitor may create new basic blocks, which confuses df_iterator.
|
|
// Build a copy of the list before iterating over it.
|
|
llvm::SmallVector<BasicBlock *, 4> BBList(
|
|
depth_first(&(*i)->getEntryBlock()));
|
|
|
|
for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(),
|
|
e = BBList.end();
|
|
i != e; ++i) {
|
|
Instruction *Inst = &(*i)->front();
|
|
while (1) {
|
|
// DFSanVisitor may split the current basic block, changing the current
|
|
// instruction's next pointer and moving the next instruction to the
|
|
// tail block from which we should continue.
|
|
Instruction *Next = Inst->getNextNode();
|
|
// DFSanVisitor may delete Inst, so keep track of whether it was a
|
|
// terminator.
|
|
bool IsTerminator = isa<TerminatorInst>(Inst);
|
|
if (!DFSF.SkipInsts.count(Inst))
|
|
DFSanVisitor(DFSF).visit(Inst);
|
|
if (IsTerminator)
|
|
break;
|
|
Inst = Next;
|
|
}
|
|
}
|
|
|
|
// We will not necessarily be able to compute the shadow for every phi node
|
|
// until we have visited every block. Therefore, the code that handles phi
|
|
// nodes adds them to the PHIFixups list so that they can be properly
|
|
// handled here.
|
|
for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
|
|
i = DFSF.PHIFixups.begin(),
|
|
e = DFSF.PHIFixups.end();
|
|
i != e; ++i) {
|
|
for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
|
|
++val) {
|
|
i->second->setIncomingValue(
|
|
val, DFSF.getShadow(i->first->getIncomingValue(val)));
|
|
}
|
|
}
|
|
|
|
// -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
|
|
// places (i.e. instructions in basic blocks we haven't even begun visiting
|
|
// yet). To make our life easier, do this work in a pass after the main
|
|
// instrumentation.
|
|
if (ClDebugNonzeroLabels) {
|
|
for (Value *V : DFSF.NonZeroChecks) {
|
|
Instruction *Pos;
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
Pos = I->getNextNode();
|
|
else
|
|
Pos = &DFSF.F->getEntryBlock().front();
|
|
while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
|
|
Pos = Pos->getNextNode();
|
|
IRBuilder<> IRB(Pos);
|
|
Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
|
|
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
|
|
Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
|
|
IRBuilder<> ThenIRB(BI);
|
|
ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Value *DFSanFunction::getArgTLSPtr() {
|
|
if (ArgTLSPtr)
|
|
return ArgTLSPtr;
|
|
if (DFS.ArgTLS)
|
|
return ArgTLSPtr = DFS.ArgTLS;
|
|
|
|
IRBuilder<> IRB(&F->getEntryBlock().front());
|
|
return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {});
|
|
}
|
|
|
|
Value *DFSanFunction::getRetvalTLS() {
|
|
if (RetvalTLSPtr)
|
|
return RetvalTLSPtr;
|
|
if (DFS.RetvalTLS)
|
|
return RetvalTLSPtr = DFS.RetvalTLS;
|
|
|
|
IRBuilder<> IRB(&F->getEntryBlock().front());
|
|
return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {});
|
|
}
|
|
|
|
Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
|
|
IRBuilder<> IRB(Pos);
|
|
return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
|
|
}
|
|
|
|
Value *DFSanFunction::getShadow(Value *V) {
|
|
if (!isa<Argument>(V) && !isa<Instruction>(V))
|
|
return DFS.ZeroShadow;
|
|
Value *&Shadow = ValShadowMap[V];
|
|
if (!Shadow) {
|
|
if (Argument *A = dyn_cast<Argument>(V)) {
|
|
if (IsNativeABI)
|
|
return DFS.ZeroShadow;
|
|
switch (IA) {
|
|
case DataFlowSanitizer::IA_TLS: {
|
|
Value *ArgTLSPtr = getArgTLSPtr();
|
|
Instruction *ArgTLSPos =
|
|
DFS.ArgTLS ? &*F->getEntryBlock().begin()
|
|
: cast<Instruction>(ArgTLSPtr)->getNextNode();
|
|
IRBuilder<> IRB(ArgTLSPos);
|
|
Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
|
|
break;
|
|
}
|
|
case DataFlowSanitizer::IA_Args: {
|
|
unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2;
|
|
Function::arg_iterator i = F->arg_begin();
|
|
while (ArgIdx--)
|
|
++i;
|
|
Shadow = &*i;
|
|
assert(Shadow->getType() == DFS.ShadowTy);
|
|
break;
|
|
}
|
|
}
|
|
NonZeroChecks.push_back(Shadow);
|
|
} else {
|
|
Shadow = DFS.ZeroShadow;
|
|
}
|
|
}
|
|
return Shadow;
|
|
}
|
|
|
|
void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
|
|
assert(!ValShadowMap.count(I));
|
|
assert(Shadow->getType() == DFS.ShadowTy);
|
|
ValShadowMap[I] = Shadow;
|
|
}
|
|
|
|
Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
|
|
assert(Addr != RetvalTLS && "Reinstrumenting?");
|
|
IRBuilder<> IRB(Pos);
|
|
Value *ShadowPtrMaskValue;
|
|
if (DFSanRuntimeShadowMask)
|
|
ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
|
|
else
|
|
ShadowPtrMaskValue = ShadowPtrMask;
|
|
return IRB.CreateIntToPtr(
|
|
IRB.CreateMul(
|
|
IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
|
|
IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
|
|
ShadowPtrMul),
|
|
ShadowPtrTy);
|
|
}
|
|
|
|
// Generates IR to compute the union of the two given shadows, inserting it
|
|
// before Pos. Returns the computed union Value.
|
|
Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
|
|
if (V1 == DFS.ZeroShadow)
|
|
return V2;
|
|
if (V2 == DFS.ZeroShadow)
|
|
return V1;
|
|
if (V1 == V2)
|
|
return V1;
|
|
|
|
auto V1Elems = ShadowElements.find(V1);
|
|
auto V2Elems = ShadowElements.find(V2);
|
|
if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
|
|
if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
|
|
V2Elems->second.begin(), V2Elems->second.end())) {
|
|
return V1;
|
|
} else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
|
|
V1Elems->second.begin(), V1Elems->second.end())) {
|
|
return V2;
|
|
}
|
|
} else if (V1Elems != ShadowElements.end()) {
|
|
if (V1Elems->second.count(V2))
|
|
return V1;
|
|
} else if (V2Elems != ShadowElements.end()) {
|
|
if (V2Elems->second.count(V1))
|
|
return V2;
|
|
}
|
|
|
|
auto Key = std::make_pair(V1, V2);
|
|
if (V1 > V2)
|
|
std::swap(Key.first, Key.second);
|
|
CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
|
|
if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
|
|
return CCS.Shadow;
|
|
|
|
IRBuilder<> IRB(Pos);
|
|
if (AvoidNewBlocks) {
|
|
CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
|
|
Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
|
|
Call->addAttribute(1, Attribute::ZExt);
|
|
Call->addAttribute(2, Attribute::ZExt);
|
|
|
|
CCS.Block = Pos->getParent();
|
|
CCS.Shadow = Call;
|
|
} else {
|
|
BasicBlock *Head = Pos->getParent();
|
|
Value *Ne = IRB.CreateICmpNE(V1, V2);
|
|
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
|
|
Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
|
|
IRBuilder<> ThenIRB(BI);
|
|
CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
|
|
Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
|
|
Call->addAttribute(1, Attribute::ZExt);
|
|
Call->addAttribute(2, Attribute::ZExt);
|
|
|
|
BasicBlock *Tail = BI->getSuccessor(0);
|
|
PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
|
|
Phi->addIncoming(Call, Call->getParent());
|
|
Phi->addIncoming(V1, Head);
|
|
|
|
CCS.Block = Tail;
|
|
CCS.Shadow = Phi;
|
|
}
|
|
|
|
std::set<Value *> UnionElems;
|
|
if (V1Elems != ShadowElements.end()) {
|
|
UnionElems = V1Elems->second;
|
|
} else {
|
|
UnionElems.insert(V1);
|
|
}
|
|
if (V2Elems != ShadowElements.end()) {
|
|
UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
|
|
} else {
|
|
UnionElems.insert(V2);
|
|
}
|
|
ShadowElements[CCS.Shadow] = std::move(UnionElems);
|
|
|
|
return CCS.Shadow;
|
|
}
|
|
|
|
// A convenience function which folds the shadows of each of the operands
|
|
// of the provided instruction Inst, inserting the IR before Inst. Returns
|
|
// the computed union Value.
|
|
Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
|
|
if (Inst->getNumOperands() == 0)
|
|
return DFS.ZeroShadow;
|
|
|
|
Value *Shadow = getShadow(Inst->getOperand(0));
|
|
for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
|
|
Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
|
|
}
|
|
return Shadow;
|
|
}
|
|
|
|
void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
|
|
Value *CombinedShadow = DFSF.combineOperandShadows(&I);
|
|
DFSF.setShadow(&I, CombinedShadow);
|
|
}
|
|
|
|
// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
|
|
// Addr has alignment Align, and take the union of each of those shadows.
|
|
Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
|
|
Instruction *Pos) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
|
|
llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
|
|
AllocaShadowMap.find(AI);
|
|
if (i != AllocaShadowMap.end()) {
|
|
IRBuilder<> IRB(Pos);
|
|
return IRB.CreateLoad(i->second);
|
|
}
|
|
}
|
|
|
|
uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
|
|
SmallVector<Value *, 2> Objs;
|
|
GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
|
|
bool AllConstants = true;
|
|
for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
|
|
i != e; ++i) {
|
|
if (isa<Function>(*i) || isa<BlockAddress>(*i))
|
|
continue;
|
|
if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant())
|
|
continue;
|
|
|
|
AllConstants = false;
|
|
break;
|
|
}
|
|
if (AllConstants)
|
|
return DFS.ZeroShadow;
|
|
|
|
Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
|
|
switch (Size) {
|
|
case 0:
|
|
return DFS.ZeroShadow;
|
|
case 1: {
|
|
LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
|
|
LI->setAlignment(ShadowAlign);
|
|
return LI;
|
|
}
|
|
case 2: {
|
|
IRBuilder<> IRB(Pos);
|
|
Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
|
|
ConstantInt::get(DFS.IntptrTy, 1));
|
|
return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
|
|
IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
|
|
}
|
|
}
|
|
if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
|
|
// Fast path for the common case where each byte has identical shadow: load
|
|
// shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
|
|
// shadow is non-equal.
|
|
BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
|
|
IRBuilder<> FallbackIRB(FallbackBB);
|
|
CallInst *FallbackCall = FallbackIRB.CreateCall(
|
|
DFS.DFSanUnionLoadFn,
|
|
{ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
|
|
FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
|
|
|
|
// Compare each of the shadows stored in the loaded 64 bits to each other,
|
|
// by computing (WideShadow rotl ShadowWidth) == WideShadow.
|
|
IRBuilder<> IRB(Pos);
|
|
Value *WideAddr =
|
|
IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
|
|
Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
|
|
Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
|
|
Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
|
|
Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
|
|
Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
|
|
Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
|
|
|
|
BasicBlock *Head = Pos->getParent();
|
|
BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
|
|
|
|
if (DomTreeNode *OldNode = DT.getNode(Head)) {
|
|
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
|
|
|
|
DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
|
|
for (auto Child : Children)
|
|
DT.changeImmediateDominator(Child, NewNode);
|
|
}
|
|
|
|
// In the following code LastBr will refer to the previous basic block's
|
|
// conditional branch instruction, whose true successor is fixed up to point
|
|
// to the next block during the loop below or to the tail after the final
|
|
// iteration.
|
|
BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
|
|
ReplaceInstWithInst(Head->getTerminator(), LastBr);
|
|
DT.addNewBlock(FallbackBB, Head);
|
|
|
|
for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
|
|
Ofs += 64 / DFS.ShadowWidth) {
|
|
BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
|
|
DT.addNewBlock(NextBB, LastBr->getParent());
|
|
IRBuilder<> NextIRB(NextBB);
|
|
WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
|
|
ConstantInt::get(DFS.IntptrTy, 1));
|
|
Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
|
|
ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
|
|
LastBr->setSuccessor(0, NextBB);
|
|
LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
|
|
}
|
|
|
|
LastBr->setSuccessor(0, Tail);
|
|
FallbackIRB.CreateBr(Tail);
|
|
PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
|
|
Shadow->addIncoming(FallbackCall, FallbackBB);
|
|
Shadow->addIncoming(TruncShadow, LastBr->getParent());
|
|
return Shadow;
|
|
}
|
|
|
|
IRBuilder<> IRB(Pos);
|
|
CallInst *FallbackCall = IRB.CreateCall(
|
|
DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
|
|
FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
|
|
return FallbackCall;
|
|
}
|
|
|
|
void DFSanVisitor::visitLoadInst(LoadInst &LI) {
|
|
auto &DL = LI.getModule()->getDataLayout();
|
|
uint64_t Size = DL.getTypeStoreSize(LI.getType());
|
|
if (Size == 0) {
|
|
DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
|
|
return;
|
|
}
|
|
|
|
uint64_t Align;
|
|
if (ClPreserveAlignment) {
|
|
Align = LI.getAlignment();
|
|
if (Align == 0)
|
|
Align = DL.getABITypeAlignment(LI.getType());
|
|
} else {
|
|
Align = 1;
|
|
}
|
|
IRBuilder<> IRB(&LI);
|
|
Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
|
|
if (ClCombinePointerLabelsOnLoad) {
|
|
Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
|
|
Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
|
|
}
|
|
if (Shadow != DFSF.DFS.ZeroShadow)
|
|
DFSF.NonZeroChecks.push_back(Shadow);
|
|
|
|
DFSF.setShadow(&LI, Shadow);
|
|
}
|
|
|
|
void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
|
|
Value *Shadow, Instruction *Pos) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
|
|
llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
|
|
AllocaShadowMap.find(AI);
|
|
if (i != AllocaShadowMap.end()) {
|
|
IRBuilder<> IRB(Pos);
|
|
IRB.CreateStore(Shadow, i->second);
|
|
return;
|
|
}
|
|
}
|
|
|
|
uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
|
|
IRBuilder<> IRB(Pos);
|
|
Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
|
|
if (Shadow == DFS.ZeroShadow) {
|
|
IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
|
|
Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
|
|
Value *ExtShadowAddr =
|
|
IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
|
|
IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
|
|
return;
|
|
}
|
|
|
|
const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
|
|
uint64_t Offset = 0;
|
|
if (Size >= ShadowVecSize) {
|
|
VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
|
|
Value *ShadowVec = UndefValue::get(ShadowVecTy);
|
|
for (unsigned i = 0; i != ShadowVecSize; ++i) {
|
|
ShadowVec = IRB.CreateInsertElement(
|
|
ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
|
|
}
|
|
Value *ShadowVecAddr =
|
|
IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
|
|
do {
|
|
Value *CurShadowVecAddr =
|
|
IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
|
|
IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
|
|
Size -= ShadowVecSize;
|
|
++Offset;
|
|
} while (Size >= ShadowVecSize);
|
|
Offset *= ShadowVecSize;
|
|
}
|
|
while (Size > 0) {
|
|
Value *CurShadowAddr =
|
|
IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
|
|
IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
|
|
--Size;
|
|
++Offset;
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitStoreInst(StoreInst &SI) {
|
|
auto &DL = SI.getModule()->getDataLayout();
|
|
uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
|
|
if (Size == 0)
|
|
return;
|
|
|
|
uint64_t Align;
|
|
if (ClPreserveAlignment) {
|
|
Align = SI.getAlignment();
|
|
if (Align == 0)
|
|
Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
|
|
} else {
|
|
Align = 1;
|
|
}
|
|
|
|
Value* Shadow = DFSF.getShadow(SI.getValueOperand());
|
|
if (ClCombinePointerLabelsOnStore) {
|
|
Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
|
|
Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
|
|
}
|
|
DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
|
|
}
|
|
|
|
void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
|
|
visitOperandShadowInst(BO);
|
|
}
|
|
|
|
void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
|
|
|
|
void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
|
|
|
|
void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
|
|
visitOperandShadowInst(GEPI);
|
|
}
|
|
|
|
void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
|
|
visitOperandShadowInst(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
|
|
visitOperandShadowInst(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
|
|
visitOperandShadowInst(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
|
|
visitOperandShadowInst(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
|
|
visitOperandShadowInst(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
|
|
bool AllLoadsStores = true;
|
|
for (User *U : I.users()) {
|
|
if (isa<LoadInst>(U))
|
|
continue;
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
if (SI->getPointerOperand() == &I)
|
|
continue;
|
|
}
|
|
|
|
AllLoadsStores = false;
|
|
break;
|
|
}
|
|
if (AllLoadsStores) {
|
|
IRBuilder<> IRB(&I);
|
|
DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
|
|
}
|
|
DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
|
|
}
|
|
|
|
void DFSanVisitor::visitSelectInst(SelectInst &I) {
|
|
Value *CondShadow = DFSF.getShadow(I.getCondition());
|
|
Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
|
|
Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
|
|
|
|
if (isa<VectorType>(I.getCondition()->getType())) {
|
|
DFSF.setShadow(
|
|
&I,
|
|
DFSF.combineShadows(
|
|
CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
|
|
} else {
|
|
Value *ShadowSel;
|
|
if (TrueShadow == FalseShadow) {
|
|
ShadowSel = TrueShadow;
|
|
} else {
|
|
ShadowSel =
|
|
SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
|
|
}
|
|
DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *ValShadow = DFSF.getShadow(I.getValue());
|
|
IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
|
|
{ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
|
|
*DFSF.DFS.Ctx)),
|
|
IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
|
|
}
|
|
|
|
void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
|
|
Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
|
|
Value *LenShadow = IRB.CreateMul(
|
|
I.getLength(),
|
|
ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
|
|
Value *AlignShadow;
|
|
if (ClPreserveAlignment) {
|
|
AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
|
|
ConstantInt::get(I.getAlignmentCst()->getType(),
|
|
DFSF.DFS.ShadowWidth / 8));
|
|
} else {
|
|
AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
|
|
DFSF.DFS.ShadowWidth / 8);
|
|
}
|
|
Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
|
|
DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
|
|
SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
|
|
IRB.CreateCall(I.getCalledValue(), {DestShadow, SrcShadow, LenShadow,
|
|
AlignShadow, I.getVolatileCst()});
|
|
}
|
|
|
|
void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
|
|
if (!DFSF.IsNativeABI && RI.getReturnValue()) {
|
|
switch (DFSF.IA) {
|
|
case DataFlowSanitizer::IA_TLS: {
|
|
Value *S = DFSF.getShadow(RI.getReturnValue());
|
|
IRBuilder<> IRB(&RI);
|
|
IRB.CreateStore(S, DFSF.getRetvalTLS());
|
|
break;
|
|
}
|
|
case DataFlowSanitizer::IA_Args: {
|
|
IRBuilder<> IRB(&RI);
|
|
Type *RT = DFSF.F->getFunctionType()->getReturnType();
|
|
Value *InsVal =
|
|
IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
|
|
Value *InsShadow =
|
|
IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
|
|
RI.setOperand(0, InsShadow);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitCallSite(CallSite CS) {
|
|
Function *F = CS.getCalledFunction();
|
|
if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
|
|
visitOperandShadowInst(*CS.getInstruction());
|
|
return;
|
|
}
|
|
|
|
// Calls to this function are synthesized in wrappers, and we shouldn't
|
|
// instrument them.
|
|
if (F == DFSF.DFS.DFSanVarargWrapperFn)
|
|
return;
|
|
|
|
IRBuilder<> IRB(CS.getInstruction());
|
|
|
|
DenseMap<Value *, Function *>::iterator i =
|
|
DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
|
|
if (i != DFSF.DFS.UnwrappedFnMap.end()) {
|
|
Function *F = i->second;
|
|
switch (DFSF.DFS.getWrapperKind(F)) {
|
|
case DataFlowSanitizer::WK_Warning: {
|
|
CS.setCalledFunction(F);
|
|
IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
|
|
IRB.CreateGlobalStringPtr(F->getName()));
|
|
DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
|
|
return;
|
|
}
|
|
case DataFlowSanitizer::WK_Discard: {
|
|
CS.setCalledFunction(F);
|
|
DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
|
|
return;
|
|
}
|
|
case DataFlowSanitizer::WK_Functional: {
|
|
CS.setCalledFunction(F);
|
|
visitOperandShadowInst(*CS.getInstruction());
|
|
return;
|
|
}
|
|
case DataFlowSanitizer::WK_Custom: {
|
|
// Don't try to handle invokes of custom functions, it's too complicated.
|
|
// Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
|
|
// wrapper.
|
|
if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
|
|
FunctionType *FT = F->getFunctionType();
|
|
FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
|
|
std::string CustomFName = "__dfsw_";
|
|
CustomFName += F->getName();
|
|
Constant *CustomF =
|
|
DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
|
|
if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
|
|
CustomFn->copyAttributesFrom(F);
|
|
|
|
// Custom functions returning non-void will write to the return label.
|
|
if (!FT->getReturnType()->isVoidTy()) {
|
|
CustomFn->removeAttributes(AttributeSet::FunctionIndex,
|
|
DFSF.DFS.ReadOnlyNoneAttrs);
|
|
}
|
|
}
|
|
|
|
std::vector<Value *> Args;
|
|
|
|
CallSite::arg_iterator i = CS.arg_begin();
|
|
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
|
|
Type *T = (*i)->getType();
|
|
FunctionType *ParamFT;
|
|
if (isa<PointerType>(T) &&
|
|
(ParamFT = dyn_cast<FunctionType>(
|
|
cast<PointerType>(T)->getElementType()))) {
|
|
std::string TName = "dfst";
|
|
TName += utostr(FT->getNumParams() - n);
|
|
TName += "$";
|
|
TName += F->getName();
|
|
Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
|
|
Args.push_back(T);
|
|
Args.push_back(
|
|
IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
|
|
} else {
|
|
Args.push_back(*i);
|
|
}
|
|
}
|
|
|
|
i = CS.arg_begin();
|
|
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
|
|
Args.push_back(DFSF.getShadow(*i));
|
|
|
|
if (FT->isVarArg()) {
|
|
auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
|
|
CS.arg_size() - FT->getNumParams());
|
|
auto *LabelVAAlloca = new AllocaInst(
|
|
LabelVATy, "labelva", &DFSF.F->getEntryBlock().front());
|
|
|
|
for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
|
|
auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
|
|
IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
|
|
}
|
|
|
|
Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
|
|
}
|
|
|
|
if (!FT->getReturnType()->isVoidTy()) {
|
|
if (!DFSF.LabelReturnAlloca) {
|
|
DFSF.LabelReturnAlloca =
|
|
new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
|
|
&DFSF.F->getEntryBlock().front());
|
|
}
|
|
Args.push_back(DFSF.LabelReturnAlloca);
|
|
}
|
|
|
|
for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
|
|
Args.push_back(*i);
|
|
|
|
CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
|
|
CustomCI->setCallingConv(CI->getCallingConv());
|
|
CustomCI->setAttributes(CI->getAttributes());
|
|
|
|
if (!FT->getReturnType()->isVoidTy()) {
|
|
LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
|
|
DFSF.setShadow(CustomCI, LabelLoad);
|
|
}
|
|
|
|
CI->replaceAllUsesWith(CustomCI);
|
|
CI->eraseFromParent();
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionType *FT = cast<FunctionType>(
|
|
CS.getCalledValue()->getType()->getPointerElementType());
|
|
if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
|
|
for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
|
|
IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
|
|
DFSF.getArgTLS(i, CS.getInstruction()));
|
|
}
|
|
}
|
|
|
|
Instruction *Next = nullptr;
|
|
if (!CS.getType()->isVoidTy()) {
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
|
|
if (II->getNormalDest()->getSinglePredecessor()) {
|
|
Next = &II->getNormalDest()->front();
|
|
} else {
|
|
BasicBlock *NewBB =
|
|
SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
|
|
Next = &NewBB->front();
|
|
}
|
|
} else {
|
|
assert(CS->getIterator() != CS->getParent()->end());
|
|
Next = CS->getNextNode();
|
|
}
|
|
|
|
if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
|
|
IRBuilder<> NextIRB(Next);
|
|
LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
|
|
DFSF.SkipInsts.insert(LI);
|
|
DFSF.setShadow(CS.getInstruction(), LI);
|
|
DFSF.NonZeroChecks.push_back(LI);
|
|
}
|
|
}
|
|
|
|
// Do all instrumentation for IA_Args down here to defer tampering with the
|
|
// CFG in a way that SplitEdge may be able to detect.
|
|
if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
|
|
FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
|
|
Value *Func =
|
|
IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
|
|
std::vector<Value *> Args;
|
|
|
|
CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
|
|
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
|
|
Args.push_back(*i);
|
|
|
|
i = CS.arg_begin();
|
|
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
|
|
Args.push_back(DFSF.getShadow(*i));
|
|
|
|
if (FT->isVarArg()) {
|
|
unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
|
|
ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
|
|
AllocaInst *VarArgShadow =
|
|
new AllocaInst(VarArgArrayTy, "", &DFSF.F->getEntryBlock().front());
|
|
Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
|
|
for (unsigned n = 0; i != e; ++i, ++n) {
|
|
IRB.CreateStore(
|
|
DFSF.getShadow(*i),
|
|
IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
|
|
Args.push_back(*i);
|
|
}
|
|
}
|
|
|
|
CallSite NewCS;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
|
|
NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
|
|
Args);
|
|
} else {
|
|
NewCS = IRB.CreateCall(Func, Args);
|
|
}
|
|
NewCS.setCallingConv(CS.getCallingConv());
|
|
NewCS.setAttributes(CS.getAttributes().removeAttributes(
|
|
*DFSF.DFS.Ctx, AttributeSet::ReturnIndex,
|
|
AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType())));
|
|
|
|
if (Next) {
|
|
ExtractValueInst *ExVal =
|
|
ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
|
|
DFSF.SkipInsts.insert(ExVal);
|
|
ExtractValueInst *ExShadow =
|
|
ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
|
|
DFSF.SkipInsts.insert(ExShadow);
|
|
DFSF.setShadow(ExVal, ExShadow);
|
|
DFSF.NonZeroChecks.push_back(ExShadow);
|
|
|
|
CS.getInstruction()->replaceAllUsesWith(ExVal);
|
|
}
|
|
|
|
CS.getInstruction()->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitPHINode(PHINode &PN) {
|
|
PHINode *ShadowPN =
|
|
PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
|
|
|
|
// Give the shadow phi node valid predecessors to fool SplitEdge into working.
|
|
Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
|
|
for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
|
|
++i) {
|
|
ShadowPN->addIncoming(UndefShadow, *i);
|
|
}
|
|
|
|
DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
|
|
DFSF.setShadow(&PN, ShadowPN);
|
|
}
|