llvm-project/llvm/lib/Target/SparcV8/SparcV8ISelSimple.cpp

1808 lines
71 KiB
C++

//===-- InstSelectSimple.cpp - A simple instruction selector for SparcV8 --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a simple peephole instruction selector for the V8 target
//
//===----------------------------------------------------------------------===//
#include "SparcV8.h"
#include "SparcV8InstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
namespace {
struct V8ISel : public FunctionPass, public InstVisitor<V8ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
int VarArgsOffset; // Offset from fp for start of varargs area
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
// MBBMap - Mapping between LLVM BB -> Machine BB
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
V8ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn);
virtual const char *getPassName() const {
return "SparcV8 Simple Instruction Selection";
}
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg);
/// emitCastOperation - Common code shared between visitCastInst and
/// constant expression cast support.
///
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Value *Src, const Type *DestTy, unsigned TargetReg);
/// emitIntegerCast, emitFPToIntegerCast - Helper methods for
/// emitCastOperation.
///
unsigned emitIntegerCast (MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
const Type *oldTy, unsigned SrcReg,
const Type *newTy, unsigned DestReg,
bool castToLong = false);
void emitFPToIntegerCast (MachineBasicBlock *BB,
MachineBasicBlock::iterator IP, const Type *oldTy,
unsigned SrcReg, const Type *newTy,
unsigned DestReg);
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = MBBMap[&LLVM_BB];
}
void emitOp64LibraryCall (MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, const char *FuncName,
unsigned Op0Reg, unsigned Op1Reg);
void emitShift64 (MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
Instruction &I, unsigned DestReg, unsigned Op0Reg,
unsigned Op1Reg);
void visitBinaryOperator(Instruction &I);
void visitShiftInst (ShiftInst &SI) { visitBinaryOperator (SI); }
void visitSetCondInst(SetCondInst &I);
void visitCallInst(CallInst &I);
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitUnreachableInst(UnreachableInst &I) {}
void visitCastInst(CastInst &I);
void visitVANextInst(VANextInst &I);
void visitVAArgInst(VAArgInst &I);
void visitLoadInst(LoadInst &I);
void visitStoreInst(StoreInst &I);
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitAllocaInst(AllocaInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "Unhandled instruction: " << I;
abort();
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
void LowerUnknownIntrinsicFunctionCalls(Function &F);
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI);
void LoadArgumentsToVirtualRegs(Function *F);
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks,
/// not the current one.
///
void SelectPHINodes();
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R);
/// makeAnotherReg - This method returns the next register number we haven't
/// yet used.
///
/// Long values are handled somewhat specially. They are always allocated
/// as pairs of 32 bit integer values. The register number returned is the
/// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
/// of the long value.
///
unsigned makeAnotherReg(const Type *Ty) {
assert(dynamic_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo()) &&
"Current target doesn't have SparcV8 reg info??");
const SparcV8RegisterInfo *MRI =
static_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo());
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
// Create the lower part
F->getSSARegMap()->createVirtualRegister(RC);
// Create the upper part.
return F->getSSARegMap()->createVirtualRegister(RC)-1;
}
// Add the mapping of regnumber => reg class to MachineFunction
const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
return F->getSSARegMap()->createVirtualRegister(RC);
}
unsigned getReg(Value &V) { return getReg (&V); } // allow refs.
unsigned getReg(Value *V) {
// Just append to the end of the current bb.
MachineBasicBlock::iterator It = BB->end();
return getReg(V, BB, It);
}
unsigned getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt) {
unsigned &Reg = RegMap[V];
if (Reg == 0) {
Reg = makeAnotherReg(V->getType());
RegMap[V] = Reg;
}
// If this operand is a constant, emit the code to copy the constant into
// the register here...
//
if (Constant *C = dyn_cast<Constant>(V)) {
copyConstantToRegister(MBB, IPt, C, Reg);
RegMap.erase(V); // Assign a new name to this constant if ref'd again
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Move the address of the global into the register
unsigned TmpReg = makeAnotherReg(V->getType());
BuildMI (*MBB, IPt, V8::SETHIi, 1, TmpReg).addGlobalAddress (GV);
BuildMI (*MBB, IPt, V8::ORri, 2, Reg).addReg (TmpReg)
.addGlobalAddress (GV);
RegMap.erase(V); // Assign a new name to this address if ref'd again
}
return Reg;
}
};
}
FunctionPass *llvm::createSparcV8SimpleInstructionSelector(TargetMachine &TM) {
return new V8ISel(TM);
}
enum TypeClass {
cByte, cShort, cInt, cLong, cFloat, cDouble
};
static TypeClass getClass (const Type *T) {
switch (T->getTypeID()) {
case Type::UByteTyID: case Type::SByteTyID: return cByte;
case Type::UShortTyID: case Type::ShortTyID: return cShort;
case Type::PointerTyID:
case Type::UIntTyID: case Type::IntTyID: return cInt;
case Type::ULongTyID: case Type::LongTyID: return cLong;
case Type::FloatTyID: return cFloat;
case Type::DoubleTyID: return cDouble;
default:
assert (0 && "Type of unknown class passed to getClass?");
return cByte;
}
}
static TypeClass getClassB(const Type *T) {
if (T == Type::BoolTy) return cByte;
return getClass(T);
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void V8ISel::copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr:
emitGEPOperation(MBB, IP, CE->getOperand(0),
CE->op_begin()+1, CE->op_end(), R);
return;
case Instruction::Cast:
emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
return;
default:
std::cerr << "Copying this constant expr not yet handled: " << *CE;
abort();
}
} else if (isa<UndefValue>(C)) {
BuildMI(*MBB, IP, V8::IMPLICIT_DEF, 0, R);
if (getClassB (C->getType ()) == cLong)
BuildMI(*MBB, IP, V8::IMPLICIT_DEF, 0, R+1);
return;
}
if (C->getType()->isIntegral ()) {
unsigned Class = getClassB (C->getType ());
if (Class == cLong) {
unsigned TmpReg = makeAnotherReg (Type::IntTy);
unsigned TmpReg2 = makeAnotherReg (Type::IntTy);
// Copy the value into the register pair.
// R = top(more-significant) half, R+1 = bottom(less-significant) half
uint64_t Val = cast<ConstantInt>(C)->getRawValue();
copyConstantToRegister(MBB, IP, ConstantUInt::get(Type::UIntTy,
Val >> 32), R);
copyConstantToRegister(MBB, IP, ConstantUInt::get(Type::UIntTy,
Val & 0xffffffffU), R+1);
return;
}
assert(Class <= cInt && "Type not handled yet!");
unsigned Val;
if (C->getType() == Type::BoolTy) {
Val = (C == ConstantBool::True);
} else {
ConstantIntegral *CI = cast<ConstantIntegral> (C);
Val = CI->getRawValue();
}
if (C->getType()->isSigned()) {
switch (Class) {
case cByte: Val = (int8_t) Val; break;
case cShort: Val = (int16_t) Val; break;
case cInt: Val = (int32_t) Val; break;
}
} else {
switch (Class) {
case cByte: Val = (uint8_t) Val; break;
case cShort: Val = (uint16_t) Val; break;
case cInt: Val = (uint32_t) Val; break;
}
}
if (Val == 0) {
BuildMI (*MBB, IP, V8::ORrr, 2, R).addReg (V8::G0).addReg(V8::G0);
} else if ((int)Val >= -4096 && (int)Val <= 4095) {
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addSImm(Val);
} else {
unsigned TmpReg = makeAnotherReg (C->getType ());
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg)
.addSImm (((uint32_t) Val) >> 10);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg)
.addSImm (((uint32_t) Val) & 0x03ff);
return;
}
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
// We need to spill the constant to memory...
MachineConstantPool *CP = F->getConstantPool();
unsigned CPI = CP->getConstantPoolIndex(CFP);
const Type *Ty = CFP->getType();
unsigned TmpReg = makeAnotherReg (Type::UIntTy);
unsigned AddrReg = makeAnotherReg (Type::UIntTy);
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
unsigned LoadOpcode = Ty == Type::FloatTy ? V8::LDFri : V8::LDDFri;
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addConstantPoolIndex (CPI);
BuildMI (*MBB, IP, V8::ORri, 2, AddrReg).addReg (TmpReg)
.addConstantPoolIndex (CPI);
BuildMI (*MBB, IP, LoadOpcode, 2, R).addReg (AddrReg).addSImm (0);
} else if (isa<ConstantPointerNull>(C)) {
// Copy zero (null pointer) to the register.
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addSImm (0);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
// Copy it with a SETHI/OR pair; the JIT + asmwriter should recognize
// that SETHI %reg,global == SETHI %reg,%hi(global) and
// OR %reg,global,%reg == OR %reg,%lo(global),%reg.
unsigned TmpReg = makeAnotherReg (C->getType ());
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addGlobalAddress(GV);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg(TmpReg).addGlobalAddress(GV);
} else {
std::cerr << "Offending constant: " << *C << "\n";
assert (0 && "Can't copy this kind of constant into register yet");
}
}
void V8ISel::LoadArgumentsToVirtualRegs (Function *LF) {
static const unsigned IncomingArgRegs[] = { V8::I0, V8::I1, V8::I2,
V8::I3, V8::I4, V8::I5 };
// Add IMPLICIT_DEFs of input regs.
unsigned ArgNo = 0;
for (Function::arg_iterator I = LF->arg_begin(), E = LF->arg_end();
I != E && ArgNo < 6; ++I, ++ArgNo) {
switch (getClassB(I->getType())) {
case cByte:
case cShort:
case cInt:
case cFloat:
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]);
break;
case cDouble:
case cLong:
// Double and Long use register pairs.
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]);
++ArgNo;
if (ArgNo < 6)
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]);
break;
default:
assert (0 && "type not handled");
return;
}
}
const unsigned *IAREnd = &IncomingArgRegs[6];
const unsigned *IAR = &IncomingArgRegs[0];
unsigned ArgOffset = 68;
// Store registers onto stack if this is a varargs function.
// FIXME: This doesn't really pertain to "loading arguments into
// virtual registers", so it's not clear that it really belongs here.
// FIXME: We could avoid storing any args onto the stack that don't
// need to be in memory, because they come before the ellipsis in the
// parameter list (and thus could never be accessed through va_arg).
if (LF->getFunctionType ()->isVarArg ()) {
for (unsigned i = 0; i < 6; ++i) {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (*IAR++);
ArgOffset += 4;
}
// Reset the pointers now that we're done.
ArgOffset = 68;
IAR = &IncomingArgRegs[0];
}
// Copy args out of their incoming hard regs or stack slots into virtual regs.
for (Function::arg_iterator I = LF->arg_begin(), E = LF->arg_end(); I != E; ++I) {
Argument &A = *I;
unsigned ArgReg = getReg (A);
if (getClassB (A.getType ()) < cLong) {
// Get it out of the incoming arg register
if (ArgOffset < 92) {
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ORrr, 2, ArgReg).addReg (V8::G0).addReg (*IAR++);
} else {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
BuildMI (BB, V8::LD, 3, ArgReg).addFrameIndex (FI).addSImm (0);
}
ArgOffset += 4;
} else if (getClassB (A.getType ()) == cFloat) {
if (ArgOffset < 92) {
// Single-fp args are passed in integer registers; go through
// memory to get them out of integer registers and back into fp. (Bleh!)
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (*IAR++);
BuildMI (BB, V8::LDFri, 2, ArgReg).addFrameIndex (FI).addSImm (0);
} else {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
BuildMI (BB, V8::LDFri, 3, ArgReg).addFrameIndex (FI).addSImm (0);
}
ArgOffset += 4;
} else if (getClassB (A.getType ()) == cDouble) {
// Double-fp args are passed in pairs of integer registers; go through
// memory to get them out of integer registers and back into fp. (Bleh!)
// We'd like to 'ldd' these right out of the incoming-args area,
// but it might not be 8-byte aligned (e.g., call x(int x, double d)).
unsigned DblAlign = TM.getTargetData().getDoubleAlignment();
int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign);
if (ArgOffset < 92 && IAR != IAREnd) {
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (*IAR++);
} else {
unsigned TempReg = makeAnotherReg (Type::IntTy);
BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (0);
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (TempReg);
}
ArgOffset += 4;
if (ArgOffset < 92 && IAR != IAREnd) {
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (4).addReg (*IAR++);
} else {
unsigned TempReg = makeAnotherReg (Type::IntTy);
BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (4);
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (4).addReg (TempReg);
}
ArgOffset += 4;
BuildMI (BB, V8::LDDFri, 2, ArgReg).addFrameIndex (FI).addSImm (0);
} else if (getClassB (A.getType ()) == cLong) {
// do the first half...
if (ArgOffset < 92) {
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ORrr, 2, ArgReg).addReg (V8::G0).addReg (*IAR++);
} else {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
BuildMI (BB, V8::LD, 2, ArgReg).addFrameIndex (FI).addSImm (0);
}
ArgOffset += 4;
// ...then do the second half
if (ArgOffset < 92) {
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ORrr, 2, ArgReg+1).addReg (V8::G0).addReg (*IAR++);
} else {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
BuildMI (BB, V8::LD, 2, ArgReg+1).addFrameIndex (FI).addSImm (0);
}
ArgOffset += 4;
} else {
assert (0 && "Unknown class?!");
}
}
// If the function takes variable number of arguments, remember the fp
// offset for the start of the first vararg value... this is used to expand
// llvm.va_start.
if (LF->getFunctionType ()->isVarArg ())
VarArgsOffset = ArgOffset;
}
void V8ISel::SelectPHINodes() {
const TargetInstrInfo &TII = *TM.getInstrInfo();
const Function &LF = *F->getFunction(); // The LLVM function...
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
const BasicBlock *BB = I;
MachineBasicBlock &MBB = *MBBMap[I];
// Loop over all of the PHI nodes in the LLVM basic block...
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
for (BasicBlock::const_iterator I = BB->begin();
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
// Create a new machine instr PHI node, and insert it.
unsigned PHIReg = getReg(*PN);
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
V8::PHI, PN->getNumOperands(), PHIReg);
MachineInstr *LongPhiMI = 0;
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
V8::PHI, PN->getNumOperands(), PHIReg+1);
// PHIValues - Map of blocks to incoming virtual registers. We use this
// so that we only initialize one incoming value for a particular block,
// even if the block has multiple entries in the PHI node.
//
std::map<MachineBasicBlock*, unsigned> PHIValues;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
MachineBasicBlock *PredMBB = 0;
for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
PE = MBB.pred_end (); PI != PE; ++PI)
if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
PredMBB = *PI;
break;
}
assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
unsigned ValReg;
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
PHIValues.lower_bound(PredMBB);
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
// We already inserted an initialization of the register for this
// predecessor. Recycle it.
ValReg = EntryIt->second;
} else {
// Get the incoming value into a virtual register.
//
Value *Val = PN->getIncomingValue(i);
// If this is a constant or GlobalValue, we may have to insert code
// into the basic block to compute it into a virtual register.
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
isa<GlobalValue>(Val)) {
// Simple constants get emitted at the end of the basic block,
// before any terminator instructions. We "know" that the code to
// move a constant into a register will never clobber any flags.
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
} else {
// Because we don't want to clobber any values which might be in
// physical registers with the computation of this constant (which
// might be arbitrarily complex if it is a constant expression),
// just insert the computation at the top of the basic block.
MachineBasicBlock::iterator PI = PredMBB->begin();
// Skip over any PHI nodes though!
while (PI != PredMBB->end() && PI->getOpcode() == V8::PHI)
++PI;
ValReg = getReg(Val, PredMBB, PI);
}
// Remember that we inserted a value for this PHI for this predecessor
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
}
PhiMI->addRegOperand(ValReg);
PhiMI->addMachineBasicBlockOperand(PredMBB);
if (LongPhiMI) {
LongPhiMI->addRegOperand(ValReg+1);
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
}
}
// Now that we emitted all of the incoming values for the PHI node, make
// sure to reposition the InsertPoint after the PHI that we just added.
// This is needed because we might have inserted a constant into this
// block, right after the PHI's which is before the old insert point!
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
++PHIInsertPoint;
}
}
}
bool V8ISel::runOnFunction(Function &Fn) {
// First pass over the function, lower any unknown intrinsic functions
// with the IntrinsicLowering class.
LowerUnknownIntrinsicFunctionCalls(Fn);
F = &MachineFunction::construct(&Fn, TM);
// Create all of the machine basic blocks for the function...
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
BB = &F->front();
// Set up a frame object for the return address. This is used by the
// llvm.returnaddress & llvm.frameaddress intrinisics.
//ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
// Copy incoming arguments off of the stack and out of fixed registers.
LoadArgumentsToVirtualRegs(&Fn);
// Instruction select everything except PHI nodes
visit(Fn);
// Select the PHI nodes
SelectPHINodes();
RegMap.clear();
MBBMap.clear();
F = 0;
// We always build a machine code representation for the function
return true;
}
void V8ISel::visitCastInst(CastInst &I) {
Value *Op = I.getOperand(0);
unsigned DestReg = getReg(I);
MachineBasicBlock::iterator MI = BB->end();
emitCastOperation(BB, MI, Op, I.getType(), DestReg);
}
unsigned V8ISel::emitIntegerCast (MachineBasicBlock *BB,
MachineBasicBlock::iterator IP, const Type *oldTy,
unsigned SrcReg, const Type *newTy,
unsigned DestReg, bool castToLong) {
unsigned shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (newTy));
if (oldTy == newTy || (!castToLong && shiftWidth == 0)) {
// No-op cast - just emit a copy; assume the reg. allocator will zap it.
BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg(SrcReg);
return SrcReg;
}
// Emit left-shift, then right-shift to sign- or zero-extend.
unsigned TmpReg = makeAnotherReg (newTy);
BuildMI (*BB, IP, V8::SLLri, 2, TmpReg).addZImm (shiftWidth).addReg(SrcReg);
if (newTy->isSigned ()) { // sign-extend with SRA
BuildMI(*BB, IP, V8::SRAri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg);
} else { // zero-extend with SRL
BuildMI(*BB, IP, V8::SRLri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg);
}
// Return the temp reg. in case this is one half of a cast to long.
return TmpReg;
}
void V8ISel::emitFPToIntegerCast (MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
const Type *oldTy, unsigned SrcReg,
const Type *newTy, unsigned DestReg) {
unsigned FPCastOpcode, FPStoreOpcode, FPSize, FPAlign;
unsigned oldTyClass = getClassB(oldTy);
if (oldTyClass == cFloat) {
FPCastOpcode = V8::FSTOI; FPStoreOpcode = V8::STFri; FPSize = 4;
FPAlign = TM.getTargetData().getFloatAlignment();
} else { // it's a double
FPCastOpcode = V8::FDTOI; FPStoreOpcode = V8::STDFri; FPSize = 8;
FPAlign = TM.getTargetData().getDoubleAlignment();
}
unsigned TempReg = makeAnotherReg (oldTy);
BuildMI (*BB, IP, FPCastOpcode, 1, TempReg).addReg (SrcReg);
int FI = F->getFrameInfo()->CreateStackObject(FPSize, FPAlign);
BuildMI (*BB, IP, FPStoreOpcode, 3).addFrameIndex (FI).addSImm (0)
.addReg (TempReg);
unsigned TempReg2 = makeAnotherReg (newTy);
BuildMI (*BB, IP, V8::LD, 3, TempReg2).addFrameIndex (FI).addSImm (0);
emitIntegerCast (BB, IP, Type::IntTy, TempReg2, newTy, DestReg);
}
/// emitCastOperation - Common code shared between visitCastInst and constant
/// expression cast support.
///
void V8ISel::emitCastOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP, Value *Src,
const Type *DestTy, unsigned DestReg) {
const Type *SrcTy = Src->getType();
unsigned SrcClass = getClassB(SrcTy);
unsigned DestClass = getClassB(DestTy);
unsigned SrcReg = getReg(Src, BB, IP);
const Type *oldTy = SrcTy;
const Type *newTy = DestTy;
unsigned oldTyClass = SrcClass;
unsigned newTyClass = DestClass;
if (oldTyClass < cLong && newTyClass < cLong) {
emitIntegerCast (BB, IP, oldTy, SrcReg, newTy, DestReg);
} else switch (newTyClass) {
case cByte:
case cShort:
case cInt:
switch (oldTyClass) {
case cLong:
// Treat it like a cast from the lower half of the value.
emitIntegerCast (BB, IP, Type::IntTy, SrcReg+1, newTy, DestReg);
break;
case cFloat:
case cDouble:
emitFPToIntegerCast (BB, IP, oldTy, SrcReg, newTy, DestReg);
break;
default: goto not_yet;
}
return;
case cFloat:
switch (oldTyClass) {
case cLong: goto not_yet;
case cFloat:
BuildMI (*BB, IP, V8::FMOVS, 1, DestReg).addReg (SrcReg);
break;
case cDouble:
BuildMI (*BB, IP, V8::FDTOS, 1, DestReg).addReg (SrcReg);
break;
default: {
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
// cast integer type to float. Store it to a stack slot and then load
// it using ldf into a floating point register. then do fitos.
unsigned TmpReg = makeAnotherReg (newTy);
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
BuildMI (*BB, IP, V8::ST, 3).addFrameIndex (FI).addSImm (0)
.addReg (SrcReg);
BuildMI (*BB, IP, V8::LDFri, 2, TmpReg).addFrameIndex (FI).addSImm (0);
BuildMI (*BB, IP, V8::FITOS, 1, DestReg).addReg(TmpReg);
break;
}
}
return;
case cDouble:
switch (oldTyClass) {
case cLong: goto not_yet;
case cFloat:
BuildMI (*BB, IP, V8::FSTOD, 1, DestReg).addReg (SrcReg);
break;
case cDouble: // use double move pseudo-instr
BuildMI (*BB, IP, V8::FpMOVD, 1, DestReg).addReg (SrcReg);
break;
default: {
unsigned DoubleAlignment = TM.getTargetData().getDoubleAlignment();
unsigned TmpReg = makeAnotherReg (newTy);
int FI = F->getFrameInfo()->CreateStackObject(8, DoubleAlignment);
BuildMI (*BB, IP, V8::ST, 3).addFrameIndex (FI).addSImm (0)
.addReg (SrcReg);
BuildMI (*BB, IP, V8::LDDFri, 2, TmpReg).addFrameIndex (FI).addSImm (0);
BuildMI (*BB, IP, V8::FITOD, 1, DestReg).addReg(TmpReg);
break;
}
}
return;
case cLong:
switch (oldTyClass) {
case cByte:
case cShort:
case cInt: {
// Cast to (u)int in the bottom half, and sign(zero) extend in the top
// half.
const Type *OldHalfTy = oldTy->isSigned() ? Type::IntTy : Type::UIntTy;
const Type *NewHalfTy = newTy->isSigned() ? Type::IntTy : Type::UIntTy;
unsigned TempReg = emitIntegerCast (BB, IP, OldHalfTy, SrcReg,
NewHalfTy, DestReg+1, true);
if (newTy->isSigned ()) {
BuildMI (*BB, IP, V8::SRAri, 2, DestReg).addReg (TempReg)
.addZImm (31);
} else {
BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0)
.addReg (V8::G0);
}
break;
}
case cLong:
// Just copy both halves.
BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg (SrcReg);
BuildMI (*BB, IP, V8::ORrr, 2, DestReg+1).addReg (V8::G0)
.addReg (SrcReg+1);
break;
default: goto not_yet;
}
return;
default: goto not_yet;
}
return;
not_yet:
std::cerr << "Sorry, cast still unsupported: SrcTy = " << *SrcTy
<< ", DestTy = " << *DestTy << "\n";
abort ();
}
void V8ISel::visitLoadInst(LoadInst &I) {
unsigned DestReg = getReg (I);
unsigned PtrReg = getReg (I.getOperand (0));
switch (getClassB (I.getType ())) {
case cByte:
if (I.getType ()->isSigned ())
BuildMI (BB, V8::LDSB, 2, DestReg).addReg (PtrReg).addSImm(0);
else
BuildMI (BB, V8::LDUB, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cShort:
if (I.getType ()->isSigned ())
BuildMI (BB, V8::LDSH, 2, DestReg).addReg (PtrReg).addSImm(0);
else
BuildMI (BB, V8::LDUH, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cInt:
BuildMI (BB, V8::LD, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cLong:
BuildMI (BB, V8::LD, 2, DestReg).addReg (PtrReg).addSImm(0);
BuildMI (BB, V8::LD, 2, DestReg+1).addReg (PtrReg).addSImm(4);
return;
case cFloat:
BuildMI (BB, V8::LDFri, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cDouble:
BuildMI (BB, V8::LDDFri, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
default:
std::cerr << "Load instruction not handled: " << I;
abort ();
return;
}
}
void V8ISel::visitStoreInst(StoreInst &I) {
Value *SrcVal = I.getOperand (0);
unsigned SrcReg = getReg (SrcVal);
unsigned PtrReg = getReg (I.getOperand (1));
switch (getClassB (SrcVal->getType ())) {
case cByte:
BuildMI (BB, V8::STB, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cShort:
BuildMI (BB, V8::STH, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cInt:
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cLong:
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (4).addReg (SrcReg+1);
return;
case cFloat:
BuildMI (BB, V8::STFri, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cDouble:
BuildMI (BB, V8::STDFri, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
default:
std::cerr << "Store instruction not handled: " << I;
abort ();
return;
}
}
void V8ISel::visitCallInst(CallInst &I) {
MachineInstr *TheCall;
// Is it an intrinsic function call?
if (Function *F = I.getCalledFunction()) {
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
visitIntrinsicCall(ID, I); // Special intrinsics are not handled here
return;
}
}
// How much extra call stack will we need?
int extraStack = 0;
for (unsigned i = 0; i < I.getNumOperands (); ++i) {
switch (getClassB (I.getOperand (i)->getType ())) {
case cLong: extraStack += 8; break;
case cFloat: extraStack += 4; break;
case cDouble: extraStack += 8; break;
default: extraStack += 4; break;
}
}
extraStack -= 24;
if (extraStack < 0) {
extraStack = 0;
} else {
// Round up extra stack size to the nearest doubleword.
extraStack = (extraStack + 7) & ~7;
}
// Deal with args
static const unsigned OutgoingArgRegs[] = { V8::O0, V8::O1, V8::O2, V8::O3,
V8::O4, V8::O5 };
const unsigned *OAREnd = &OutgoingArgRegs[6];
const unsigned *OAR = &OutgoingArgRegs[0];
unsigned ArgOffset = 68;
if (extraStack) BuildMI (BB, V8::ADJCALLSTACKDOWN, 1).addImm (extraStack);
for (unsigned i = 1; i < I.getNumOperands (); ++i) {
unsigned ArgReg = getReg (I.getOperand (i));
if (getClassB (I.getOperand (i)->getType ()) < cLong) {
// Schlep it over into the incoming arg register
if (ArgOffset < 92) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg);
} else {
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg);
}
ArgOffset += 4;
} else if (getClassB (I.getOperand (i)->getType ()) == cFloat) {
if (ArgOffset < 92) {
// Single-fp args are passed in integer registers; go through
// memory to get them out of FP registers. (Bleh!)
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
BuildMI (BB, V8::STFri, 3).addFrameIndex (FI).addSImm (0).addReg (ArgReg);
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (0);
} else {
BuildMI (BB, V8::STFri, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg);
}
ArgOffset += 4;
} else if (getClassB (I.getOperand (i)->getType ()) == cDouble) {
// Double-fp args are passed in pairs of integer registers; go through
// memory to get them out of FP registers. (Bleh!)
// We'd like to 'std' these right onto the outgoing-args area, but it might
// not be 8-byte aligned (e.g., call x(int x, double d)). sigh.
unsigned DblAlign = TM.getTargetData().getDoubleAlignment();
int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign);
BuildMI (BB, V8::STDFri, 3).addFrameIndex (FI).addSImm (0).addReg (ArgReg);
if (ArgOffset < 92 && OAR != OAREnd) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (0);
} else {
unsigned TempReg = makeAnotherReg (Type::IntTy);
BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (0);
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (TempReg);
}
ArgOffset += 4;
if (ArgOffset < 92 && OAR != OAREnd) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (4);
} else {
unsigned TempReg = makeAnotherReg (Type::IntTy);
BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (4);
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (TempReg);
}
ArgOffset += 4;
} else if (getClassB (I.getOperand (i)->getType ()) == cLong) {
// do the first half...
if (ArgOffset < 92) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg);
} else {
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg);
}
ArgOffset += 4;
// ...then do the second half
if (ArgOffset < 92) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg+1);
} else {
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg+1);
}
ArgOffset += 4;
} else {
assert (0 && "Unknown class?!");
}
}
// Emit call instruction
if (Function *F = I.getCalledFunction ()) {
BuildMI (BB, V8::CALL, 1).addGlobalAddress (F, true);
} else { // Emit an indirect call...
unsigned Reg = getReg (I.getCalledValue ());
BuildMI (BB, V8::JMPLrr, 3, V8::O7).addReg (Reg).addReg (V8::G0);
}
if (extraStack) BuildMI (BB, V8::ADJCALLSTACKUP, 1).addImm (extraStack);
// Deal w/ return value: schlep it over into the destination register
if (I.getType () == Type::VoidTy)
return;
unsigned DestReg = getReg (I);
switch (getClassB (I.getType ())) {
case cByte:
case cShort:
case cInt:
BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0);
break;
case cFloat:
BuildMI (BB, V8::FMOVS, 2, DestReg).addReg(V8::F0);
break;
case cDouble:
BuildMI (BB, V8::FpMOVD, 2, DestReg).addReg(V8::D0);
break;
case cLong:
BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0);
BuildMI (BB, V8::ORrr, 2, DestReg+1).addReg(V8::G0).addReg(V8::O1);
break;
default:
std::cerr << "Return type of call instruction not handled: " << I;
abort ();
}
}
void V8ISel::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands () == 1) {
unsigned RetValReg = getReg (I.getOperand (0));
switch (getClassB (I.getOperand (0)->getType ())) {
case cByte:
case cShort:
case cInt:
// Schlep it over into i0 (where it will become o0 after restore).
BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg);
break;
case cFloat:
BuildMI (BB, V8::FMOVS, 1, V8::F0).addReg(RetValReg);
break;
case cDouble:
BuildMI (BB, V8::FpMOVD, 1, V8::D0).addReg(RetValReg);
break;
case cLong:
BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg);
BuildMI (BB, V8::ORrr, 2, V8::I1).addReg(V8::G0).addReg(RetValReg+1);
break;
default:
std::cerr << "Return instruction of this type not handled: " << I;
abort ();
}
}
// Just emit a 'retl' instruction to return.
BuildMI(BB, V8::RETL, 0);
return;
}
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
Function::iterator I = BB; ++I; // Get iterator to next block
return I != BB->getParent()->end() ? &*I : 0;
}
/// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it
/// into the conditional branch which is the only user of the cc instruction.
/// This is the case if the conditional branch is the only user of the setcc.
///
static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
//return 0; // disable.
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
if (SCI->hasOneUse()) {
BranchInst *User = dyn_cast<BranchInst>(SCI->use_back());
if (User
&& (SCI->getNext() == User)
&& (getClassB(SCI->getOperand(0)->getType()) != cLong)
&& User->isConditional() && (User->getCondition() == V))
return SCI;
}
return 0;
}
/// visitBranchInst - Handles conditional and unconditional branches.
///
void V8ISel::visitBranchInst(BranchInst &I) {
BasicBlock *takenSucc = I.getSuccessor (0);
MachineBasicBlock *takenSuccMBB = MBBMap[takenSucc];
BB->addSuccessor (takenSuccMBB);
if (I.isConditional()) { // conditional branch
BasicBlock *notTakenSucc = I.getSuccessor (1);
MachineBasicBlock *notTakenSuccMBB = MBBMap[notTakenSucc];
BB->addSuccessor (notTakenSuccMBB);
// See if we can fold a previous setcc instr into this branch.
SetCondInst *SCI = canFoldSetCCIntoBranch(I.getCondition());
if (SCI == 0) {
// The condition did not come from a setcc which we could fold.
// CondReg=(<condition>);
// If (CondReg==0) goto notTakenSuccMBB;
unsigned CondReg = getReg (I.getCondition ());
BuildMI (BB, V8::CMPri, 2).addSImm (0).addReg (CondReg);
BuildMI (BB, V8::BE, 1).addMBB (notTakenSuccMBB);
BuildMI (BB, V8::BA, 1).addMBB (takenSuccMBB);
return;
}
// Fold the setCC instr into the branch.
unsigned Op0Reg = getReg (SCI->getOperand (0));
unsigned Op1Reg = getReg (SCI->getOperand (1));
const Type *Ty = SCI->getOperand (0)->getType ();
// Compare the two values.
if (getClass (Ty) < cLong) {
BuildMI(BB, V8::SUBCCrr, 2, V8::G0).addReg(Op0Reg).addReg(Op1Reg);
} else if (getClass (Ty) == cLong) {
assert (0 && "Can't fold setcc long/ulong into branch");
} else if (getClass (Ty) == cFloat) {
BuildMI(BB, V8::FCMPS, 2).addReg(Op0Reg).addReg(Op1Reg);
} else if (getClass (Ty) == cDouble) {
BuildMI(BB, V8::FCMPD, 2).addReg(Op0Reg).addReg(Op1Reg);
}
unsigned BranchIdx;
switch (SCI->getOpcode()) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ: BranchIdx = 0; break;
case Instruction::SetNE: BranchIdx = 1; break;
case Instruction::SetLT: BranchIdx = 2; break;
case Instruction::SetGT: BranchIdx = 3; break;
case Instruction::SetLE: BranchIdx = 4; break;
case Instruction::SetGE: BranchIdx = 5; break;
}
unsigned Column = 0;
if (Ty->isSigned() && !Ty->isFloatingPoint()) Column = 1;
if (Ty->isFloatingPoint()) Column = 2;
static unsigned OpcodeTab[3*6] = {
// LLVM SparcV8
// unsigned signed fp
V8::BE, V8::BE, V8::FBE, // seteq = be be fbe
V8::BNE, V8::BNE, V8::FBNE, // setne = bne bne fbne
V8::BCS, V8::BL, V8::FBL, // setlt = bcs bl fbl
V8::BGU, V8::BG, V8::FBG, // setgt = bgu bg fbg
V8::BLEU, V8::BLE, V8::FBLE, // setle = bleu ble fble
V8::BCC, V8::BGE, V8::FBGE // setge = bcc bge fbge
};
unsigned Opcode = OpcodeTab[3*BranchIdx + Column];
BuildMI (BB, Opcode, 1).addMBB (takenSuccMBB);
BuildMI (BB, V8::BA, 1).addMBB (notTakenSuccMBB);
} else {
// goto takenSuccMBB;
BuildMI (BB, V8::BA, 1).addMBB (takenSuccMBB);
}
}
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void V8ISel::emitGEPOperation (MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg) {
const TargetData &TD = TM.getTargetData ();
const Type *Ty = Src->getType ();
unsigned basePtrReg = getReg (Src, MBB, IP);
// GEPs have zero or more indices; we must perform a struct access
// or array access for each one.
for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
++oi) {
Value *idx = *oi;
unsigned nextBasePtrReg = makeAnotherReg (Type::UIntTy);
if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
// It's a struct access. idx is the index into the structure,
// which names the field. Use the TargetData structure to
// pick out what the layout of the structure is in memory.
// Use the (constant) structure index's value to find the
// right byte offset from the StructLayout class's list of
// structure member offsets.
unsigned fieldIndex = cast<ConstantUInt> (idx)->getValue ();
unsigned memberOffset =
TD.getStructLayout (StTy)->MemberOffsets[fieldIndex];
// Emit an ADD to add memberOffset to the basePtr.
// We might have to copy memberOffset into a register first, if
// it's big.
if (memberOffset + 4096 < 8191) {
BuildMI (*MBB, IP, V8::ADDri, 2,
nextBasePtrReg).addReg (basePtrReg).addSImm (memberOffset);
} else {
unsigned offsetReg = makeAnotherReg (Type::IntTy);
copyConstantToRegister (MBB, IP,
ConstantSInt::get(Type::IntTy, memberOffset), offsetReg);
BuildMI (*MBB, IP, V8::ADDrr, 2,
nextBasePtrReg).addReg (basePtrReg).addReg (offsetReg);
}
// The next type is the member of the structure selected by the
// index.
Ty = StTy->getElementType (fieldIndex);
} else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
// It's an array or pointer access: [ArraySize x ElementType].
// We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
// must find the size of the pointed-to type (Not coincidentally, the next
// type is the type of the elements in the array).
Ty = SqTy->getElementType ();
unsigned elementSize = TD.getTypeSize (Ty);
unsigned OffsetReg = ~0U;
int64_t Offset = -1;
bool addImmed = false;
if (isa<ConstantIntegral> (idx)) {
// If idx is a constant, we don't have to emit the multiply.
int64_t Val = cast<ConstantIntegral> (idx)->getRawValue ();
if ((Val * elementSize) + 4096 < 8191) {
// (Val * elementSize) is constant and fits in an immediate field.
// emit: nextBasePtrReg = ADDri basePtrReg, (Val * elementSize)
addImmed = true;
Offset = Val * elementSize;
} else {
// (Val * elementSize) is constant, but doesn't fit in an immediate
// field. emit: OffsetReg = (Val * elementSize)
// nextBasePtrReg = ADDrr OffsetReg, basePtrReg
OffsetReg = makeAnotherReg (Type::IntTy);
copyConstantToRegister (MBB, IP,
ConstantSInt::get(Type::IntTy, Val * elementSize), OffsetReg);
}
} else {
// idx is not constant, we have to shift or multiply.
OffsetReg = makeAnotherReg (Type::IntTy);
unsigned idxReg = getReg (idx, MBB, IP);
switch (elementSize) {
case 1:
BuildMI (*MBB, IP, V8::ORrr, 2, OffsetReg).addReg (V8::G0).addReg (idxReg);
break;
case 2:
BuildMI (*MBB, IP, V8::SLLri, 2, OffsetReg).addReg (idxReg).addZImm (1);
break;
case 4:
BuildMI (*MBB, IP, V8::SLLri, 2, OffsetReg).addReg (idxReg).addZImm (2);
break;
case 8:
BuildMI (*MBB, IP, V8::SLLri, 2, OffsetReg).addReg (idxReg).addZImm (3);
break;
default: {
if (elementSize + 4096 < 8191) {
// Emit a SMUL to multiply the register holding the index by
// elementSize, putting the result in OffsetReg.
BuildMI (*MBB, IP, V8::SMULri, 2,
OffsetReg).addReg (idxReg).addSImm (elementSize);
} else {
unsigned elementSizeReg = makeAnotherReg (Type::UIntTy);
copyConstantToRegister (MBB, IP,
ConstantUInt::get(Type::UIntTy, elementSize), elementSizeReg);
// Emit a SMUL to multiply the register holding the index by
// the register w/ elementSize, putting the result in OffsetReg.
BuildMI (*MBB, IP, V8::SMULrr, 2,
OffsetReg).addReg (idxReg).addReg (elementSizeReg);
}
break;
}
}
}
if (addImmed) {
// Emit an ADD to add the constant immediate Offset to the basePtr.
BuildMI (*MBB, IP, V8::ADDri, 2,
nextBasePtrReg).addReg (basePtrReg).addSImm (Offset);
} else {
// Emit an ADD to add OffsetReg to the basePtr.
BuildMI (*MBB, IP, V8::ADDrr, 2,
nextBasePtrReg).addReg (basePtrReg).addReg (OffsetReg);
}
}
basePtrReg = nextBasePtrReg;
}
// After we have processed all the indices, the result is left in
// basePtrReg. Move it to the register where we were expected to
// put the answer.
BuildMI (BB, V8::ORrr, 1, TargetReg).addReg (V8::G0).addReg (basePtrReg);
}
void V8ISel::visitGetElementPtrInst (GetElementPtrInst &I) {
unsigned outputReg = getReg (I);
emitGEPOperation (BB, BB->end (), I.getOperand (0),
I.op_begin ()+1, I.op_end (), outputReg);
}
void V8ISel::emitOp64LibraryCall (MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg,
const char *FuncName,
unsigned Op0Reg, unsigned Op1Reg) {
BuildMI (*MBB, IP, V8::ORrr, 2, V8::O0).addReg (V8::G0).addReg (Op0Reg);
BuildMI (*MBB, IP, V8::ORrr, 2, V8::O1).addReg (V8::G0).addReg (Op0Reg+1);
BuildMI (*MBB, IP, V8::ORrr, 2, V8::O2).addReg (V8::G0).addReg (Op1Reg);
BuildMI (*MBB, IP, V8::ORrr, 2, V8::O3).addReg (V8::G0).addReg (Op1Reg+1);
BuildMI (*MBB, IP, V8::CALL, 1).addExternalSymbol (FuncName, true);
BuildMI (*MBB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg (V8::O0);
BuildMI (*MBB, IP, V8::ORrr, 2, DestReg+1).addReg (V8::G0).addReg (V8::O1);
}
void V8ISel::emitShift64 (MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP, Instruction &I,
unsigned DestReg, unsigned SrcReg,
unsigned ShiftAmtReg) {
bool isSigned = I.getType()->isSigned();
switch (I.getOpcode ()) {
case Instruction::Shr: {
unsigned CarryReg = makeAnotherReg (Type::IntTy),
ThirtyTwo = makeAnotherReg (Type::IntTy),
HalfShiftReg = makeAnotherReg (Type::IntTy),
NegHalfShiftReg = makeAnotherReg (Type::IntTy),
TempReg = makeAnotherReg (Type::IntTy);
unsigned OneShiftOutReg = makeAnotherReg (Type::ULongTy),
TwoShiftsOutReg = makeAnotherReg (Type::ULongTy);
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock ();
MachineBasicBlock *shiftMBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (shiftMBB);
MachineBasicBlock *oneShiftMBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (oneShiftMBB);
MachineBasicBlock *twoShiftsMBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (twoShiftsMBB);
MachineBasicBlock *continueMBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (continueMBB);
// .lshr_begin:
// ...
// subcc %g0, ShiftAmtReg, %g0 ! Is ShAmt == 0?
// be .lshr_continue ! Then don't shift.
// ba .lshr_shift ! else shift.
BuildMI (BB, V8::SUBCCrr, 2, V8::G0).addReg (V8::G0)
.addReg (ShiftAmtReg);
BuildMI (BB, V8::BE, 1).addMBB (continueMBB);
BuildMI (BB, V8::BA, 1).addMBB (shiftMBB);
// Update machine-CFG edges
BB->addSuccessor (continueMBB);
BB->addSuccessor (shiftMBB);
// .lshr_shift: ! [preds: begin]
// or %g0, 32, ThirtyTwo
// subcc ThirtyTwo, ShiftAmtReg, HalfShiftReg ! Calculate 32 - shamt
// bg .lshr_two_shifts ! If >0, b two_shifts
// ba .lshr_one_shift ! else one_shift.
BB = shiftMBB;
BuildMI (BB, V8::ORri, 2, ThirtyTwo).addReg (V8::G0).addSImm (32);
BuildMI (BB, V8::SUBCCrr, 2, HalfShiftReg).addReg (ThirtyTwo)
.addReg (ShiftAmtReg);
BuildMI (BB, V8::BG, 1).addMBB (twoShiftsMBB);
BuildMI (BB, V8::BA, 1).addMBB (oneShiftMBB);
// Update machine-CFG edges
BB->addSuccessor (twoShiftsMBB);
BB->addSuccessor (oneShiftMBB);
// .lshr_two_shifts: ! [preds: shift]
// sll SrcReg, HalfShiftReg, CarryReg ! Save the borrows
// ! <SHIFT> in following is sra if signed, srl if unsigned
// <SHIFT> SrcReg, ShiftAmtReg, TwoShiftsOutReg ! Shift top half
// srl SrcReg+1, ShiftAmtReg, TempReg ! Shift bottom half
// or TempReg, CarryReg, TwoShiftsOutReg+1 ! Restore the borrows
// ba .lshr_continue
unsigned ShiftOpcode = (isSigned ? V8::SRArr : V8::SRLrr);
BB = twoShiftsMBB;
BuildMI (BB, V8::SLLrr, 2, CarryReg).addReg (SrcReg)
.addReg (HalfShiftReg);
BuildMI (BB, ShiftOpcode, 2, TwoShiftsOutReg).addReg (SrcReg)
.addReg (ShiftAmtReg);
BuildMI (BB, V8::SRLrr, 2, TempReg).addReg (SrcReg+1)
.addReg (ShiftAmtReg);
BuildMI (BB, V8::ORrr, 2, TwoShiftsOutReg+1).addReg (TempReg)
.addReg (CarryReg);
BuildMI (BB, V8::BA, 1).addMBB (continueMBB);
// Update machine-CFG edges
BB->addSuccessor (continueMBB);
// .lshr_one_shift: ! [preds: shift]
// ! if unsigned:
// or %g0, %g0, OneShiftOutReg ! Zero top half
// ! or, if signed:
// sra SrcReg, 31, OneShiftOutReg ! Sign-ext top half
// sub %g0, HalfShiftReg, NegHalfShiftReg ! Make ShiftAmt >0
// <SHIFT> SrcReg, NegHalfShiftReg, OneShiftOutReg+1 ! Shift bottom half
// ba .lshr_continue
BB = oneShiftMBB;
if (isSigned)
BuildMI (BB, V8::SRAri, 2, OneShiftOutReg).addReg (SrcReg).addZImm (31);
else
BuildMI (BB, V8::ORrr, 2, OneShiftOutReg).addReg (V8::G0)
.addReg (V8::G0);
BuildMI (BB, V8::SUBrr, 2, NegHalfShiftReg).addReg (V8::G0)
.addReg (HalfShiftReg);
BuildMI (BB, ShiftOpcode, 2, OneShiftOutReg+1).addReg (SrcReg)
.addReg (NegHalfShiftReg);
BuildMI (BB, V8::BA, 1).addMBB (continueMBB);
// Update machine-CFG edges
BB->addSuccessor (continueMBB);
// .lshr_continue: ! [preds: begin, do_one_shift, do_two_shifts]
// phi (SrcReg, begin), (TwoShiftsOutReg, two_shifts),
// (OneShiftOutReg, one_shift), DestReg ! Phi top half...
// phi (SrcReg+1, begin), (TwoShiftsOutReg+1, two_shifts),
// (OneShiftOutReg+1, one_shift), DestReg+1 ! And phi bottom half.
BB = continueMBB;
BuildMI (BB, V8::PHI, 6, DestReg).addReg (SrcReg).addMBB (thisMBB)
.addReg (TwoShiftsOutReg).addMBB (twoShiftsMBB)
.addReg (OneShiftOutReg).addMBB (oneShiftMBB);
BuildMI (BB, V8::PHI, 6, DestReg+1).addReg (SrcReg+1).addMBB (thisMBB)
.addReg (TwoShiftsOutReg+1).addMBB (twoShiftsMBB)
.addReg (OneShiftOutReg+1).addMBB (oneShiftMBB);
return;
}
case Instruction::Shl:
default:
std::cerr << "Sorry, 64-bit shifts are not yet supported:\n" << I;
abort ();
}
}
void V8ISel::visitBinaryOperator (Instruction &I) {
unsigned DestReg = getReg (I);
unsigned Op0Reg = getReg (I.getOperand (0));
unsigned Class = getClassB (I.getType());
unsigned OpCase = ~0;
if (Class > cLong) {
unsigned Op1Reg = getReg (I.getOperand (1));
switch (I.getOpcode ()) {
case Instruction::Add: OpCase = 0; break;
case Instruction::Sub: OpCase = 1; break;
case Instruction::Mul: OpCase = 2; break;
case Instruction::Div: OpCase = 3; break;
default: visitInstruction (I); return;
}
static unsigned Opcodes[] = { V8::FADDS, V8::FADDD,
V8::FSUBS, V8::FSUBD,
V8::FMULS, V8::FMULD,
V8::FDIVS, V8::FDIVD };
BuildMI (BB, Opcodes[2*OpCase + (Class - cFloat)], 2, DestReg)
.addReg (Op0Reg).addReg (Op1Reg);
return;
}
unsigned ResultReg = DestReg;
if (Class != cInt && Class != cLong)
ResultReg = makeAnotherReg (I.getType ());
if (Class == cLong) {
const char *FuncName;
unsigned Op1Reg = getReg (I.getOperand (1));
DEBUG (std::cerr << "Class = cLong\n");
DEBUG (std::cerr << "Op0Reg = " << Op0Reg << ", " << Op0Reg+1 << "\n");
DEBUG (std::cerr << "Op1Reg = " << Op1Reg << ", " << Op1Reg+1 << "\n");
DEBUG (std::cerr << "ResultReg = " << ResultReg << ", " << ResultReg+1 << "\n");
DEBUG (std::cerr << "DestReg = " << DestReg << ", " << DestReg+1 << "\n");
switch (I.getOpcode ()) {
case Instruction::Add:
BuildMI (BB, V8::ADDCCrr, 2, ResultReg+1).addReg (Op0Reg+1)
.addReg (Op1Reg+1);
BuildMI (BB, V8::ADDXrr, 2, ResultReg).addReg (Op0Reg).addReg (Op1Reg);
return;
case Instruction::Sub:
BuildMI (BB, V8::SUBCCrr, 2, ResultReg+1).addReg (Op0Reg+1)
.addReg (Op1Reg+1);
BuildMI (BB, V8::SUBXrr, 2, ResultReg).addReg (Op0Reg).addReg (Op1Reg);
return;
case Instruction::Mul:
FuncName = I.getType ()->isSigned () ? "__mul64" : "__umul64";
emitOp64LibraryCall (BB, BB->end (), DestReg, FuncName, Op0Reg, Op1Reg);
return;
case Instruction::Div:
FuncName = I.getType ()->isSigned () ? "__div64" : "__udiv64";
emitOp64LibraryCall (BB, BB->end (), DestReg, FuncName, Op0Reg, Op1Reg);
return;
case Instruction::Rem:
FuncName = I.getType ()->isSigned () ? "__rem64" : "__urem64";
emitOp64LibraryCall (BB, BB->end (), DestReg, FuncName, Op0Reg, Op1Reg);
return;
case Instruction::Shl:
case Instruction::Shr:
emitShift64 (BB, BB->end (), I, DestReg, Op0Reg, Op1Reg);
return;
}
}
switch (I.getOpcode ()) {
case Instruction::Add: OpCase = 0; break;
case Instruction::Sub: OpCase = 1; break;
case Instruction::Mul: OpCase = 2; break;
case Instruction::And: OpCase = 3; break;
case Instruction::Or: OpCase = 4; break;
case Instruction::Xor: OpCase = 5; break;
case Instruction::Shl: OpCase = 6; break;
case Instruction::Shr: OpCase = 7+I.getType()->isSigned(); break;
case Instruction::Div:
case Instruction::Rem: {
unsigned Dest = ResultReg;
unsigned Op1Reg = getReg (I.getOperand (1));
if (I.getOpcode() == Instruction::Rem)
Dest = makeAnotherReg(I.getType());
// FIXME: this is probably only right for 32 bit operands.
if (I.getType ()->isSigned()) {
unsigned Tmp = makeAnotherReg (I.getType ());
// Sign extend into the Y register
BuildMI (BB, V8::SRAri, 2, Tmp).addReg (Op0Reg).addZImm (31);
BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (Tmp).addReg (V8::G0);
BuildMI (BB, V8::SDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg);
} else {
// Zero extend into the Y register, ie, just set it to zero
BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (V8::G0).addReg (V8::G0);
BuildMI (BB, V8::UDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg);
}
if (I.getOpcode() == Instruction::Rem) {
unsigned Tmp = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SMULrr, 2, Tmp).addReg(Dest).addReg(Op1Reg);
BuildMI (BB, V8::SUBrr, 2, ResultReg).addReg(Op0Reg).addReg(Tmp);
}
break;
}
default:
visitInstruction (I);
return;
}
static const unsigned Opcodes[] = {
V8::ADDrr, V8::SUBrr, V8::SMULrr, V8::ANDrr, V8::ORrr, V8::XORrr,
V8::SLLrr, V8::SRLrr, V8::SRArr
};
static const unsigned OpcodesRI[] = {
V8::ADDri, V8::SUBri, V8::SMULri, V8::ANDri, V8::ORri, V8::XORri,
V8::SLLri, V8::SRLri, V8::SRAri
};
unsigned Op1Reg = ~0U;
if (OpCase != ~0U) {
Value *Arg1 = I.getOperand (1);
bool useImmed = false;
int64_t Val = 0;
if ((getClassB (I.getType ()) <= cInt) && (isa<ConstantIntegral> (Arg1))) {
Val = cast<ConstantIntegral> (Arg1)->getRawValue ();
useImmed = (Val > -4096 && Val < 4095);
}
if (useImmed) {
BuildMI (BB, OpcodesRI[OpCase], 2, ResultReg).addReg (Op0Reg).addSImm (Val);
} else {
Op1Reg = getReg (I.getOperand (1));
BuildMI (BB, Opcodes[OpCase], 2, ResultReg).addReg (Op0Reg).addReg (Op1Reg);
}
}
switch (getClassB (I.getType ())) {
case cByte:
if (I.getType ()->isSigned ()) { // add byte
BuildMI (BB, V8::ANDri, 2, DestReg).addReg (ResultReg).addZImm (0xff);
} else { // add ubyte
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (24);
BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (24);
}
break;
case cShort:
if (I.getType ()->isSigned ()) { // add short
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16);
BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (16);
} else { // add ushort
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16);
BuildMI (BB, V8::SRLri, 2, DestReg).addReg (TmpReg).addZImm (16);
}
break;
case cInt:
// Nothing to do here.
break;
case cLong: {
// Only support and, or, xor here - others taken care of above.
if (OpCase < 3 || OpCase > 5) {
visitInstruction (I);
return;
}
// Do the other half of the value:
BuildMI (BB, Opcodes[OpCase], 2, ResultReg+1).addReg (Op0Reg+1)
.addReg (Op1Reg+1);
break;
}
default:
visitInstruction (I);
}
}
void V8ISel::visitSetCondInst(SetCondInst &I) {
if (canFoldSetCCIntoBranch(&I))
return; // Fold this into a branch.
unsigned Op0Reg = getReg (I.getOperand (0));
unsigned Op1Reg = getReg (I.getOperand (1));
unsigned DestReg = getReg (I);
const Type *Ty = I.getOperand (0)->getType ();
// Compare the two values.
if (getClass (Ty) < cLong) {
BuildMI(BB, V8::SUBCCrr, 2, V8::G0).addReg(Op0Reg).addReg(Op1Reg);
} else if (getClass (Ty) == cLong) {
switch (I.getOpcode()) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ:
case Instruction::SetNE: {
unsigned TempReg0 = makeAnotherReg (Type::IntTy),
TempReg1 = makeAnotherReg (Type::IntTy),
TempReg2 = makeAnotherReg (Type::IntTy),
TempReg3 = makeAnotherReg (Type::IntTy);
MachineOpCode Opcode;
int Immed;
// These guys are special - no branches needed!
BuildMI (BB, V8::XORrr, 2, TempReg0).addReg (Op0Reg+1).addReg (Op1Reg+1);
BuildMI (BB, V8::XORrr, 2, TempReg1).addReg (Op0Reg).addReg (Op1Reg);
BuildMI (BB, V8::SUBCCrr, 2, V8::G0).addReg (V8::G0).addReg (TempReg1);
Opcode = I.getOpcode() == Instruction::SetEQ ? V8::SUBXri : V8::ADDXri;
Immed = I.getOpcode() == Instruction::SetEQ ? -1 : 0;
BuildMI (BB, Opcode, 2, TempReg2).addReg (V8::G0).addSImm (Immed);
BuildMI (BB, V8::SUBCCrr, 2, V8::G0).addReg (V8::G0).addReg (TempReg0);
BuildMI (BB, Opcode, 2, TempReg3).addReg (V8::G0).addSImm (Immed);
Opcode = I.getOpcode() == Instruction::SetEQ ? V8::ANDrr : V8::ORrr;
BuildMI (BB, Opcode, 2, DestReg).addReg (TempReg2).addReg (TempReg3);
return;
}
case Instruction::SetLT:
case Instruction::SetGE:
BuildMI (BB, V8::SUBCCrr, 2, V8::G0).addReg (Op0Reg+1).addReg (Op1Reg+1);
BuildMI (BB, V8::SUBXCCrr, 2, V8::G0).addReg (Op0Reg).addReg (Op1Reg);
break;
case Instruction::SetGT:
case Instruction::SetLE:
BuildMI (BB, V8::SUBCCri, 2, V8::G0).addReg (V8::G0).addSImm (1);
BuildMI (BB, V8::SUBXCCrr, 2, V8::G0).addReg (Op0Reg+1).addReg (Op1Reg+1);
BuildMI (BB, V8::SUBXCCrr, 2, V8::G0).addReg (Op0Reg).addReg (Op1Reg);
break;
}
} else if (getClass (Ty) == cFloat) {
BuildMI(BB, V8::FCMPS, 2).addReg(Op0Reg).addReg(Op1Reg);
} else if (getClass (Ty) == cDouble) {
BuildMI(BB, V8::FCMPD, 2).addReg(Op0Reg).addReg(Op1Reg);
}
unsigned BranchIdx;
switch (I.getOpcode()) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ: BranchIdx = 0; break;
case Instruction::SetNE: BranchIdx = 1; break;
case Instruction::SetLT: BranchIdx = 2; break;
case Instruction::SetGT: BranchIdx = 3; break;
case Instruction::SetLE: BranchIdx = 4; break;
case Instruction::SetGE: BranchIdx = 5; break;
}
unsigned Column = 0;
if (Ty->isSigned() && !Ty->isFloatingPoint()) Column = 1;
if (Ty->isFloatingPoint()) Column = 2;
static unsigned OpcodeTab[3*6] = {
// LLVM SparcV8
// unsigned signed fp
V8::BE, V8::BE, V8::FBE, // seteq = be be fbe
V8::BNE, V8::BNE, V8::FBNE, // setne = bne bne fbne
V8::BCS, V8::BL, V8::FBL, // setlt = bcs bl fbl
V8::BGU, V8::BG, V8::FBG, // setgt = bgu bg fbg
V8::BLEU, V8::BLE, V8::FBLE, // setle = bleu ble fble
V8::BCC, V8::BGE, V8::FBGE // setge = bcc bge fbge
};
unsigned Opcode = OpcodeTab[3*BranchIdx + Column];
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock ();
// thisMBB:
// ...
// subcc %reg0, %reg1, %g0
// TrueVal = or G0, 1
// bCC sinkMBB
unsigned TrueValue = makeAnotherReg (I.getType ());
BuildMI (BB, V8::ORri, 2, TrueValue).addReg (V8::G0).addZImm (1);
MachineBasicBlock *copy0MBB = new MachineBasicBlock (LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock (LLVM_BB);
BuildMI (BB, Opcode, 1).addMBB (sinkMBB);
// Update machine-CFG edges
BB->addSuccessor (sinkMBB);
BB->addSuccessor (copy0MBB);
// copy0MBB:
// %FalseValue = or %G0, 0
// # fall through
BB = copy0MBB;
F->getBasicBlockList ().push_back (BB);
unsigned FalseValue = makeAnotherReg (I.getType ());
BuildMI (BB, V8::ORrr, 2, FalseValue).addReg (V8::G0).addReg (V8::G0);
// Update machine-CFG edges
BB->addSuccessor (sinkMBB);
DEBUG (std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
DEBUG (std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
DEBUG (std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
F->getBasicBlockList ().push_back (BB);
BuildMI (BB, V8::PHI, 4, DestReg).addReg (FalseValue)
.addMBB (copy0MBB).addReg (TrueValue).addMBB (thisMBB);
}
void V8ISel::visitAllocaInst(AllocaInst &I) {
// Find the data size of the alloca inst's getAllocatedType.
const Type *Ty = I.getAllocatedType();
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
unsigned ArraySizeReg = getReg (I.getArraySize ());
unsigned TySizeReg = getReg (ConstantUInt::get (Type::UIntTy, TySize));
unsigned TmpReg1 = makeAnotherReg (Type::UIntTy);
unsigned TmpReg2 = makeAnotherReg (Type::UIntTy);
unsigned StackAdjReg = makeAnotherReg (Type::UIntTy);
// StackAdjReg = (ArraySize * TySize) rounded up to nearest
// doubleword boundary.
BuildMI (BB, V8::UMULrr, 2, TmpReg1).addReg (ArraySizeReg).addReg (TySizeReg);
// Round up TmpReg1 to nearest doubleword boundary:
BuildMI (BB, V8::ADDri, 2, TmpReg2).addReg (TmpReg1).addSImm (7);
BuildMI (BB, V8::ANDri, 2, StackAdjReg).addReg (TmpReg2).addSImm (-8);
// Subtract size from stack pointer, thereby allocating some space.
BuildMI (BB, V8::SUBrr, 2, V8::SP).addReg (V8::SP).addReg (StackAdjReg);
// Put a pointer to the space into the result register, by copying
// the stack pointer.
BuildMI (BB, V8::ADDri, 2, getReg(I)).addReg (V8::SP).addSImm (96);
// Inform the Frame Information that we have just allocated a variable-sized
// object.
F->getFrameInfo()->CreateVariableSizedObject();
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
void V8ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::vastart:
case Intrinsic::vacopy:
case Intrinsic::vaend:
// We directly implement these intrinsics
case Intrinsic::not_intrinsic: break;
default:
// All other intrinsic calls we must lower.
Instruction *Before = CI->getPrev();
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
}
}
void V8ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
switch (ID) {
default:
std::cerr << "Sorry, unknown intrinsic function call:\n" << CI; abort ();
case Intrinsic::vastart: {
// Add the VarArgsOffset to the frame pointer, and copy it to the result.
unsigned DestReg = getReg (CI);
BuildMI (BB, V8::ADDri, 2, DestReg).addReg (V8::FP).addSImm (VarArgsOffset);
return;
}
case Intrinsic::vaend:
// va_end is a no-op on SparcV8.
return;
case Intrinsic::vacopy: {
// Copy the va_list ptr (arg1) to the result.
unsigned DestReg = getReg (CI), SrcReg = getReg (CI.getOperand (1));
BuildMI (BB, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg (SrcReg);
return;
}
}
}
void V8ISel::visitVANextInst (VANextInst &I) {
// Add the type size to the vararg pointer (arg0).
unsigned DestReg = getReg (I);
unsigned SrcReg = getReg (I.getOperand (0));
unsigned TySize = TM.getTargetData ().getTypeSize (I.getArgType ());
BuildMI (BB, V8::ADDri, 2, DestReg).addReg (SrcReg).addSImm (TySize);
}
void V8ISel::visitVAArgInst (VAArgInst &I) {
unsigned VAList = getReg (I.getOperand (0));
unsigned DestReg = getReg (I);
switch (I.getType ()->getTypeID ()) {
case Type::PointerTyID:
case Type::UIntTyID:
case Type::IntTyID:
BuildMI (BB, V8::LD, 2, DestReg).addReg (VAList).addSImm (0);
return;
case Type::ULongTyID:
case Type::LongTyID:
BuildMI (BB, V8::LD, 2, DestReg).addReg (VAList).addSImm (0);
BuildMI (BB, V8::LD, 2, DestReg+1).addReg (VAList).addSImm (4);
return;
case Type::DoubleTyID: {
unsigned DblAlign = TM.getTargetData().getDoubleAlignment();
unsigned TempReg = makeAnotherReg (Type::IntTy);
unsigned TempReg2 = makeAnotherReg (Type::IntTy);
int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign);
BuildMI (BB, V8::LD, 2, TempReg).addReg (VAList).addSImm (0);
BuildMI (BB, V8::LD, 2, TempReg2).addReg (VAList).addSImm (4);
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (TempReg);
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (4).addReg (TempReg2);
BuildMI (BB, V8::LDDFri, 2, DestReg).addFrameIndex (FI).addSImm (0);
return;
}
default:
std::cerr << "Sorry, vaarg instruction of this type still unsupported:\n"
<< I;
abort ();
return;
}
}